Formal Specification and Verification

Deductive Verification: An introduction

28.01.2019

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Overview

e Model checking:
Finite transition systems / CTL properties
States are “entities” (no precise description, except for labelling
functions)

No precise description of actions (only — important)

Overview

e Model checking:
Finite transition systems / CTL properties
States are “entities” (no precise description, except for labelling
functions)

No precise description of actions (only — important)

Extensions in two possible directions:

e More precise description of the actions/events

- Propositional Dynamic Logic (last time)
- Hoare logic (not discussed in this lecture)

e More precise description of states (and possibly also of actions)
- succinct representation: formulae represent a set of states

- deductive verification (today)

Transition systems (Reminder)

Model to describe the behaviour of systems
Digraphs where nodes represent states, and edges model transitions

State: Examples
— the current colour of a traffic light
— the current values of all program variables 4+ the program counter
— the current value of the registers together with the values of the
input bits
Transition (“state change”): Examples
— a switch from one colour to another
— the execution of a program statement

— the change of the registers and output bits for a new input

Transition systems

Definition.
A transition system TS is a tuple (S, Act, —, I, AP, L) where:
e S is a set of states
e Act is a set of actions
o —-C S x Act X S is a transition relation
e /| C S is a set of initial states
e AP is a set of atomic propositions
e L:S — 247 is a labeling function

S and Act are either finite or countably infinite

Notation: s = s’ instead of (s, o, s’) €—-.

Programs and transition systems

Program graph representation

Program graph representation

Some preliminaries

e typed variables with a valuation that assigns values in a fixed structure
to variables

- e.g., B(x) =17 and B(y) = —2

e Boolean conditions: set of formulae over Var
- propositional logic formulas whose propositions are of the form
“x e D"
- (-3 < x<B)A(y =green) A (x < 2xx")

e effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)
- e.g., a = x:=y+5 and evaluation B(x) = 17 and S(y) = —2
- Effect(a, B)(x) = B(y) +5 =3,
- Effect(a, B)(y) = Bly) = —2

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple
(Loc, Act, Effect, —, Locy, g0o)
where
e [oc is a set of locations with initial locations Locy C Loc

e Act is a set of actions
e FEffect : Act x Eval(Var) — Eval(Var) is the effect function

o - C Locx(Cond(Var) X Act) X Loc, transition relation

Boolean conditions on Var

e go € Cond(Var) is the initial condition.

Notation: | £% I’ denotes (1, g, o, I) €—.

From program graphs to transition systems

e Basic strategy: unfolding
- state = location (current control) / + data valuation (1, 8)

- initial state = initial location + data valuation satisfying
the initial condition gy

e Propositions and labeling
- propositions: “at I" and “x € D" for D C dom(x)
- < I, B > is labeled with “at [" and all conditions that hold in 3.

o /¥ 1 and g holds in B then < I, 8 >3 < I”, Effect(< I, 8 >) >

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc, Act, Effect, —, Locy, go)

over set Var of variables is the tuple (S, Act, —, I, AP, L) where:

S = Loc x Eval(Var)

— S X Act X S is defined by the rule:
If 1 <5) and B = g then < I, B >3< I, Effect(< I, 8 >) >

| ={<1,B8>|1€ Locy,B =g0}
AP = Loc U Cond(Var) and

L(<I1,86>)={l} U{g € Cond(Var) | B = g}

10

Problem

Set of states: S = Loc x Eval(Var)

Eval(Var) can be very large
(some variables can have values in large data domains e.g. integers)

Therefore it is also difficult to concretely represent —
(the relation usually very large as well)

11

Solution

Succinct representation of sets of states and of transitions between states
e Set of states: Formula (property of all states in the set)

e Transitions: Formulae (relation between the old values of the variables
and the new values of the variables)

12

Example

: if (y >=

: while (x

X++;

}

: if (x >=
T exit

. error

z) then skip else halt;
<y {

z) then skip else goto 5;

13

Example

1: if (y >= z) then skip else halt;
2: while (x < y) {
X++;
}
3: if (x >= z) then skip else goto 5;
4: exit

5: error

States:

(1, 3), where [location and (8 assignment of values to the variables.

14

Example

1: if (y >= z) then skip else halt;
2: while (x < y) {
X++;
}
3: if (x >= z) then skip else goto 5;
4: exit

5: error

States:

(1, 3), where [location and (8 assignment of values to the variables.
|dea: Take into account an additional variable pc (program counter), having
as domain the set of locations.

State: assighment of values to the variables and to pc

15

Example

1: if (y >= z) then skip else halt;
2: while (x < y) {

X++;

}

3: if (x >= z) then skip else goto 5;
4: exit

5: error

States:

(1, 3), where [location and (8 assignment of values to the variables.
|dea: Take into account an additional variable pc (program counter), having
as domain the set of locations.

State: assighment of values to the variables and to pc

Set of states: Logical formula
Example:

y > z: The set of all states (/, 8) for which B(y) > B(z) (i.e. B =y > z)

16

Example

1: if (y >= z) then skip else halt;
2: while (x < y) {
X++;
}
3: if (x >= z) then skip else goto 5;
4: exit

5: error

Transition relation: (/,8) — (I’, 5’)

17

Example

1: if (y >= z) then skip else halt;
2: while (x < y) {

X++;

}

3: if (x >= z) then skip else goto 5;
4: exit

5: error

Transition relation: (/, 3) — (/’, 8)
Expressed by logical formulae: Formula containing primed and unprimed variables.
Example:

o p1 = (move(h,h) Ny > z A skip(x,y, z))
o pr = (move(h,h) Ax+1<yAx"=x+1Askip(y, z))
o p3 = (move(h, k) AN x >y A skip(x,y, z))
o ps = (move(hk, ls) AN x > z A skip(x,y, z))
o p5s = (move(h; k) Ax+ 1< z A skip(x,y, z))
Abbreviations:
move(l, ") := (pc = I A pc’ =1")
skip(vi, ..., vp) i =(v{y = vi A AV =)

Programs as transition systems

Verification problem: Program + Description of the “bad” states

Succinct representation:

P = (Var, pc, Init, R) Perr
V - finite (ordered) set of program variables
pc - program counter variable (pc included in V)
Init - initiation condition given by formula over V

R - a finite set of transition relations

Every transition relation p € R is given by a formula over the variables

V' and their primed versions V/

®err - an error condition given by a formula over V

19

States, sets and relations

Each program variable x is assigned a domain of values Dy.

Program state = function that assigns each program variable a value
from its respective domain

S = set of program states

Formula with free variables in V = set of program states

Formula with free variables in V and V’/ = binary relation over
program states

— First component of each pair refers to values of the variables V

— Second component of the pair refers to values of the variables V/
(typically the new variables of the variables in V' after an instruction
was executed)

20

States, sets and relations

We identify formulas with the sets and relations that they represent

We identify the entailment relation between formulas = with set
inclusion

We identify the satisfaction relation = between valuations and
formulas, with the membership relation.

21

States, sets and relations

e We identify formulas with the sets and relations that they represent

e We identify the entailment relation between formulas = with set

inclusion

e We identify the satisfaction relation = between valuations and

formulas, with the membership relation.
Example:

e Formula y > z = set of program states in which the value of the

variable y is greater than the value of z

e Formula y’ > z = binary relation over program states, = set of pairs
of program states (si, s2) in which the value of the variable y in the
second state s is greater than the value of z in the first state s;

22

States, sets and relations

e We identify formulas with the sets and relations that they represent

e We identify the entailment relation between formulas = with set
inclusion

e We identify the satisfaction relation |= between valuations and
formulas, with the membership relation.

Example:

e Formula y > z = set of program states in which the value of the variable y is
greater than the value of z

e Formula y’ > z = binary relation over program states, = set of pairs of program
states (s1,s2) in which the value of the variable y in the second state s; is
greater than the value of z in the first state s;

e If program state s assigns 1, 3, 2, and /; to program variables x, y, z, and pc,
respectively, then s =y > z

23

States, sets and relations

e We identify formulas with the sets and relations that they represent

e We identify the entailment relation between formulas = with set
inclusion

e We identify the satisfaction relation = between valuations and
formulas, with the membership relation.

Example:

e Formula y > z = set of program states in which the value of the variable y is
greater than the value of z

e Formula y’ > z = binary relation over program states, = set of pairs of program
states (s1,s2) in which the value of the variable y in the second state s; is
greater than the value of z in the first state s;

e If program state s assigns 1, 3, 2, and /; to program variables x, y, z, and pc,
respectively, then s =y > z

e Logical consequence: y > zE=y+12> 2z

24

Example Program

: if (y >=

2: while (x

X++;

}

: if (x >=
T exit

. error

z) then skip else halt;
<y) {

z) then skip else goto 5;

25

Example program

Program variables V = (pc, x, y, z)
Program counter pc

Program variables x, y, and z range over integers: Dy = D, = D, = Int
Program counter pc ranges over control locations: Dyc = L

Set of control locations L = {/1, b, I3, Is, I5}

Initiation condition Init := (pc =)

Error condition ¢err := (pc = I5)

Program transitions R = {p1, ..., ps}, where:
p1 = (move(h, b)) Ny > z A skip(x, y, z))
p2 = (move(h, h) Ax+ 1< yAx'=x+1Askip(y, z))
p3 = (move(h,) A x > y A skip(x, y, z))

pa = (move(l, Is) N x > z A skip(x, y, z))
ps = (move(hk; I5) A x+ 1< z A skip(x,y, z))

26

Initial state, error state, transition relation

Each state that satisfies the initiation condition Init is called an initial

state
Each state that satisfies the error condition err is called an error state

Program transition relation pgr is the union of the single-statement
transition relations (formula representation: disjunction) i.e.,

pr=\r

PER

The state s has a transition to the state s’ if the pair of states (s, s’)
lies in the program transition relation pg, i.e., if (s,s’) E pr:

- s:V = U,cy Dx, s(x) € D forall x e V
- " V' = Uy Dxo s(x’) € Dy forall x € V

— B: VUV’ = UU,cx Dx defined for every x € V by
B(x) = s(x), B(x") = s’(x) has the property that 8 = pr

27

Computation

A program computation is a sequence of states sis> ... such that:
e The first element is an initial state, i.e., s; = Init

e Each pair of consecutive states (s;, sj11) is connected by a program
transition, i.e., (si,sit1) FE pRr-

e If the sequence is finite then the last element does not have any
successors i.e., if the last element is s,, then there is no state s such

that (sn,s) F pr-

28

Example Program

1: if (y >= z) then skip else halt;
2: while (x < y) {
X++;
}
3: if (x >= z) then skip else goto 5;
4: exit

5: error

Example of a computation:

(h111312)1(b111312)1(b121312)1(b131312)1(&131312)1(M131312)
e sequence of transitions p1, p2, P2, P3, P4
e state = tuple of values of program variables pc, x, y, and z

e last program state does not any successors

29

Correctness: Safety

a state is reachable if it occurs in some program computation
a program is safe if no error state is reachable

. if and only if no error state lies in ¢ esch,

Qberr A ¢reach ':J—

where @cach = set of program states which are reachable from some
initial state

. if and only if no initial state lies in ¢, -1,

Init A ¢reaen—1(Perr) FEL

where ¢, —1(derr) = set of program states from which some state

reach
in @err is reachable

30

Example

1: if (y >= z) then skip else halt;
2: while (x < y) {
X++;
}
3: if (x >= z) then skip else goto 5;
4: exit

5: error

Set of reachable states:

Qbreach = (pC = hV
(pc=h ANy >2z)V
(pc=hBANy>zAx>y)V
(pc=hANy>zAx2>y)

31

Post operator

Let ¢ be a formula over V

Let p be a formula over V and V’

Define a post-condition function post by:
post(¢, p) =3IV g[V" /VI A p[V'/V][V/ V']

An application post(¢, p) computes the image of the set ¢ under the
relation p.

32

Post operator

Let ¢ be a formula over V

Let p be a formula over V and V’

Define a post-condition function post by:
post(¢, p) =3IV g[V" /VI A p[V'/V][V/ V']

An application post(¢, p) computes the image of the set ¢ under the
relation p.

post distributes over disjunction wrt. each argument:

o post(¢, p1V p2) = post($, p1) V post(¢, p2)

o post(¢1V ¢2,p) = post(é1, p) V post(¢2, p)

33

Application of post in example program

Set of states ¢ := (pc =h Ay > z)

Transition relation p := p»

p2 = (move(b,) Ax+1<yAx"=x+1Askip(y, z))

post(¢, p) =3V (pc = h Ay >)V /V] A pa V' IVIIV/ V']
:HV”(,DC” — LAy’ > X”)/\
(pc”’ =bhApc" =bAX"+1<y"AX =x"+1Ny =y" N2 =Z2")[V/
:HV”(,DC” — LAy’ > X”)/\
(pc”’ =hbhApc=hbAX"+1<y"Ax=x"+1ANy=y"Nz=2")
=(pc=hANy<zAx<y)

34

Application of post in example program

Set of states ¢ := (pc =h Ay > z)

Transition relation p := p»

p2 = (move(b,) Ax+1<yAx"=x+1Askip(y, z))

post(¢, p) =3V (pc = h Ay >)V /V] A pa V' IVIIV/ V']
:HV”(,DC” — LAy’ > X”)/\
(pc”’ =bhApc" =bAX"+1<y"AX =x"+1Ny =y" N2 =Z2")[V/
:HV”(,DC” — LAy’ > X”)/\
(pc”’ =hbhApc=hbAX"+1<y"Ax=x"+1ANy=y"Nz=2")
=(pc=hANy<zAx<y)

[Renamed] program variables:
V — (pC,X,_)/,Z), V/ — (pC,,X,,_)/,, Z,), Vll — (pC”,X”,y”, ZII)

35

Iteration of post

post" (¢, p) = n-fold application of post to ¢ under p

(6. p) 0 if n=20
ost" (¢, p) =
g g post(post"~1(¢, p)), p) otherwise

Characterize ¢each Using iterates of post:

Greach = InitV post(Init, pr) V post(post(Init, pr), pr)V ...

= Viso post'(Init, pr)

disjuncts = iterates for every natural number n (“w-iteration”)

36

Finite iteration post may suffice

Fixpoint reached in n steps if \/"_; post'(Init, pr) = \/7;11 post' (Init, pr)

Then \/7_; post'(Init, pr) = \/;>q post' (Init, pr)

37

Forward reachability analysis

Compute \/7_; post'(Init, pr), n > 0.

If there exists m € N such that

n n+1
\/ post' (Init, pr) = \/ post' (Init, pr)
i=1 i=1

then fixpoint reached.

Let Preach = \/7:1 posti(lnit, pR)

If Greach N Gerr = D then safety is guaranteed.

38

Backward reachability analysis

Another possibility: Start from a bad state and compute states from which
the bad state can be reached.

If the initial states are not among these states then safety is guaranteed.

more: next time

39

