Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
November 26, 2018

Exercises for "Formal Specification and Verification" Exercise sheet 6

Exercise 6.1:

You may recall the puzzle of a ferryman, goat, cabbage, and wolf all on one side of a river. The ferryman can cross the river with at most one passenger in his boat. There is a behavioural conflict between:

1. the goat and the cabbage; and
2. the goat and the wolf;
if they are on the same river bank but the ferryman is not on that river bank (the goat eats the cabbage, resp. the wolf eats the goat).

Define a "program graph" describing this system: (Loc, Act, Effect, \rightarrow, Loc ${ }_{0}$) where:

- $\operatorname{Loc}=\{$ left, right, conflict $\}$ is a set of locations with initial locations $\operatorname{Loc}_{0}=\{$ left $\}$.

Intuitively, left and right represent the location of the ferryman; conflict represents the conflict situation when the cabbage or the goat is eaten.

- Act $=\{$ carry-lr-goat, carry-rl-goat, carry-lr-cabbage, carry-rl-cabbage, carry-lr-wolf, carry-rl-wolf, cross-rl, cross-lr, eat-cabbage, eat-goat $\}$ is a set of actions.
(For instance:
- carry-lr-goat means: the ferryman carries the goat from the left to the right river bank
- carry-rl-goat means: the ferryman carries the goat from the right to the left river bank
- cross-rl (resp. cross-lr) means: the ferryman crosses the river from right to left (left to right) without carrying anything.
- eat-cabbage means: the goat eats the cabbage
- eat-goat means: the wolf eats the goat.)

Assume that $\mathrm{Var}=\{$ goat, cabbage, wolf $\}$ and the corresponding domains are $\{l, r\}$.
Let $\operatorname{Eval}(\operatorname{Var})=\{\beta \mid \beta: \operatorname{Var} \rightarrow\{l, r\}\}$.
(Intuitively, $\beta(x)=l$ means that x is on the left side of the river, and $\beta(x)=r$ means that x is on the right side of the river.)

Assume that $\operatorname{Cond}(\operatorname{Var})=\{$ goat $\approx l$, goat $\approx r$, cabbage $\approx l$, cabbage $\approx r$, wolf $\approx l$, wolf $\approx r\}$ and that the initial condition is

$$
g_{0}:=(\text { goat } \approx l) \wedge(\text { cabbage } \approx l) \wedge(\text { wolf } \approx l)
$$

(1) Define a suitable effect function Effect : Act \times Eval(Var) \rightarrow Eval(Var).
(It is not necessary to exhaustively present the definition of this function, you can present some examples and explain how it is defined in general)
(2) Define a suitable transition relation $\rightarrow \subseteq \operatorname{Loc} \times(\operatorname{Cond}($ Var $) \times$ Act $) \times$ Loc such that there is no $\phi \in \operatorname{Cond}(\operatorname{Var}), \alpha \in A c t, l \in \operatorname{Loc}$ such that (conflict, $\phi, \alpha, l) \in \rightarrow$. (It is not necessary to exhaustively present the definition of the transition relation \rightarrow; you can explain how it is defined in general and give some examples)
(3) Describe the transition system $T S(P G)=(S$, Act, $\rightarrow, I, A P, L)$ of the program graph (Loc, Act, Effect, \rightarrow, Loc $_{0}, g_{0}$) constructed before.
(It is not necessary to exhaustively present the definition of the transition relation \rightarrow or the labelling function; you can explain how they are defined in general and give some examples)
(4) Describe:

- $\operatorname{Post}(<$ left, $\beta>$, carry-lr-goat $)$, where $\beta($ goat $)=l, \beta($ cabbage $)=\beta($ wolf $)=r$.
- $\operatorname{Post}(<$ left,$\beta>$, carry-rl-goat $)$, where β (goat $)=l, \beta$ (cabbage) $=\beta$ (wolf) $=r$.
- $\operatorname{Post}(<$ left,$\beta>)$, where $\beta($ goat $)=l, \beta($ cabbage $)=\beta($ wolf $)=r$.
- $\operatorname{Post}(<$ right, $\beta>)$, where β (goat $)=\beta($ cabbage $)=l, \beta($ wolf $)=r$.
- $\operatorname{Post}\left(\left\{<\right.\right.$ right, $\beta>,<$ right, $\left.\beta^{\prime}>\right\}$), where β (goat) $=\beta$ (cabbage) $=l, \beta$ (wolf $)=r$ and $\beta^{\prime}($ goat $)=\beta($ wolf $)=l, \beta($ cabbage $)=r$
- $\operatorname{Pre}(<$ conflict, $\beta>)$, where β (goat $)=\beta($ cabbage $)=l, \beta$ (wolf $)=r$.
- $\operatorname{Pre}(<\operatorname{conflict}, \beta>)$, where β (goat) $=\beta($ wolf $)=\beta($ cabbage $)=r$.
(5) Is the transition system you constructed action-deterministic? Is it $A P$-deterministic?
(7) Are there terminal states in the system?
(8) Is the state $<$ right, $\beta>$ with β (goat $)=\beta($ cabbage $)=\beta($ wolf $)=r$ reachable?

Please submit your solution until Sunday, December 2, 2018 at 17:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Hand it in to me (Room B225) or drop it in the box in front of Room B224.

