Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

December 11, 2018

Exercises for "Formal Specification and Verification" Exercise sheet 8

We use the following abbreviations in LTL:

- The future diamond $\Diamond \phi := \top \mathcal{U} \phi$
- The future box $\Box \phi := \neg \Diamond \neg \phi$
- The release operator $\phi \mathcal{R} \psi := \neg (\neg \phi \mathcal{U} \neg \psi)$

Exercise 8.1:

Let $TS = (S, \rightarrow, L)$ be a transition system and let $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$ be a path in TS.

Prove:

 $\pi \models \phi \mathcal{R} \psi$ if and only if $[(\forall m \geq 0 : \pi^m \models \psi) \text{ or } (\exists n \geq 0 : \pi^n \models \phi \text{ and } \forall k \leq n : \pi^k \models \psi)].$

Hint: You might need to use the fact that the following are equivalent:

- $\forall m \geq 0 \ (\pi^m \models \psi \text{ or } \exists n < m : \pi^n \models \phi)$
- $(\forall m \geq 0 : \pi^m \models \psi)$ or $(\exists n \geq 0 : \pi^n \models \phi \text{ and } \forall k \leq n : \pi^k \models \psi)$

Exercise 8.2:

Consider the following transition system:

Find an (infinite) path π in this transition system with $\pi \models p\mathcal{U}q$.

Find an (infinite) path π' in this transition system with $\pi' \models \neg(p\mathcal{U}q)$.

Exercise 8.3:

Let $TS = (S, \to, L)$ be a transition system and let $\pi = s_0 \to s_1 \to s_2 \to ...$ be a path in TS. Show that:

(1)
$$\pi \models \bigcirc (\phi \rightarrow \psi) \rightarrow (\bigcirc \phi \rightarrow \bigcirc \psi)$$

(2)
$$\pi \models \Box(\phi \rightarrow \psi) \rightarrow (\Box\phi \rightarrow \Box\psi)$$

(3)
$$\pi \models \Box \phi \rightarrow \phi \land \bigcirc \Box \phi$$

(4)
$$\pi \models \Box(\phi \rightarrow \bigcirc \phi) \rightarrow (\phi \rightarrow \Box \phi)$$

(5)
$$\pi \models \phi \mathcal{U} \psi \rightarrow (\psi \lor (\phi \land \bigcirc (\phi \mathcal{U} \psi)))$$

Exercise 8.4:

Show that there exists no transition system $TS = (S, \to, L)$ and no path $\pi = s_0 \to s_1 \to s_2 \to ...$ in TS with $\pi \models p \land (p \to \Box p) \land \Diamond \neg p$.

Exercise 8.5:

Prove the following equivalences of LTL formulae:

- (1) $\phi \mathcal{U} \phi \equiv \phi$
- (2) $\bigcirc \Diamond \phi \equiv \Diamond \bigcirc \phi$
- (3) $\phi \mathcal{U} \psi \equiv \psi \vee (\phi \wedge \bigcirc (\phi \mathcal{U} \psi))$ (unfolding of until)
- (4) $\phi \mathcal{R} \psi \equiv (\psi \wedge \phi) \vee (\psi \wedge \bigcirc (\phi \mathcal{R} \psi))$ (unfolding of release)

Hint: For proving (4) you can use (3) and the definition of \mathcal{R} .

Please submit your solution until Sunday, December 16, 2018 at 17:00. Please do not forget to write your name on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework FSV" in the subject.
- Drop it in the box in front of Room B224.