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Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)
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Overview

• Model checking:

Finite transition systems / CTL properties

States are “entities” (no precise description, except for labelling

functions)

No precise description of actions (only → important)

Extensions in two possible directions:

• More precise description of the actions/events

- Propositional Dynamic Logic (last time)

- Hoare logic (not discussed in this lecture)

• More precise description of states (and possibly also of actions)

- succinct representation: formulae represent a set of states

- deductive verification (today)
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Transition systems (Reminder)

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input
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Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α
→ s′ instead of (s,α, s′) ∈→.
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Programs and transition systems

Program graph representation
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Program graph representation

Some preliminaries

• typed variables with a valuation that assigns values in a fixed structure

to variables

- e.g., β(x) = 17 and β(y) = −2

• Boolean conditions: set of formulae over Var

- propositional logic formulas whose propositions are of the form

“x ∈ D”

- (−3 < x ≤ 5) ∧ (y = green) ∧ (x ≤ 2 ∗ x′)

• effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

- e.g., α ≡ x := y + 5 and evaluation β(x) = 17 and β(y) = −2

- Effect(α, β)(x) = β(y) + 5 = 3,

- Effect(α, β)(y) = β(y) = −2
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Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,→, Loc0, g0)

where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• → ⊆ Loc × ( Cond(Var)
︸ ︷︷ ︸

Boolean conditions on Var

×Act)× Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: l
g :α
→ l′ denotes (l , g ,α, l′) ∈→.
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From program graphs to transition systems

• Basic strategy: unfolding

- state = location (current control) l + data valuation β (l ,β)

- initial state = initial location + data valuation satisfying

the initial condition g0

• Propositions and labeling

- propositions: “at l” and “x ∈ D” for D ⊆ dom(x)

- < l , β > is labeled with “at l” and all conditions that hold in β.

• l
g :α
→ l′ and g holds in β then < l ,β >

α
→< l′,Effect(< l ,β >) >
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Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,→,Loc0, g0)

over set Var of variables is the tuple (S ,Act,→, I ,AP, L) where:

• S = Loc × Eval(Var)

• → S × Act × S is defined by the rule:

If l
g :α
→ l′ and β |= g then < l ,β >

α
→< l′,Effect(< l ,β >) >

• I = {< l ,β >| l ∈ Loc0,β |= g0}

• AP = Loc ∪ Cond(Var) and

• L(< l , β >) = {l} ∪ {g ∈ Cond(Var) | β |= g}.
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Problem

Set of states: S = Loc × Eval(Var)

Eval(Var) can be very large

(some variables can have values in large data domains e.g. integers)

Therefore it is also difficult to concretely represent →

(the relation usually very large as well)
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Solution

Succinct representation of sets of states and of transitions between states

• Set of states: Formula (property of all states in the set)

• Transitions: Formulae (relation between the old values of the variables

and the new values of the variables)

12



Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error
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Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.
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Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.

Idea: Take into account an additional variable pc (program counter), having

as domain the set of locations.

State: assignment of values to the variables and to pc
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Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

States:

(l , β), where l location and β assignment of values to the variables.

Idea: Take into account an additional variable pc (program counter), having

as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula

Example:

y ≥ z: The set of all states (l ,β) for which β(y) ≥ β(z) (i.e. β |= y ≥ z)
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Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Transition relation: (l , β) → (l′,β′)
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Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Transition relation: (l , β) → (l′,β′)
Expressed by logical formulae: Formula containing primed and unprimed variables.

Example:

• ρ1 = (move(l1, l2) ∧ y ≥ z ∧ skip(x , y , z))

• ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

• ρ3 = (move(l2, l3) ∧ x ≥ y ∧ skip(x , y , z))

• ρ4 = (move(l3, l4) ∧ x ≥ z ∧ skip(x , y , z))

• ρ5 = (move(l3; l5) ∧ x + 1 ≤ z ∧ skip(x , y , z))

Abbreviations:

move(l , l′) := (pc = l ∧ pc′ = l′)

skip(v1, . . . , vn) := (v ′

1 = v1 ∧ · · · ∧ v ′

n = vn)
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Programs as transition systems

Verification problem: Program + Description of the “bad” states

Succinct representation:

P = (Var , pc, Init,R) φerr

• V - finite (ordered) set of program variables

• pc - program counter variable (pc included in V )

• Init - initiation condition given by formula over V

• R - a finite set of transition relations

Every transition relation ρ ∈ R is given by a formula over the variables

V and their primed versions V ′

• φerr - an error condition given by a formula over V
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States, sets and relations

• Each program variable x is assigned a domain of values Dx .

• Program state = function that assigns each program variable a value

from its respective domain

• S = set of program states

• Formula with free variables in V = set of program states

• Formula with free variables in V and V ′ = binary relation over

program states

– First component of each pair refers to values of the variables V

– Second component of the pair refers to values of the variables V ′

(typically the new variables of the variables in V after an instruction

was executed)
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States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.
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States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the

variable y is greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs

of program states (s1, s2) in which the value of the variable y in the

second state s2 is greater than the value of z in the first state s1
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States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the variable y is

greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs of program

states (s1, s2) in which the value of the variable y in the second state s2 is

greater than the value of z in the first state s1

• If program state s assigns 1, 3, 2, and l1 to program variables x , y , z , and pc,

respectively, then s |= y ≥ z

23



States, sets and relations

• We identify formulas with the sets and relations that they represent

• We identify the entailment relation between formulas |= with set

inclusion

• We identify the satisfaction relation |= between valuations and

formulas, with the membership relation.

Example:

• Formula y ≥ z = set of program states in which the value of the variable y is

greater than the value of z

• Formula y ′ ≥ z = binary relation over program states, = set of pairs of program

states (s1, s2) in which the value of the variable y in the second state s2 is

greater than the value of z in the first state s1

• If program state s assigns 1, 3, 2, and l1 to program variables x , y , z , and pc,

respectively, then s |= y ≥ z

• Logical consequence: y ≥ z |= y + 1 ≥ z
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Example Program

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error
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Example program

• Program variables V = (pc, x , y , z)

• Program counter pc

• Program variables x , y , and z range over integers: Dx = Dy = Dz = Int

Program counter pc ranges over control locations: Dpc = L

• Set of control locations L = {l1, l2, l3, l4, l5}

• Initiation condition Init := (pc = l1)

• Error condition φerr := (pc = l5)

• Program transitions R = {ρ1, . . . , ρ5}, where:

ρ1 = (move(l1, l2) ∧ y ≥ z ∧ skip(x , y , z))

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

ρ3 = (move(l2, l3) ∧ x ≥ y ∧ skip(x , y , z))

ρ4 = (move(l3, l4) ∧ x ≥ z ∧ skip(x , y , z))

ρ5 = (move(l3; l5) ∧ x + 1 ≤ z ∧ skip(x , y , z))
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Initial state, error state, transition relation

• Each state that satisfies the initiation condition Init is called an initial

state

• Each state that satisfies the error condition err is called an error state

• Program transition relation ρR is the union of the single-statement

transition relations (formula representation: disjunction) i.e.,

ρR =
∨

ρ∈R

ρ

• The state s has a transition to the state s′ if the pair of states (s, s′)
lies in the program transition relation ρR, i.e., if (s, s′) |= ρR:

– s : V →
⋃

x∈V Dx , s(x) ∈ Dx for all x ∈ V

– s′ : V ′ →
⋃

x∈V Dx , s(x′) ∈ Dx for all x ∈ V

– β : V ∪ V ′ →
⋃

x∈X Dx defined for every x ∈ V by

β(x) = s(x), β(x′) = s′(x) has the property that β |= ρR
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Computation

A program computation is a sequence of states s1s2 . . . such that:

• The first element is an initial state, i.e., s1 |= Init

• Each pair of consecutive states (si , si+1) is connected by a program

transition, i.e., (si , si+1) |= ρR.

• If the sequence is finite then the last element does not have any

successors i.e., if the last element is sn, then there is no state s such

that (sn, s) |= ρR.
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Example Program

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Example of a computation:

(l1, 1, 3, 2), (l2, 1, 3, 2), (l2, 2, 3, 2), (l2, 3, 3, 2), (l3, 3, 3, 2), (l4, 3, 3, 2)

• sequence of transitions ρ1, ρ2, ρ2, ρ3, ρ4

• state = tuple of values of program variables pc, x , y , and z

• last program state does not any successors

29



Correctness: Safety

• a state is reachable if it occurs in some program computation

• a program is safe if no error state is reachable

• . . . if and only if no error state lies in φreach,

φerr ∧ φreach |=⊥

where φreach = set of program states which are reachable from some

initial state

• . . . if and only if no initial state lies in φreach−1 ,

Init ∧ φreach−1(φerr) |=⊥

where φreach−1(φerr) = set of program states from which some state

in φerr is reachable
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Example

1: if (y >= z) then skip else halt;

2: while (x < y) {

x++;

}

3: if (x >= z) then skip else goto 5;

4: exit

5: error

Set of reachable states:

φreach = (pc = l1∨

(pc = l2 ∧ y ≥ z)∨

(pc = l3 ∧ y ≥ z ∧ x ≥ y)∨

(pc = l4 ∧ y ≥ z ∧ x ≥ y)
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Post operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a post-condition function post by:

post(φ, ρ) =
E

V ′′ : φ[V ′′/V ] ∧ ρ[V ′′/V ][V /V ′]

An application post(φ, ρ) computes the image of the set φ under the

relation ρ.
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Post operator

Let φ be a formula over V

Let ρ be a formula over V and V ′

Define a post-condition function post by:

post(φ, ρ) =
E

V ′′ : φ[V ′′/V ] ∧ ρ[V ′′/V ][V /V ′]

An application post(φ, ρ) computes the image of the set φ under the

relation ρ.

post distributes over disjunction wrt. each argument:

• post(φ, ρ1 ∨ ρ2) = post(φ, ρ1) ∨ post(φ, ρ2)

• post(φ1 ∨ φ2, ρ) = post(φ1, ρ) ∨ post(φ2, ρ)
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Application of post in example program

Set of states φ := (pc = l2 ∧ y ≥ z)

Transition relation ρ := ρ2

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

post(φ, ρ) =

E

V ′′(pc = l2 ∧ y ≥ x)[V ′′/V ] ∧ ρ2[V
′′/V ][V/V ′]

=
E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc′ = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x′ = x′′ + 1 ∧ y ′ = y ′′ ∧ z′ = z′′)[V/V

=

E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x = x′′ + 1 ∧ y = y ′′ ∧ z = z′′)

= (pc = l2 ∧ y ≤ z ∧ x ≤ y)
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Application of post in example program

Set of states φ := (pc = l2 ∧ y ≥ z)

Transition relation ρ := ρ2

ρ2 = (move(l2, l2) ∧ x + 1 ≤ y ∧ x′ = x + 1 ∧ skip(y , z))

post(φ, ρ) =

E

V ′′(pc = l2 ∧ y ≥ x)[V ′′/V ] ∧ ρ2[V
′′/V ][V/V ′]

=
E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc′ = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x′ = x′′ + 1 ∧ y ′ = y ′′ ∧ z′ = z′′)[V/V

=

E

V ′′(pc′′ = l2 ∧ y ′′ ≥ x′′)∧

(pc′′ = l2 ∧ pc = l2 ∧ x′′ + 1 ≤ y ′′ ∧ x = x′′ + 1 ∧ y = y ′′ ∧ z = z′′)

= (pc = l2 ∧ y ≤ z ∧ x ≤ y)

[Renamed] program variables:

V = (pc, x , y , z),V ′ = (pc′, x′, y ′, z′),V ′′ = (pc′′, x′′, y ′′, z′′)
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Iteration of post

postn(φ, ρ) = n-fold application of post to φ under ρ

postn(φ, ρ) =







φ if n = 0

post(postn−1(φ, ρ)), ρ) otherwise

Characterize φreach using iterates of post:

φreach = Init ∨ post(Init, ρR) ∨ post(post(Init, ρR), ρR) ∨ . . .

=
∨

i≥0 post
i (Init, ρR)

disjuncts = iterates for every natural number n (“ω-iteration”)
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Finite iteration post may suffice

Fixpoint reached in n steps if
∨n

i=1 post
i (Init, ρR) =

∨n+1
i=1 post i (Init, ρR)

Then
∨n

i=1 post
i (Init, ρR) =

∨

i≥0 post
i (Init, ρR)
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Forward reachability analysis

Compute
∨n

i=1 post
i (Init, ρR), n ≥ 0.

If there exists m ∈ N such that

n∨

i=1

post i (Init, ρR) =
n+1∨

i=1

post i (Init, ρR)

then fixpoint reached.

Let φreach :=
∨n

i=1 post
i (Init, ρR)

If φreach ∩ φerr = ∅ then safety is guaranteed.
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Backward reachability analysis

Another possibility: Start from a bad state and compute states from which

the bad state can be reached.

If the initial states are not among these states then safety is guaranteed.

more: next time
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