Formal Specification and Verification

Deductive Verification: An introduction (2)

$$
4.02 .2019
$$

Viorica Sofronie-Stokkermans
e-mail: sofronie@uni-koblenz.de

Last time: Deductive Verification

Transition systems revisited
Program graphs
From program graphs to transition systems

$$
\text { Set of states: } \quad S=\text { Loc } \times \text { Eval(Var })
$$

Problem

Eval(Var) can be very large
(some variables can have values in large data domains e.g. integers)

Therefore it is difficult to concretely represent \rightarrow
(the relation usually very large as well)

Solution

Succinct representation of sets of states and of transitions between states

- Set of states: Formula (property of all states in the set)
- Transitions: Formulae (relation between the old values of the variables and the new values of the variables)

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
    x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```


States:

(I, β), where I location and β assignment of values to the variables. Idea: Take into account an additional variable pc (program counter), having as domain the set of locations.

State: assignment of values to the variables and to pc

Set of states: Logical formula

Example:

$y \geq z$: The set of all states (I, β) for which $\beta(y) \geq \beta(z)$ (i.e. $\beta \models y \geq z$)

Example

```
1: if (y >= z) then skip else halt;
2: while ( \(\mathrm{x}<\mathrm{y}\) ) \{
    x++;
    \}
3: if ( \(\mathrm{x}>=\mathrm{z}\) ) then skip else goto 5;
4: exit
5: error
```

Transition relation: $(I, \beta) \rightarrow\left(I^{\prime}, \beta^{\prime}\right)$
Expressed by logical formulae: Formula containing primed and unprimed variables.
Example:

- $\rho_{1}=\left(\operatorname{move}\left(I_{1}, l_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{2}=\left(\operatorname{move}\left(l_{2}, l_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right)$
- $\rho_{3}=\left(\operatorname{move}\left(I_{2}, I_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{4}=\left(\operatorname{move}\left(I_{3}, I_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right)$
- $\rho_{5}=\left(\operatorname{move}\left(I_{3} ; I_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)$

Abbreviations:

$$
\begin{aligned}
& \operatorname{move}\left(I, I^{\prime}\right):=\left(p c=I \wedge p c^{\prime}=I^{\prime}\right) \\
& \operatorname{skip}\left(v_{1}, \ldots, v_{n}\right):=\left(v_{1}^{\prime}=v_{1} \wedge \cdots \wedge v_{n}^{\prime}=v_{n}\right)
\end{aligned}
$$

Programs as transition systems

Verification problem: Program + Description of the "bad" states
Succinct representation:

$$
P=(\text { Var }, p c, \text { Init }, \mathcal{R}) \quad \phi_{\mathrm{err}}
$$

- V - finite (ordered) set of program variables
- $p c$ - program counter variable ($p c$ included in V)
- Init - initiation condition given by formula over V
- \mathcal{R} - a finite set of transition relations

Every transition relation $\rho \in \mathcal{R}$ is given by a formula over the variables V and their primed versions V^{\prime}

- $\phi_{\text {err }}$ - an error condition given by a formula over V

States, sets and relations

- Each program variable x is assigned a domain of values D_{x}.
- Program state $=$ function that assigns each program variable a value from its respective domain
- $S=$ set of program states
- Formula with free variables in $V=$ set of program states
- Formula with free variables in V and $V^{\prime}=$ binary relation over program states
- First component of each pair refers to values of the variables V
- Second component of the pair refers to values of the variables V^{\prime} (typically the new variables of the variables in V after an instruction was executed)

States, sets and relations

- We identify formulas with the sets and relations that they represent
- We identify the entailment relation between formulas \models with set inclusion
- We identify the satisfaction relation \models between valuations and formulas, with the membership relation.

Example:

- Formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- Formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states $\left(s_{1}, s_{2}\right)$ in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}
- If program state s assigns $1,3,2$, and I_{1} to program variables x, y, z, and $p c$, respectively, then $s \models y \geq z$
- Logical consequence: $y \geq z \models y+1 \geq z$

Example Program

1: if (y >= z) then skip else halt;
2: while ($\mathrm{x}<\mathrm{y}$) \{
x++;
\}
3: if (x >= z) then skip else goto 5;
4: exit
5: error

Example program

- Program variables $V=(p c, x, y, z)$
- Program counter pc
- Program variables x, y, and z range over integers: $D_{x}=D_{y}=D_{z}=\operatorname{lnt}$ Program counter pc ranges over control locations: $D_{p c}=L$
- Set of control locations $L=\left\{I_{1}, I_{2}, I_{3}, I_{4}, I_{5}\right\}$
- Initiation condition Init $:=\left(p c=l_{1}\right)$
- Error condition $\phi_{\text {err }}:=\left(p c=l_{5}\right)$
- Program transitions $\mathcal{R}=\left\{\rho_{1}, \ldots, \rho_{5}\right\}$, where:

$$
\begin{aligned}
& \rho_{1}=\left(\operatorname{move}\left(I_{1}, I_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{2}=\left(\operatorname{move}\left(I_{2}, I_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
& \rho_{3}=\left(\operatorname{move}\left(I_{2}, I_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{4}=\left(\operatorname{move}\left(I_{3}, I_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{5}=\left(\operatorname{move}\left(I_{3} ; I_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

Initial state, error state, transition relation

- Each state that satisfies the initiation condition Init is called an initial state
- Each state that satisfies the error condition err is called an error state
- Program transition relation $\rho_{\mathcal{R}}$ is the union of the single-statement transition relations (formula representation: disjunction) i.e.,

$$
\rho_{\mathcal{R}}=\bigvee_{\rho \in \mathcal{R}} \rho
$$

- The state s has a transition to the state s^{\prime} if the pair of states $\left(s, s^{\prime}\right)$ lies in the program transition relation $\rho_{\mathcal{R}}$, i.e., if $\left(s, s^{\prime}\right) \models \rho_{\mathcal{R}}$:
- s:V $\bigcup_{x \in V} D_{x}, \quad s(x) \in D_{x}$ for all $x \in V$
- $s^{\prime}: V^{\prime} \rightarrow \bigcup_{x \in V} D_{x}, \quad s\left(x^{\prime}\right) \in D_{x}$ for all $x \in V$
$-\beta: V \cup V^{\prime} \rightarrow \bigcup_{x \in X} D_{x}$ defined for every $x \in V$ by $\beta(x)=s(x), \beta\left(x^{\prime}\right)=s^{\prime}(x)$ has the property that $\beta \models \rho_{\mathcal{R}}$

Correctness: Safety

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in $\phi_{\text {reach }}$,

$$
\phi_{\text {err }} \wedge \phi_{\text {reach }} \models \perp
$$

where $\phi_{\text {reach }}=$ set of program states which are reachable from some initial state

- ... if and only if no initial state lies in $\phi_{\text {reach }}{ }^{-1}$,

$$
\text { Init } \wedge \phi_{\text {reach }}-1\left(\phi_{\mathrm{err}}\right) \models \perp
$$

where $\phi_{\text {reach }}{ }^{-1}\left(\phi_{\text {err }}\right)=$ set of program states from which some state in $\phi_{\text {err }}$ is reachable

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```

Set of reachable states:

$$
\begin{aligned}
\phi_{\text {reach }}=\quad & \left(p c=l_{1} \vee\right. \\
& \left(p c=l_{2} \wedge y \geq z\right) \vee \\
& \left(p c=l_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& \left(p c=I_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

Post operator

Let ϕ be a formula over V
Let ρ be a formula over V and V^{\prime}

Define a post-condition function post by:

$$
\operatorname{post}(\phi, \rho)=\exists V^{\prime \prime}: \phi\left[V^{\prime \prime} / V\right] \wedge \rho\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]
$$

An application $\operatorname{post}(\phi, \rho)$ computes the image of the set ϕ under the relation ρ.
post distributes over disjunction wrt. each argument:

- $\operatorname{post}\left(\phi, \rho_{1} \vee \rho_{2}\right)=\operatorname{post}\left(\phi, \rho_{1}\right) \vee \operatorname{post}\left(\phi, \rho_{2}\right)$
- $\operatorname{post}\left(\phi_{1} \vee \phi_{2}, \rho\right)=\operatorname{post}\left(\phi_{1}, \rho\right) \vee \operatorname{post}\left(\phi_{2}, \rho\right)$

Application of post in example program

Set of states $\phi:=\left(p c=I_{2} \wedge y \geq z\right)$
Transition relation $\rho:=\rho_{2}$

$$
\begin{aligned}
\rho_{2}= & \left(\operatorname{move}\left(I_{2}, I_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\operatorname{post}(\phi, \rho)= & \exists V^{\prime \prime}\left(p c=I_{2} \wedge y \geq z\right)\left[V^{\prime \prime} / V\right] \wedge \rho_{2}\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c^{\prime}=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x^{\prime}=x^{\prime \prime}+1 \wedge y^{\prime}=y^{\prime \prime} \wedge z^{\prime}=z^{\prime \prime}\right)[V / \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq z^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right) \\
= & \left(p c=I_{2} \wedge y \geq z \wedge x \leq y\right)
\end{aligned}
$$

Application of post in example program

Set of states $\phi:=\left(p c=I_{2} \wedge y \geq z\right)$
Transition relation $\rho:=\rho_{2}$

$$
\begin{aligned}
\rho_{2}= & \left(\operatorname{move}\left(I_{2}, I_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\operatorname{post}(\phi, \rho)= & \exists V^{\prime \prime}\left(p c=I_{2} \wedge y \geq x\right)\left[V^{\prime \prime} / V\right] \wedge \rho_{2}\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right] \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq x^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c^{\prime}=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x^{\prime}=x^{\prime \prime}+1 \wedge y^{\prime}=y^{\prime \prime} \wedge z^{\prime}=z^{\prime \prime}\right)[V / \\
= & \exists V^{\prime \prime}\left(p c^{\prime \prime}=I_{2} \wedge y^{\prime \prime} \geq x^{\prime \prime}\right) \wedge \\
& \left(p c^{\prime \prime}=I_{2} \wedge p c=I_{2} \wedge x^{\prime \prime}+1 \leq y^{\prime \prime} \wedge x=x^{\prime \prime}+1 \wedge y=y^{\prime \prime} \wedge z=z^{\prime \prime}\right) \\
= & \left(p c=I_{2} \wedge y \leq z \wedge x \leq y\right)
\end{aligned}
$$

[Renamed] program variables:
$V=(p c, x, y, z), V^{\prime}=\left(p c^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right), V^{\prime \prime}=\left(p c^{\prime \prime}, x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$

Iteration of post

$\operatorname{post}^{n}(\phi, \rho)=n$-fold application of post to ϕ under ρ
$\operatorname{post}^{n}(\phi, \rho)= \begin{cases}\phi & \text { if } n=0 \\ \left.\left.\operatorname{post}^{\prime} \operatorname{post}^{n-1}(\phi, \rho)\right), \rho\right) & \text { otherwise }\end{cases}$

Characterize $\phi_{\text {reach }}$ using iterates of post:

$$
\begin{aligned}
\phi_{\text {reach }} & =\operatorname{Init} \vee \operatorname{post}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(\operatorname{post}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \\
& =\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)
\end{aligned}
$$

disjuncts $=$ iterates for every natural number n (" ω-iteration")

Finite iteration post may suffice

Fixpoint reached in n steps if $\bigvee_{i=1}^{n}$ post $^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)=\bigvee_{i=1}^{n+1}$ post $^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)$

Then $\bigvee_{i=1}^{n}$ post $^{i}\left(\right.$ Init,$\left.\rho_{\mathcal{R}}\right)=\bigvee_{i \geq 0}$ post $^{i}\left(\right.$ Init, $\left.\rho_{\mathcal{R}}\right)$

Forward reachability analysis

Compute $\bigvee_{i=1}^{n}$ post $^{i}\left(\right.$ Init, $\left.\rho_{\mathcal{R}}\right), n \geq 0$.
If there exists $m \in \mathbb{N}$ such that

$$
\bigvee_{i=1}^{n} \operatorname{post}^{i}\left(\text { Init, } \rho_{\mathcal{R}}\right)=\bigvee_{i=1}^{n+1} \operatorname{post}^{i}\left(\text { Init }, \rho_{\mathcal{R}}\right)
$$

then fixpoint reached.
Let $\phi_{\text {reach }}:=\bigvee_{i=1}^{n} \operatorname{post}^{i}\left(\right.$ Init, $\left.\rho_{\mathcal{R}}\right)$
If $\phi_{\text {reach }} \cap \phi_{\text {err }}=\emptyset$ then safety is guaranteed.

Backward reachability analysis

Another possibility: Start from a bad state and compute states from which the bad state can be reached.

If the initial states are not among these states then safety is guaranteed.

Pre operator

Let ϕ be a formula over V
Let ρ be a formula over V and V^{\prime}

Define a pre-condition function pre by:

$$
\operatorname{pre}(\phi, \rho)=\exists V^{\prime}: \rho \wedge \phi\left[V^{\prime} / V\right]
$$

An application pre (ϕ, ρ) computes the preimage of the set ϕ under the relation ρ.

Computation of pre ${ }^{n}$ similar.

Example

```
1: if (y >= z) then skip else halt;
2: while (x < y) {
        x++;
    }
3: if (x >= z) then skip else goto 5;
4: exit
5: error
```

Set of states from which $/ 5$ is reachable

$$
\begin{aligned}
\phi_{\text {reach }^{-1}}= & p c=I_{5} \vee \\
& \left(p c=I_{3} \wedge x<z\right) \vee \\
& \left(p c=I_{2} \wedge x<y \wedge x+1<z\right) \vee \\
& \left(p c=I_{2} \wedge x<y \wedge x+2<z\right) \vee
\end{aligned}
$$

.. .

Problem

Assume there exists $m \in \mathbb{N}$ such that

$$
\bigvee_{i=1}^{n} \operatorname{post}^{i}\left(\text { Init, } \rho_{\mathcal{R}}\right)=\bigvee_{i=1}^{n+1} \operatorname{post}^{i}\left(\text { Init }, \rho_{\mathcal{R}}\right)
$$

i.e. fixpoint reached.

Let $\phi_{\text {reach }}:=\bigvee_{i=1}^{n} \operatorname{post}^{i}\left(\operatorname{Init}, \rho_{\mathcal{R}}\right)$
How to check whether error states are reachable?
$\phi_{\text {reach }}, \phi_{\text {err }}$ are formulae.
No error states are reachable iff $\phi_{\text {reach }} \wedge \phi_{\text {err }} \models \perp$

Both for forward and for backward reachability:
Reasoning modulo theories

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories
SAT checking (can reduce entailment to checking satisfiability)

Example:

Check whether conjunctions of constraints in linear arithmetic is satisfiable: classical methods exist, e.g. simplex.

Check whether a conjunction of equalities and disequalities of ground terms is satisfiable: methods exist (e.g. congruence closure)

Challenge: efficient methods for handling arbitrary Boolean combinations of constraints in such theories.

Possible solution: Extend the DPLL method to reasoning modulo theories
\mapsto Decision Procedures for Verification

Reminder: The DPLL algorithm

State: $M \| F$,
where:

- M partial assignment (sequence of literals),
some literals are annotated ($L^{d}:$ decision literal)
- F clause set.

A succinct formulation

UnitPropagation
$M\|F, C \vee L \Rightarrow M, L\| F, C \vee L \quad$ if $M \models \neg C$, and L undef. in M
Decide
$M\left\|F \Rightarrow M, L^{d}\right\| F$
if L or $\neg L$ occurs in F, L undef. in M
Fail
$M \| F, C \Rightarrow$ Fail

Backjump

$M, L^{d}, N\left\|F \Rightarrow M, L^{\prime}\right\| F$
if $M \models \neg C, M$ contains no decision literals
(there is some clause $C \vee L^{\prime}$ s.t.:
$F \models C \vee L^{\prime}, M \models \neg C$,
L^{\prime} undefined in M
L^{\prime} or $\neg L^{\prime}$ occurs in F.

SAT Modulo Theories (SMT)

Some problems are more naturally expressed in richer logics than just propositional logic, e.g:

- Software/Hardware verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a ground 1st-order formula with respect to a background theory T

SAT Modulo Theories (SMT)

The "very eager" approach to SMT

Method:

- translate problem into equisatisfiable propositional formula;
- use off-the-shelf SAT solver
- Why "eager"?

Search uses all theory information from the beginning

- Characteristics:
+ Can use best available SAT solver
- Sophisticated encodings are needed for each theory
- Sometimes translation and/or solving too slow

Main Challenge for alternative approaches is to combine:

- DPLL-based techniques for handling the boolean structure
- Efficient theory solvers for conjunctions of \mathcal{T}-literals

SAT Modulo Theories (SMT)

"Lazy" approaches to SMT: Idea
Example: consider $\mathcal{T}=$ UIF and the following set of clauses:

$$
\underbrace{f(g(a)) \not \approx f(c)}_{\neg P_{1}} \vee \underbrace{g(a) \approx d}_{P_{2}}, \quad \underbrace{g(a) \approx c}_{P_{3}}, \quad \underbrace{c \not \approx d}_{\neg P_{4}}
$$

1. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[\neg P_{1}, P_{3}, \neg P_{4}\right]$
Theory solver says $\neg P_{1} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
2. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver

SAT solver returns model $\left[P_{1}, P_{2}, P_{3}, \neg P_{4}\right.$]
Theory solver says $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg P_{4}$ is \mathcal{T}-inconsistent
3. Send $\left\{\neg P_{1} \vee P_{2}, P_{3}, \neg P_{4}, P_{1} \vee \neg P_{3} \vee P_{4}, \neg P_{1} \vee \neg P_{2} \vee \neg P_{3} \vee P_{4}\right\}$ to SAT solver SAT solver says UNSAT

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number of steps.

Problems

It is not guaranteed that the fixpoint is reached in a finite/bounded number of steps.

Need to analyze alternative solutions

Verification

Modeling/Formalization

Is the system safe?

Is safety guaranteed on all paths of length < n which start in an initial state?

Is the safety property an invariant of the system?
Can we generate an invariant which implies safety?
Invariant checking/ BMC

Model Checking
Abstraction/ Refinement

Verification

Modeling/Formalization

Abstraction/Refinement

location unreachable location unreachable check feasibility \quad location reachable \Downarrow
conjunction of constraints: $\phi(1) \wedge \operatorname{Tr}(1,2) \wedge \cdots \wedge \operatorname{Tr}(n-1, n) \wedge \neg \operatorname{safe}(n)$

- satisfiable: feasible path
- unsatisfiable: refine abstract program s.t. the path is not feasible [McMillan 2003-2006] use 'local causes of inconsistency'
\mapsto compute interpolants

Invariant checking; Bounded model checking

S specification $\mapsto \Sigma_{S}$ signature of $S ; \mathcal{T}_{S}$ theory of $S ; T_{S}$ transition system $\operatorname{Init}(\bar{x}) ; \rho_{\mathcal{R}}\left(\bar{x}, \bar{x}^{\prime}\right)$

Given: $\operatorname{Safe}(x)$ formula (e.g. safety property)

- Invariant checking
(1) $\mathcal{T}_{s} \models \operatorname{Init}(\bar{x}) \rightarrow \operatorname{Safe}(\bar{x})$
(Safe holds in the initial state)
(2) $\mathcal{T}_{S} \models \operatorname{Safe}(\bar{x}) \wedge \rho_{\mathcal{R}}\left(\bar{x}, \bar{x}^{\prime}\right) \rightarrow \operatorname{Safe}\left(\bar{x}^{\prime}\right)$
(Safe holds before \Rightarrow holds after update)
- Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

$$
\mathcal{T}_{S} \models \operatorname{lnit}\left(x_{0}\right) \wedge \rho_{\mathcal{R}}\left(x_{0}, x_{1}\right) \wedge \cdots \wedge \rho_{\mathcal{R}}\left(x_{j-1}, x_{j}\right) \wedge \neg \operatorname{Safe}\left(x_{j}\right) \rightarrow \perp
$$

Reasoning modulo theories

Goal: Devise efficient methods for reasoning modulo theories

Problems

- First order logic is undecidable
- In applications, theories do not occur alone \mapsto need to consider combinations of theories
+ Fragments of theories occurring in applications are often decidable
+ Often provers for the component theories can be combined efficiently

Probleme

- First order logic is undecidable
- In applications, theories do not occur alone
\mapsto need to consider combinations of theories
+ Fragments of theories occurring in applications are often decidable
+ Often provers for the component theories can be combined efficiently

Important goals:

- Identify decidable theories which are important in applications (Extensions/Combinations) possibly with low complexity
- Development \& Implementation of efficient Decision Procedures

Example: ETCS Case Study (AVACS project)

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Number of trains:
$n \geq 0 \quad \mathbb{Z}$
Minimum and maximum speed of trains: $0 \leq \min <\max \quad \mathbb{R}$
Minimum secure distance:
Time between updates:
$l_{\text {alarm }}>0$
\mathbb{R}

Train positions before and after update:
$\Delta t>0 \quad \mathbb{R}$
$\operatorname{pos}(i), \operatorname{pos}^{\prime}(i) \quad: \mathbb{Z} \rightarrow \mathbb{R}$

Example: ETCS Case Study (AVACS project)

Simplified version of ETCS Case Study [Jacobs,VS'06, Faber,Jacobs,VS'07]

European Train Control System

Update(pos, pos') :

- $\forall i\left(i=0 \rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)$
- $\forall i\left(0<i<n \wedge \operatorname{pos}(i-1)>0 \wedge \operatorname{pos}(i-1)-\operatorname{pos}(i) \geq l_{\text {alarm }}\right.$ $\left.\rightarrow \operatorname{pos}(i)+\Delta t * \min \leq \operatorname{pos}^{\prime}(i) \leq \operatorname{pos}(i)+\Delta t * \max \right)$

Example: ETCS Case Study (AVACS project)

Safety property: No collisions \quad Safe(pos): $\forall i, j(i<j \rightarrow \operatorname{pos}(i)>\operatorname{pos}(j))$

Inductive invariant: \quad Safe(pos) $\wedge U$ pdate $\left(\right.$ pos, $\left.\operatorname{pos}^{\prime}\right) \wedge \neg S a f e\left(\operatorname{pos}^{\prime}\right) \models \mathcal{T}_{S} \perp$
where \mathcal{T}_{S} is the extension of the (disjoint) combination $\mathbb{R} \cup \mathbb{Z}$ with two functions, pos, pos $^{\prime}: \mathbb{Z} \rightarrow \mathbb{R}$

Problem: Satisfiability test for quantified formulae in complex theory

More complex ETCS Case studies

[Faber, Jacobs, VS, 2007]

- Take into account also:
- Emergency messages
- Durations
- Specification language: CSP-OZ-DC
- Reduction to satisfiability in theories for which decision procedures exist
- Tool chain: [Faber, Ihlemann, Jacobs, VS]

CSP-OZ-DC \mapsto Transition constr. \mapsto Decision procedures (H-PILoT)

Example 2: Parametric topology

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Approach:

- Decompose the system in trajectories (linear rail tracks; may overlap)
- Task 1: - Prove safety for trajectories with incoming/outgoing trains
- Conclude that for control rules in which trains have sufficient freedom (and if trains are assigned unique priorities) safety of all trajectories implies safety of the whole system
- Task 2: - General constraints on parameters which guarantee safety

Parametricity and modularity

- Complex track topologies [Faber, Ihlemann, Jacobs, VS, ongoing work]

Assumptions:

- No cycles
- in-degree (out-degree) of associated graph at most 2.

Data structures:

$$
p_{1}: \text { trains }
$$

- 2-sorted pointers
p_{2} : segments

- scalar fields $\left(f: p_{i} \rightarrow \mathbb{R}, g: p_{i} \rightarrow \mathbb{Z}\right)$
- updates efficient decision procedures (H-PiLoT)

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.
The RBC system passes repeatedly through four phases, modeled by events:

- updSpd (speed update)
- req (request update)
- alloc (allocation update)
- updPos (position update)

Between these events, trains may leave or enter the track (at specific segments), modeled by the events leave and enter.

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

- 1. Data classes declare function symbols that can change their values during runs of the system

Data structures:

- 2-sorted pointers
segm: segments

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

- 1. Data classes declare function symbols that can change their values during runs of the system, and are used in the OZ part of the specification.
- 2. Axioms: define properties of the data structures and system parameters which do not change
- gmax $: \mathbb{R}$ (the global maximum speed),
- decmax $: \mathbb{R}$ (the maximum deceleration of trains),
- $d: \mathbb{R}$ (a safety distance between trains),
- Properties of the data structures used to model trains/segments

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init formulae, update rules.

- 3. Init schema. describes the initial state of the system.
- trains - doubly-linked list; placed correctly on the track segments
- all trains respect their speed limits.
- 4. Update rules specify updates of the state space executed when the corresponding event from the CSP part is performed.
Example: Speed update

Modular Verification

$C O D \quad \mapsto \Sigma_{S}$ signature of $S ; \mathcal{T}_{S}$ theory of $S ; T_{S}$ transition constraint system specification Init (\bar{x}); Update $\left(\bar{x}, \bar{x}^{\prime}\right)$

Given: $\operatorname{Safe}(x)$ formula (e.g. safety property)

- Invariant checking
(1) $\models \mathcal{T}_{s} \operatorname{Init}(\bar{x}) \rightarrow \operatorname{Safe}(\bar{x}) \quad$ (Safe holds in the initial state)

- Bounded model checking (BMC):

Check whether, for a fixed k, unsafe states are reachable in at most k steps, i.e. for all $0 \leq j \leq k$:

$$
\operatorname{Init}\left(x_{0}\right) \wedge \operatorname{Update}_{1}\left(x_{0}, x_{1}\right) \wedge \cdots \wedge \operatorname{Update}_{n}\left(x_{j-1}, x_{j}\right) \wedge \neg \operatorname{Safe}\left(x_{j}\right) \models \tau_{s} \perp
$$

Trains on a linear track


```
Example 1: Speed Update
\(\operatorname{pos}(t)<\operatorname{length}(\operatorname{segm}(t))-d \rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \operatorname{Imax}(\operatorname{segm}(t))\)
\(\operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)=\operatorname{tid}(t)\)
    \(\rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \min \left(\operatorname{Imax}(\operatorname{segm}(t)), \operatorname{Imax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)\right.\)
\(\operatorname{pos}(t) \geq\) length \((\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)\)
    \(\rightarrow \operatorname{spd}^{\prime}(t)=\max (\operatorname{spd}(t)-\) decmax, 0\()\)
```


Trains on a linear track


```
Example 1: Speed Update
\(\operatorname{pos}(t)<\operatorname{length}(\operatorname{segm}(t))-d \rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \operatorname{lmax}(\operatorname{segm}(t))\)
\(\operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)=\operatorname{tid}(t)\)
    \(\rightarrow 0 \leq \operatorname{spd}^{\prime}(t) \leq \min \left(\operatorname{lmax}(\operatorname{segm}(t)), \operatorname{Imax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)\right.\)
\(\operatorname{pos}(t) \geq\) length \((\operatorname{segm}(t))-d \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)\)
    \(\rightarrow \operatorname{spd}^{\prime}(t)=\max (\operatorname{spd}(t)-\) decmax, 0\()\)
```

Proof task:
Safe(pos, next, prev, spd) \wedge SpeedUpdate(pos, next, prev, spd, spd $\left.{ }^{\prime}\right) \rightarrow$ Safe (pos', next, prev, spc

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm', spd', pos', train')
Assume: $s_{1} \neq$ null $_{s}, t_{1} \neq \operatorname{null}_{t}, \operatorname{train}(s) \neq t_{1}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{idt}\left(t_{1}\right)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{next}_{t}(t)=\operatorname{null}_{t}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=t_{1} \wedge \operatorname{next}^{\prime}\left(t_{1}\right)=\operatorname{null}_{t}$ $t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right), \operatorname{next}_{t}(t) \neq \operatorname{null}_{t}, \operatorname{ids}\left(\operatorname{segm}\left(\operatorname{next}_{t}(t)\right)\right) \leq \operatorname{ids}\left(s_{1}\right)$
$\rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t)) \geq \operatorname{ids}\left(s_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$

Incoming and outgoing trains

Example 2: Enter Update (also updates for segm', spd', pos', train')
Assume: $s_{1} \neq$ null $_{s}, t_{1} \neq \operatorname{null}_{t}, \operatorname{train}(s) \neq t_{1}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{idt}\left(t_{1}\right)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{next}_{t}(t)=\operatorname{null} t_{t}, \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=t_{1} \wedge \operatorname{next}^{\prime}\left(t_{1}\right)=\operatorname{null}_{t}$ $t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t))<\operatorname{ids}\left(s_{1}\right), \operatorname{alloc}\left(s_{1}\right)=\operatorname{tid}\left(t_{1}\right)$, next $_{t}(t) \neq$ null $_{t}, \operatorname{ids}\left(\operatorname{segm}\left(\operatorname{next}_{t}(t)\right)\right) \leq \operatorname{ids}\left(s_{1}\right)$
$\rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$
$t \neq t_{1}, \operatorname{ids}(\operatorname{segm}(t)) \geq \operatorname{ids}\left(s_{1}\right) \rightarrow \operatorname{next}^{\prime}(t)=\operatorname{next}_{t}(t)$

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

$$
\text { (Safe) } \forall t_{1}, t_{2} \quad \operatorname{segm}\left(t_{1}\right)=\operatorname{segm}(t 2) \rightarrow t_{1}=t_{2}
$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant $\left(\operatorname{lnv} v_{i}\right)$ for every control location i of the TCS, and prove:
(1) $\left(\operatorname{lnv}_{i}\right) \models$ (Safe) for all locations i and
(2) the invariants are preserved under all transitions of the system, $\left(\operatorname{lnv}_{i}\right) \wedge($ Update $) \models\left(\operatorname{lnv}_{j}^{\prime}\right)$
whenever (Update) is a transition from location i to j .

Safety property

Safety property we want to prove:

no two different trains ever occupy the same track segment:

$$
\text { (Safe) } \forall t_{1}, t_{2} \quad \operatorname{segm}\left(t_{1}\right)=\operatorname{segm}(t 2) \rightarrow t_{1}=t_{2}
$$

In order to prove that (Safe) is an invariant of the system, we need to find a suitable invariant $\left(\operatorname{lnv} v_{i}\right)$ for every control location i of the TCS, and prove:
(1) $\left(\operatorname{lnv} v_{i}\right) \models$ (Safe) for all locations i and
(2) the invariants are preserved under all transitions of the system, $\left(\operatorname{Inv}_{i}\right) \wedge($ Update $) \models\left(\operatorname{Inv}_{j}^{\prime}\right)$ whenever (Update) is a transition from location i to j .

Here: $\operatorname{Inv} v_{i}$ generated by hand (use poss. of generating counterexamples with H-PILoT)

Verification problems

(1) $\left(\operatorname{lnv}_{i}\right) \models$ (Safe) for all locations i and
(2) the invariants are preserved under all transitions of the system, $\left(\operatorname{lnv}_{i}\right) \wedge($ Update $) \models\left(\operatorname{lnv}_{j}^{\prime}\right)$
whenever (Update) is a transition from location i to j.

Ground satisfiability problems for pointer data structures
Problem: Axioms, Invariants: are universally quantified
Our solution: Hierarchical reasoning in local theory extensions

Modularity in automated reasoning

Examples of theories we need to handle

- Invariants
$\left(\operatorname{lnv}_{1}\right) \forall t:$ Train. pc $\neq \operatorname{InitState} \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)$

$$
\rightarrow \operatorname{length}(\operatorname{segm}(t))-\operatorname{bd}(\operatorname{spd}(t))>\operatorname{pos}(t)+\operatorname{spd}(t) \cdot \Delta t
$$

$\left(\operatorname{lnv}_{2}\right) \forall t:$ Train. pc $\neq \operatorname{InitState} \wedge \operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d$
$\rightarrow \operatorname{spd}(t) \leq \operatorname{lmax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)$

Modularity in automated reasoning

Examples of theories we need to handle

- Invariants
$\left(\operatorname{lnv}_{1}\right) \forall t:$ Train. pc $\neq \operatorname{InitState} \wedge \operatorname{alloc}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right) \neq \operatorname{tid}(t)$

$$
\rightarrow \operatorname{length}(\operatorname{segm}(t))-\operatorname{bd}(\operatorname{spd}(t))>\operatorname{pos}(t)+\operatorname{spd}(t) \cdot \Delta t
$$

$\left(\operatorname{lnv}_{2}\right) \forall t:$ Train. pc $\neq \operatorname{InitState} \wedge \operatorname{pos}(t) \geq \operatorname{length}(\operatorname{segm}(t))-d$
$\rightarrow \operatorname{spd}(t) \leq \operatorname{lmax}\left(\operatorname{next}_{s}(\operatorname{segm}(t))\right)$

- Update rules

$$
\forall t: \phi_{1}(t) \quad \rightarrow \quad s_{1} \leq \operatorname{spd}^{\prime}(t) \leq t_{1}
$$

$$
\forall t: \phi_{n}(t) \quad \rightarrow \quad s_{n} \leq \operatorname{spd}^{\prime}(t) \leq t_{n}
$$

Example 2

Hybrid systems \mapsto Hybrid automata

Example 2

Check:

- No overflow
- Substances always in the right proportion
- If substances in wrong proportion, tank can be drained in ≤ 200 s.

Parametric description:

- Determine values for parameters such that this is the case

Example 2

Mode 1: Fill Temperature is low, 1 and 2 do not react.
Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

$$
\begin{array}{ll}
\operatorname{lnv}_{1} & x_{1}+x_{2}+x_{3} \leq L_{f} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge 0 \leq x_{3} \leq \min \\
& \\
\text { flow }_{1} & \dot{x_{1}} \geq \operatorname{dmin} \wedge \dot{x_{2}} \geq \operatorname{dmin} \wedge \dot{x}_{3}=0 \wedge-\delta_{a} \leq \dot{x}_{1}-\dot{x_{2}} \leq \delta_{a}
\end{array}
$$

Jumps: $(1,4)$
If proportion not kept: system jumps into mode 4 (Dump)
$e_{1} \quad \operatorname{guard}_{e_{1}}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2} \geq \epsilon_{a}$
(from 1 to 4) $\quad \operatorname{jump}_{e_{1}}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=\bigwedge_{i=1}^{3} x_{i}^{\prime}=0$
$e_{2} \quad$ guard $_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2} \leq-\epsilon_{a}$
(from 1 to 4) $\quad \operatorname{jump}_{e_{1}}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=\bigwedge_{i=1}^{3} x_{i}^{\prime}=0$

Example

Mode 1: Fill Temperature is low, 1 and 2 do not react.
Substances 1 and 2 (possibly mixed with a small quantity of 3) are filled in the tank in equal quantities up to a margin of error.

$$
\begin{array}{ll}
\operatorname{lnv}_{1} & x_{1}+x_{2}+x_{3} \leq L_{f} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge 0 \leq x_{3} \leq \min \\
& \\
\text { flow }_{1} & \dot{x_{1}} \geq \operatorname{dmin} \wedge \dot{x_{2}} \geq \operatorname{dmin} \wedge \dot{x}_{3}=0 \wedge-\delta_{a} \leq \dot{x}_{1}-\dot{x_{2}} \leq \delta_{a}
\end{array}
$$

Jumps: $(1,2)$
If the total quantity of substances exceeds level L_{f} (tank filled) the system jumps into mode 2 (React).

$$
\begin{array}{ll}
e=(1,2) \quad & \operatorname{guard}_{(1,2)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3} \geq L_{f} \\
& \operatorname{jump}_{(1,2)}\left(x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=\bigwedge_{i=1}^{3} x_{i}^{\prime}=x_{i}
\end{array}
$$

Example

Mode 2: React Temperature is high. Substances 1 and 2 react. The reaction consumes equal quantities of substances 1 and 2 and produces substance 3 .

$$
\begin{array}{ll}
\text { Inv }_{2} & L_{f} \leq x_{1}+x_{2}+x_{3} \leq L_{\text {overflow }} \wedge \wedge_{j=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge 0 \leq x_{3} \leq \max \\
& \\
\text { flow }_{2} & \dot{x_{1}} \leq-\operatorname{dmax} \wedge \dot{x_{2}} \leq-\operatorname{dmax} \wedge \dot{x_{3}} \geq \operatorname{dmin} \\
& \wedge \dot{x_{1}}=\dot{x_{2}} \wedge \dot{x_{3}}+\dot{x_{1}}+\dot{x_{2}}=0
\end{array}
$$

Jumps:

If the proportion between substances 1 and 2 is not kept the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minim level min the system jumps into mode 3 (Filter).

Example

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

$$
\begin{array}{ll}
\text { Inv }_{3} & x_{1}+x_{2}+x_{3} \leq L_{\text {overflow }} \wedge \wedge_{i=1}^{3} x_{i} \geq 0 \wedge \\
& -\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a} \wedge x_{3} \geq \min \\
& \text { flow }_{3} \\
\dot{x}_{1}=0 \wedge \dot{x_{2}}=0 \wedge \dot{x}_{3} \leq-\operatorname{dmax}
\end{array}
$$

Jumps:

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some minimal level min the system jumps into mode 1 (Fill).

Example

Mode 4: Dump The content of the tank is emptied.
For simplicity we assume that this happens instantaneously:

$$
\operatorname{lnv}_{4}: \bigwedge_{i=1}^{3} x_{i}=0 \text { and flow } 4: \bigwedge_{i=1}^{3} \dot{x}_{i}=0
$$

Simple verification problems

Invariant checking: Check whether Ψ is an invariant in a HA S, i.e.:
(1) $\mathrm{Init}_{q} \models \Psi$ for all $q \in Q$;
(2) Ψ is invariant under jumps and flows:
(Flow) For every flow in mode q, the continuous variables satisfy Ψ during and at the end of the flow.
(Jump) For every jump according to a control switch e, if Ψ holds before the jump, it holds after the jump.

Examples:

- Is " $x_{1}+x_{2}+x_{3} \leq L_{\text {overflow" an invariant? (no overflow) }}$
- Is " $-\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a}$ " an invariant?
(substances always mixed in the right proportion)

Simple verification problems

Bounded model checking: Is formula Safe preserved under runs of length $\leq k$?, i.e.:
(1) Init $_{q} \models$ Safe for every $q \in Q$;
(2) The continuous variables satisfy Safe during and at the end of all runs of length j for all $1 \leq j \leq k$.

Example:

- Is " $x_{1}+x_{2}+x_{3} \leq L_{\text {overflow" }}$ true after all runs of length $\leq k$ starting from a state with e.g. $x_{1}=x_{2}=x_{3}=0$?
- Is " $-\epsilon_{a} \leq x_{1}-x_{2} \leq \epsilon_{a}$ " true after all runs of length $\leq k$ starting from a state with $x_{1}=x_{2}=x_{3}=0$?

Simple verification problems

Reductions of verification problems to linear arithmetic
(1) Mode invariants, initial states and guards of mode switches are described as conjunctions of linear inequalities.

Example: $\operatorname{Inv}_{q}=\bigwedge_{j=1}^{m_{q}}\left(\sum_{i=1}^{n} a_{i j}^{q} x_{i} \leq a_{j}^{q}\right)$ can be expressed by:

$$
\operatorname{lnv}_{q}\left(x_{1}(t), \ldots, x_{n}(t)\right)=\bigwedge_{j=1}^{m_{q}}\left(\sum_{i=1}^{n} a_{i j}^{q} x_{i}(t) \leq a_{j}^{q}\right)
$$

Simple verification problems

Reductions of verification problems to linear arithmetic
(2) The flow conditions are expressed by non-strict linear inequalities:
flow $_{q}=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i} \leq c_{j}^{q}\right)$, i.e. flow $_{q}(t)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i}(t) \leq c_{j}^{q}\right)$.

Simple verification problems

Reductions of verification problems to linear arithmetic
(2) The flow conditions are expressed by non-strict linear inequalities:
flow $_{q}=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i} \leq c_{j}^{q}\right)$, i.e. flow $_{q}(t)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i}(t) \leq c_{j}^{q}\right)$.

Approach: Express the flow conditions in [t_{0}, t_{1}] without referring to derivatives. $\operatorname{Flow}_{q}\left(t_{0}, t_{1}\right): \forall t\left(t_{0} \leq t \leq t_{1} \rightarrow \operatorname{lnv}_{q}(\bar{x}(t))\right) \wedge \forall t, t^{\prime}\left(t_{0} \leq t \leq t^{\prime} \leq t_{1} \rightarrow \underline{\text { flow }}_{q}\left(t, t^{\prime}\right)\right)$.
where:

Simple verification problems

Reductions of verification problems to linear arithmetic

(2) The flow conditions are expressed by non-strict linear inequalities:
$\operatorname{flow}_{q}=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i} \leq c_{j}^{q}\right)$, i.e. $\operatorname{flow}_{q}(t)=\bigwedge_{j=1}^{n_{q}}\left(\sum_{i=1}^{n} c_{i j}^{q} \dot{x}_{i}(t) \leq c_{j}^{q}\right)$.
Approach: Express the flow conditions in $\left[t_{0}, t_{1}\right]$ without referring to derivatives. $\operatorname{Flow}_{q}\left(t_{0}, t_{1}\right): \forall t\left(t_{0} \leq t \leq t_{1} \rightarrow \operatorname{lnv}_{q}(\bar{x}(t))\right) \wedge \forall t, t^{\prime}\left(t_{0} \leq t \leq t^{\prime} \leq t_{1} \rightarrow \underline{\text { flow }}_{q}\left(t, t^{\prime}\right)\right)$.

Remark: $\operatorname{Flow}_{q}\left(t_{0}, t_{1}\right)$ contains universal quantifiers. Locality results: Sufficient to use the instances at t_{0} and t_{1}

$$
\left.\left.\left.\operatorname{Flow}_{q}^{\operatorname{Inst}}\left(t_{0}, t_{1}\right): \operatorname{Inv}_{q}\left(\bar{x}\left(t_{0}\right)\right)\right) \wedge \operatorname{lnv}_{q}\left(\bar{x}\left(t_{1}\right)\right)\right) \wedge \underline{\text { flow }}_{q}\left(t_{0}, t_{1}\right)\right)
$$

Example

For fixed values for $L_{f}, L_{\text {overflow }}$ - satisfiability check: PTIME.
Parametric version: check satisfiability if $L_{f}<L_{\text {overflow }} \wedge \epsilon_{a}<\epsilon$ or generate constraints on the parameters which guarantee (un)satisfiability

Further extensions (Systems of LHA)

[Damm, Horbach, VS: FroCoS'15] Modularity results and small model property results for (decoupled) families of linear hybrid automata

Car platoon

Sensors + Communication Channels
Safety properties: $\forall i_{1}, \ldots, i_{k} \quad \phi_{\text {safe }}\left(i_{1}, \ldots, i_{l}\right)$
Collision free: $\forall i, j(\operatorname{lane}(i)=\operatorname{lane}(j) \wedge \operatorname{pos}(i) \geq \operatorname{pos}(j) \wedge i \neq j \rightarrow \operatorname{pos}(i)-\operatorname{pos}(j)>d)$

Model: Families of similar interacting system

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction
- Model the systems $S(i)$
- Model the topology updates

Model: Families of similar interacting systems

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.
$\begin{aligned} \text { Model the interaction } & \mapsto \quad \text { structures }\left(I,\{p: I \rightarrow I\}_{p \in P}\right) \\ & P=P_{S} \cup P_{N}\end{aligned}$
The functions in P model the way the systems perceive their neighbors
P_{S} sensors:

$\operatorname{sideback}(7)=3 \quad \operatorname{back}(7)=3$
front $(7)=$ nil $\quad \operatorname{sidefront}(7)=10$
P_{N} : neighborhood links
vai piaivuil
f4

Model: Families of similar interacting systems

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction
- Model the systems $S(i)$
$\mapsto \quad$ structures $\left(I,\{p: I \rightarrow I\}_{p \in P}\right)$
$\mapsto \quad$ hybrid automata

Model: Spatial families of LHA

Model families $\{S(i) \mid i \in I\}$ consisting of an unbounded number of similar interacting systems.

- Model the interaction
- Model the systems $S(i)$
- Model the topology updates
$\mapsto \quad$ structures $\left(I,\{p: I \rightarrow I\}_{p \in P}\right)$
$\mapsto \quad$ hybrid automata
$\mapsto \quad$ Topology automaton

$$
\text { Example: } \quad \begin{aligned}
& \text { Update }\left(\text { front, front }{ }^{\prime}\right) \\
& \forall i(i \neq \text { nil } \wedge \operatorname{Prop}(i) \wedge \neg \exists j(\operatorname{ASL}(j, i))\left.\rightarrow \text { front }^{\prime}(i)=\text { nil }\right) \\
& \forall i(i \neq \text { nil } \wedge \operatorname{Prop}(i) \wedge \exists j(\operatorname{ASL}(j, i))\left.\rightarrow \operatorname{Closest}_{\mathrm{f}}\left(\text { front }^{\prime}(i), i\right)\right) \\
& \forall i(i \neq \text { nil } \wedge \neg \operatorname{Prop}(i)\left.\rightarrow \text { front }^{\prime}(i)=\text { front }(i)\right)
\end{aligned}
$$

$\operatorname{ASL}(j, i): \quad j \neq$ nil \wedge lane $(j)=\operatorname{lane}(i) \wedge \operatorname{pos}(j)>\operatorname{pos}(i) \quad j$ is ahead of i on the same lane
$\operatorname{Closest}_{\mathrm{f}}(j, i): \quad \operatorname{ASL}(j, i) \wedge \forall k(\operatorname{ASL}(k, i) \rightarrow \operatorname{pos}(k) \geq \operatorname{pos}(j)) \quad j$ is ahead of i; no car between them.

Verification

Is safety property an inductive invariant?

Verification

Is safety property an inductive invariant?
Local extensions: use H-PILoT

- Unsatisfiable $\quad \mapsto \quad$ Safety invariant
- Satisfiable $\quad \mapsto \quad$ Model

Verification

Is safety property an inductive invariant?
Local extensions: use H-PILoT

- Unsatisfiable $\quad \mapsto \quad$ Safety invariant
- Satisfiable $\quad \mapsto \quad$ Model \mapsto Simulation [J. Wild, BSc Thesis 2018]

Other approaches

First-Order Dynamic Logic
Dynamic logic in which the atomic programs contain variables
The KeY System (Bernhard Beckert et al.)

Hybrid Dynamic Logic
Dynamic logic in which the atomic programs contain differential equations
The KeYmaera Verification Tool (Andre Platzer)
(Differential dynamic logic)

Summary

- Basic notions in formal specification and verification

Related topics

- Seminar "Decision Procedures and Applications": Summer Semester

More details on Specification, Model Checking, Verification:
Every summer (usually end of August):
Summer school "Verification Technology, Systems \& Applications"

BSc/MSc Theses in the area

