
Formal Specification and Verification

Classical logic (4)

6.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1



Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1

2



Binary Decision Diagrams

Formulae ↔ Boolean functions

F (n Prop.Var) 7→ fF : {0, 1}n → {0, 1}

Binary decision trees:

x

y

1

y

1 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1

- exactly as inefficient as truth tables (2n+1 − 1 nodes if n prop.vars.)

- optimization possible: remove redundancies

3



Binary Decision Diagrams

Optimization: remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes

4



Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

5



Binary Decision Diagrams

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

x

y

1

y

0 00

0 1

0 1 0 1

x

y

1

y

0 00

0 1

0 1 0 1
0

1

6



Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

7



Binary Decision Diagrams

2. remove unnecessary tests

x

y

1

y

0 00

0 1

0 1 0 1
0

1

0

x

y

1

0

0 1

1

8



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

9



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y

10



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

11



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

y y

z

x

0 1

1

x

0

0 0 0
1 1

0 1

011

yy

1 0

12



Binary Decision Diagrams

3. remove duplicate non-terminal nodes:

yy y y

z

x

0 1

0 1

x

0 1

0 0 0
1 1

0 1

011

y y y

z

x

0 1

1

x

0 1

0 0
1

0 1

01

0

1

y y

z

x

0 1

1

x

0

0
1

0 1

0

1 0

1

y y

z

x

0 1

1

0
1

0 1

0

0

1

13



Operations with BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all

0-leaves with 1 leaves.

14



Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

15



Binary Decision Diagrams

Binary decision diagram (BDD): finite directed acyclic graph with:

• a unique initial node

• terminal nodes marked with 0 or 1

• non-terminal nodes marked with propositional variables

• in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Problem: Variables may occur several times on a path.

Solution: Ordered BDDs.

16



Ordered BDDs

[P1, . . . ,Pn] ordered list of variables (without repetitions)

Let B be a BDD with variables {P1, . . . ,Pn}

B has the order [P1, . . . ,Pn]

if for every path v1 → v2 → · · · → vm in B,

if - i < j ,

- vi is marked with Pki

- vj ist marked with Pkj

then ki < kj .

A ordered BDD (Notation: OBDD) is a BDD which has an order, for a

certain ordered list of variables.

17



Reduced OBDDs

Let [P1, . . . ,Pn] be an order on variables.

The reduced OBDD, which represents a given function f is unique.

Theorem:

Let B1, B2 be two reduced OBDDs with the same variable ordering.

If B1 and B2 represent the same function, then B1 and B2 are equal.

OBDDs have a canonical form, namely the reduced OBDD.

18



Advantages of canonical representations

• Absence of redundant variables

If the value of f does not depend on the i-argument (Pi )
then no reduced OBDD contains the variable Pi

• Equivalence test

Fi 7→ fi 7→ Bi (OBDDs with compatible variable ordering), i = 1, 2

Reduce Bi , i = 1, 2. F1 ≡ F2 iff. B1 and B2 identical.

19



Advantages of canonical representations

• Validity test

F 7→ f 7→ B (OBDD)

F valid iff its reduced OBDD is B1 := 1

• Entailment test

F |= G iff the reduced OBDD for F ∧ ¬G is B0 := 0

• Satisfiability test

F satisfiable iff its reduced OBDD is not B0.

20



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

21



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

22



Reduce

remove redundancies

1. remove duplicate leaves

2. remove unnecessary tests

3. remove duplicate nodes

23



Reduce

The algorithm reduce traverses an OBDD B layer by layer in a bottom-up

fashion, beginning with the terminal nodes.

In traversing B, it assigns an integer label id(n) to each node n of B, in

such a way that the subOBDDs with root nodes n and m denote the same

boolean function iff, id(n) = id(m).

24



Reduce

Terminal nodes:

Since reduce starts with the layer of terminal nodes, it assigns the first

label (say #0) to the first 0-node it encounters. All other terminal 0-nodes

denote the same function as the first 0-node and therefore get the same

label (compare with reduction 1).

Similarly, the 1-nodes all get the next label, say #1.

25



Reduce

Non-terminal nodes

Now let us inductively assume that reduce has already assigned integer

labels to all nodes of a layer > i (i.e. all terminal nodes and Pj -nodes with

j > i).

We describe how nodes of layer i (i.e. Pi -nodes) are being handled.

n 7→ lo(n) node reached on branch labelled with 0

hi(n) node reached on branch labelled with 1

Given an Pi -node n, there are three ways in which it may get its label:

• If id(lo(n)) = id(hi(n)), we set id(n) to be that label (reduction 2)

• If there is another node m s.t. n and m have same variable Pi ,

and id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set

id(n) := id(m) (reduction 3)

• Otherwise, we set id(n) to the next unused integer label.

26



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

27



Reminder: BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all 0-leaves with 1

leaves.

28



Reminder: BDDs

f 7→ Bf (BDD associated with f )

g 7→ Bg (BDD associated with g)

BDD for f ∧ g : replace all 1-leaves in Bf with Bg

BDD for f ∨ g : replace all 0-leaves in Bf with Bg

BDD for ¬f : replace all 1-leaves in Bf with 0-leaves and all 0-leaves with 1

leaves.

If applied to OBDDs, the resulting BDD is not ordered!

29



Apply

Idea: Use the Shannon expansion for F .

F ≡ (¬P ∧ F [0/P]) ∨ (P ∧ F [1/P])

The function apply is based on the Shannon expansion for FopG :

FopG = (¬Pi ∧ (F [0/Pi ]opG [0/Pi ])) ∨ (Pi ∧ (F [1/Pi ]opG [1/Pi ])).

30



Apply

This is used as a control structure of apply which proceeds from the roots

of BF and BG downwards to construct nodes of the OBDD BFopG .

Let rf be the root node of BF and rg the root node of BG .

1. If both rf , rg are terminal nodes with labels lf and lg , respectively (0

or 1), we compute the value lf oplg and let the resulting OBDD be B0

if the value is 0 and B1 otherwise.

31



Apply

This is used as a control structure of apply which proceeds from the roots

of BF and BG downwards to construct nodes of the OBDD BFopG .

Let rf be the root node of BF and rg the root node of BG .

In the remaining cases, at least one of the root nodes is a non-terminal.

2. Suppose that both root nodes are Pi -nodes.

Then we create an Pi -node n with

- the edge labelled with 0 to apply(op, lo(rf ), lo(rg ))

- the edge labelled with 1 to apply(op, hi(rf ), hi(rg ))

32



Apply

This is used as a control structure of apply which proceeds from the roots

of BF and BG downwards to construct nodes of the OBDD BFopG .

Let rf be the root node of BF and rg the root node of BG .

3. If rf is a Pi -node, but rg is a terminal node or a Pj -node with j > i ,

then we know that there is no Pi -node in BG (because the two OBDDs

have a compatible ordering of boolean variables).

Thus, G is independent of Pi (G ≡ G [0/Pi ] ≡ G [1/Pi ]).

Therefore, we create a Pi -node n with: - the 0-edge to

apply(op, lo(rf ), rg ) and

- the 1-edge to apply(op, hi(rf ), rg ).

4. The case in which rg is a non-terminal, but rf is a terminal or a

Pj -node with j > i , is handled symmetrically to case 3.

33



Apply

The result of this procedure might not be reduced; therefore apply finishes

by calling the function reduce on the OBDD it constructed.

34



Restrict

Given an OBDD BF representing a boolean formula F , we need an algorithm

restrict such that:

– restrict(0,P,BF ) computes the reduced OBDD for F [0/P] using the same

variable ordering as BF .

The algorithm works as follows.

For each node n labelled with P, incoming edges are redirected to lo(n)

and n is removed.

Then we call reduce on the resulting OBDD.

The call restrict(1,P,BF ) proceeds similarly, only we now redirect incoming

edges to hi(n).

35



Operations with OBDDs

• Reduce

Apply reduction steps 1–3

• Apply

Boolean operations

• Restrict

Compute OBDD for F [0/Pi ] and F [1/Pi ]

• Exists

Compute OBDD for

E

PiF (P1, . . . ,Pn)

36



Exists

A boolean function can be thought of as putting a constraint on the values

of its argument variables.

It is useful to be able to express the relaxation of the constraint on a subset

of the variables concerned.

To allow this, we write
E

P.F for the boolean function F with the constraint

on P relaxed.

Formally,

E

P.F is defined as F [0/P] ∨ F [1/P]

that is,

E

P.F is true if F could be made true by putting P to 0 or to 1.

37



Exists

Formally,

E

P.F is defined as F [0/P] ∨ F [1/P]

that is,

E

P.F is true if F could be made true by putting P to 0 or to 1.

Therefore the exists algorithm can be implemented in terms of the

algorithms apply and restrict as:

exists(P, F ) := apply(∨, restrict(0,P,BF ), restrict(1,P,BF ))

38



Forall

Formally,

A

P.F is defined as F [0/P] ∧ F [1/P]

that is,

A

P.F is true if F could be made true both by putting P to 0

and by putting P to 1.

Therefore the forall algorithm can be implemented in terms of the algorithms

apply and restrict as:

forall(P, F ) := apply(∧, restrict(0,P,BF ), restrict(1,P,BF ))

39



Examples

Examples can be found on pages 378-379 of the book of the

book Logic in Computer Science“by Huth and Ryan.

40



Limitations of Propositional Logic

• Fixed, finite number of objects

Cannot express: let G be group with arbitrary number of elements

• No functions or relations with arguments

Can express: finite function/relation table pij

Cannot express: properties of function/relation on all arguments,

e.g., + is associative

• Static interpretation

Programs change value of their variables, e.g., via assignment, call,

etc.

Propositional formulas look at one single interpretation at a time

41



Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)

42



Beyond the Limitations of Propositional Logic

• First order logic

(+ functions)

• Temporal logic

(+ computations)

• Dynamic logic

(+ computations + functions)

43



Part 2: First-Order Logic

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

44



Signature

A signature Σ = (Ω,Π), fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0 (written f /n)

• Π is a set of predicate symbols p with arity m ≥ 0 (written p/m)

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

Many-sorted Signature A many-sorted signature Σ = (S , Ω,Π), fixes an

alphabet of non-logical symbols, where

• S is a set of sorts,

• Ω is a set of function symbols f with arity a(f ) = s1 . . . sn → s,

• Π is a set of predicate symbols p with arity a(p) = s1 . . . sm

where s1, . . . , sn, sm, s are sorts.

45



Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation

of) variables.

Many-sorted case:

We assume that for every sort s ∈ S , Xs is a given countably infinite set of

symbols which we use for (the denotation of) variables of sort s.

46



Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic

rules:

t, u, v ::= x , x ∈ X (variable)

| f (t1, ..., tn) , f /n ∈ Ω (functional term)

By TΣ(X ) we denote the set of Σ-terms (over X ).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

Many-sorted case:

a variable x ∈ Xs is a term of sort s

if a(f ) = s1 . . . sn → s, and ti are terms of sort si , i = 1, . . . , n then

f (t1, ..., tn) is a term of sort s.

47



Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= p(t1, ..., tm) , p/m ∈ Π
[

| (t ≈ t′) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic, (cf. exercises). But deductive systems

where equality is treated specifically can be much more efficient.

Many-sorted case:

If a(p) = s1 . . . sm, we require that ti is a term of sort si for i = 1, . . . ,m.

48



Literals, Clauses

Literals

L ::= A (positive literal)

| ¬A (negative literal)

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

49



General First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

|

A

xF (universal quantification)

|

E

xF (existential quantification)

50



Example: Peano Arithmetic

Signature:

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

A

x , y(x ≤ y ↔

E

z(x + z ≈ y))

E

x

A

y(x + y ≈ y)

A

x , y(x ∗ s(y) ≈ x ∗ y + x)

A

x , y(s(x) ≈ s(y) → x ≈ y)

A

x

E

y(x < y ∧ ¬

E

z(x < z ∧ z < y))

51



Example: Specifying LISP lists

Signature:

ΣLists = (ΩLists, ΠLists)

ΩLists = {car/1, cdr/1, cons/2}

ΠLists = ∅

Examples of formulae:

A

x , y car(cons(x , y)) ≈ x

A

x , y cdr(cons(x , y)) ≈ y

A

x cons(car(x), cdr(x)) ≈ x

52



Many-sorted signatures

Example:

Signature

S = {array, index, element} set of sorts

Ω = {read, write}

a(read) = array × index → element

a(write) = array× index× element → array

Π = ∅

X = {Xs | s ∈ S}

Examples of formulae:

A

x : array

A

i : index

A

j : index (i ≈ j → write(x , i , read(x , j)) ≈ x)

A

x : array

A

y : array (x ≈ y ↔

A

i : index (read(x , i) ≈ read(y , i)))

53


