Formal Specification and Verification

Classical logic (4)

6.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Formulae \leftrightarrow Boolean functions

 $\mathsf{F} \ (n \ \mathsf{Prop.Var}) \quad \mapsto \quad f_F : \{0,1\}^n \to \{0,1\}$

Binary decision trees:

Formulae \leftrightarrow Boolean functions

$$\mathsf{F} (n \ \mathsf{Prop.Var}) \quad \mapsto \quad f_F : \{0,1\}^n \to \{0,1\}$$

Binary decision trees:

- exactly as inefficient as truth tables $(2^{n+1} 1 \text{ nodes if } n \text{ prop.vars.})$
- optimization possible: remove redundancies

Optimization: remove redundancies

- 1. remove duplicate leaves
- 2. remove unnecessary tests
- 3. remove duplicate nodes

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

1. remove duplicate leaves

Only one copy of 0 and 1 necessary:

2. remove unnecessary tests

2. remove unnecessary tests

Operations with BDDs

 $f \mapsto B_f$ (BDD associated with f)

 $g \mapsto B_g$ (BDD associated with g)

BDD for $f \wedge g$: replace all 1-leaves in B_f with B_g

BDD for $f \vee g$: replace all 0-leaves in B_f with B_g

BDD for $\neg f$: replace all 1-leaves in B_f with 0-leaves and all 0-leaves with 1 leaves.

Binary decision diagram (BDD): finite directed acyclic graph with:

- a unique initial node
- terminal nodes marked with 0 or 1
- non-terminal nodes marked with propositional variables
- in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Binary decision diagram (BDD): finite directed acyclic graph with:

- a unique initial node
- terminal nodes marked with 0 or 1
- non-terminal nodes marked with propositional variables
- in each non-terminal node: two vertices (marked 0/1)

Reduced BDD: Optimizations 1-3 cannot be applied.

Problem: Variables may occur several times on a path.

Solution: Ordered BDDs.

Ordered BDDs

```
[P_1,\ldots,P_n] ordered list of variables (without repetitions) Let B be a BDD with variables \{P_1,\ldots,P_n\} B has the order [P_1,\ldots,P_n] if for every path v_1\to v_2\to\cdots\to v_m in B, if -i< j, -v_i is marked with P_{k_i} -v_j ist marked with P_{k_j} then k_i< k_j.
```

A ordered BDD (Notation: OBDD) is a BDD which has an order, for a certain ordered list of variables.

Reduced OBDDs

Let $[P_1, \ldots, P_n]$ be an order on variables.

The reduced OBDD, which represents a given function f is unique.

Theorem:

Let B_1 , B_2 be two reduced OBDDs with the same variable ordering.

If B_1 and B_2 represent the same function, then B_1 and B_2 are equal.

OBDDs have a canonical form, namely the reduced OBDD.

Advantages of canonical representations

Absence of redundant variables

If the value of f does not depend on the i-argument (P_i) then no reduced OBDD contains the variable P_i

• Equivalence test

 $F_i \mapsto f_i \mapsto B_i$ (OBDDs with compatible variable ordering), i = 1, 2Reduce B_i , i = 1, 2. $F_1 \equiv F_2$ iff. B_1 and B_2 identical.

Advantages of canonical representations

Validity test

$$F \mapsto f \mapsto B \text{ (OBDD)}$$

F valid iff its reduced OBDD is $B_1 := \begin{bmatrix} 1 \end{bmatrix}$

• Entailment test

 $F \models G$ iff the reduced OBDD for $F \land \neg G$ is $B_0 := \boxed{0}$

Satisfiability test

F satisfiable iff its reduced OBDD is not B_0 .

Operations with OBDDs

Reduce

Apply reduction steps 1–3

Apply

Boolean operations

Restrict

Compute OBDD for $F[0/P_i]$ and $F[1/P_i]$

Exists

Compute OBDD for $\exists P_i F(P_1, ..., P_n)$

Operations with OBDDs

Reduce

Apply reduction steps 1–3

Apply

Boolean operations

Restrict

Compute OBDD for $F[0/P_i]$ and $F[1/P_i]$

Exists

Compute OBDD for $\exists P_i F(P_1, ..., P_n)$

remove redundancies

- 1. remove duplicate leaves
- 2. remove unnecessary tests
- 3. remove duplicate nodes

The algorithm reduce traverses an OBDD B layer by layer in a bottom-up fashion, beginning with the terminal nodes.

In traversing B, it assigns an integer label id(n) to each node n of B, in such a way that the subOBDDs with root nodes n and m denote the same boolean function iff, id(n) = id(m).

Terminal nodes:

Since reduce starts with the layer of terminal nodes, it assigns the first label (say #0) to the first 0-node it encounters. All other terminal 0-nodes denote the same function as the first 0-node and therefore get the same label (compare with reduction 1).

Similarly, the 1-nodes all get the next label, say #1.

Non-terminal nodes

Now let us inductively assume that reduce has already assigned integer labels to all nodes of a layer > i (i.e. all terminal nodes and P_j -nodes with j > i).

We describe how nodes of layer i (i.e. P_i -nodes) are being handled.

 $n \mapsto lo(n)$ node reached on branch labelled with 0 hi(n) node reached on branch labelled with 1

Given an P_i -node n, there are three ways in which it may get its label:

- If id(lo(n)) = id(hi(n)), we set id(n) to be that label (reduction 2)
- If there is another node m s.t. n and m have same variable P_i , and id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set id(n) := id(m) (reduction 3)
- Otherwise, we set id(n) to the next unused integer label.

Operations with OBDDs

Reduce

Apply reduction steps 1–3

Apply

Boolean operations

Restrict

Compute OBDD for $F[0/P_i]$ and $F[1/P_i]$

Exists

Compute OBDD for $\exists P_i F(P_1, ..., P_n)$

Reminder: BDDs

 $f \mapsto B_f$ (BDD associated with f)

 $g \mapsto B_g$ (BDD associated with g)

BDD for $f \wedge g$: replace all 1-leaves in B_f with B_g

BDD for $f \vee g$: replace all 0-leaves in B_f with B_g

BDD for $\neg f$: replace all 1-leaves in B_f with 0-leaves and all 0-leaves with 1 leaves.

Reminder: BDDs

 $f \mapsto B_f$ (BDD associated with f)

 $g \mapsto B_g$ (BDD associated with g)

BDD for $f \wedge g$: replace all 1-leaves in B_f with B_g

BDD for $f \vee g$: replace all 0-leaves in B_f with B_g

BDD for $\neg f$: replace all 1-leaves in B_f with 0-leaves and all 0-leaves with 1 leaves.

If applied to OBDDs, the resulting BDD is not ordered!

Idea: Use the Shannon expansion for F.

$$F \equiv (\neg P \land F[0/P]) \lor (P \land F[1/P])$$

The function apply is based on the Shannon expansion for $F \circ G$:

$$\operatorname{\mathsf{Fop}} G = (\neg P_i \wedge (F[0/P_i] \operatorname{\mathsf{op}} G[0/P_i])) \vee (P_i \wedge (F[1/P_i] \operatorname{\mathsf{op}} G[1/P_i])).$$

This is used as a control structure of apply which proceeds from the roots of B_F and B_G downwards to construct nodes of the OBDD $B_{F \circ pG}$.

Let r_f be the root node of B_F and r_g the root node of B_G .

1. If both r_f , r_g are terminal nodes with labels l_f and l_g , respectively (0 or 1), we compute the value $l_f \text{ op } l_g$ and let the resulting OBDD be B_0 if the value is 0 and B_1 otherwise.

This is used as a control structure of apply which proceeds from the roots of B_F and B_G downwards to construct nodes of the OBDD B_{FopG} .

Let r_f be the root node of B_F and r_g the root node of B_G .

In the remaining cases, at least one of the root nodes is a non-terminal.

2. Suppose that both root nodes are P_i -nodes.

Then we create an P_i -node n with

- the edge labelled with 0 to apply(op, $lo(r_f)$, $lo(r_g)$)
- the edge labelled with 1 to apply(op, $hi(r_f)$, $hi(r_g)$)

This is used as a control structure of apply which proceeds from the roots of B_F and B_G downwards to construct nodes of the OBDD B_{FopG} .

Let r_f be the root node of B_F and r_g the root node of B_G .

3. If r_f is a P_i -node, but r_g is a terminal node or a P_j -node with j > i, then we know that there is no P_i -node in B_G (because the two OBDDs have a compatible ordering of boolean variables).

Thus, G is independent of P_i ($G \equiv G[0/P_i] \equiv G[1/P_i]$).

Therefore, we create a P_i -node n with: - the 0-edge to apply(op, $lo(r_f)$, r_g) and

- the 1-edge to apply(op, $hi(r_f)$, r_g).
- 4. The case in which r_g is a non-terminal, but r_f is a terminal or a P_i -node with j > i, is handled symmetrically to case 3.

The result of this procedure might not be reduced; therefore apply finishes by calling the function reduce on the OBDD it constructed.

Restrict

Given an OBDD B_F representing a boolean formula F, we need an algorithm restrict such that:

– restrict(0, P, B_F) computes the reduced OBDD for F[0/P] using the same variable ordering as B_F .

The algorithm works as follows.

For each node n labelled with P, incoming edges are redirected to lo(n) and n is removed.

Then we call reduce on the resulting OBDD.

The call $restrict(1, P, B_F)$ proceeds similarly, only we now redirect incoming edges to hi(n).

Operations with OBDDs

Reduce

Apply reduction steps 1–3

Apply

Boolean operations

• Restrict

Compute OBDD for $F[0/P_i]$ and $F[1/P_i]$

Exists

Compute OBDD for $\exists P_i F(P_1, ..., P_n)$

Exists

A boolean function can be thought of as putting a constraint on the values of its argument variables.

It is useful to be able to express the relaxation of the constraint on a subset of the variables concerned.

To allow this, we write $\exists P.F$ for the boolean function F with the constraint on P relaxed.

Formally, $\exists P.F$ is defined as $F[0/P] \lor F[1/P]$

that is, $\exists P.F$ is true if F could be made true by putting P to 0 or to 1.

Exists

Formally, $\exists P.F$ is defined as $F[0/P] \lor F[1/P]$

that is, $\exists P.F$ is true if F could be made true by putting P to 0 or to 1.

Therefore the exists algorithm can be implemented in terms of the algorithms apply and restrict as:

exists(
$$P, F$$
) := apply(\vee , restrict($0, P, B_F$), restrict($1, P, B_F$))

Forall

Formally, $\forall P.F$ is defined as $F[0/P] \land F[1/P]$

that is, $\forall P.F$ is true if F could be made true both by putting P to 0 and by putting P to 1.

Therefore the forall algorithm can be implemented in terms of the algorithms apply and restrict as:

forall(
$$P, F$$
) := apply(\land , restrict($0, P, B_F$), restrict($1, P, B_F$))

Examples

Examples can be found on pages 378-379 of the book of the book Logic in Computer Science "by Huth and Ryan.

Limitations of Propositional Logic

- Fixed, finite number of objects
 Cannot express: let G be group with arbitrary number of elements
- No functions or relations with arguments
 Can express: finite function/relation table p_{ij}
 Cannot express: properties of function/relation on all arguments,
 e.g., + is associative
- Static interpretation
 Programs change value of their variables, e.g., via assignment, call, etc.
 - Propositional formulas look at one single interpretation at a time

Beyond the Limitations of Propositional Logic

• First order logic

```
(+ functions)
```

• Temporal logic

```
(+ computations)
```

• Dynamic logic

```
(+ computations + functions)
```

Beyond the Limitations of Propositional Logic

• First order logic

```
(+ functions)
```

• Temporal logic

```
(+ computations)
```

• Dynamic logic

```
(+ computations + functions)
```

Part 2: First-Order Logic

Syntax:

- non-logical symbols (domain-specific)
 - ⇒ terms, atomic formulas
- logical symbols (domain-independent)
 - ⇒ Boolean combinations, quantifiers

Signature

A signature $\Sigma = (\Omega, \Pi)$, fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \geq 0$ (written f/n)
- Π is a set of predicate symbols p with arity $m \geq 0$ (written p/m)

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also called a propositional variable.

Many-sorted Signature A many-sorted signature $\Sigma = (S, \Omega, \Pi)$, fixes an alphabet of non-logical symbols, where

- *S* is a set of sorts,
- Ω is a set of function symbols f with arity $a(f) = s_1 \dots s_n \to s$,
- Π is a set of predicate symbols p with arity $a(p) = s_1 \dots s_m$

where s_1, \ldots, s_n, s_m, s are sorts.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the denotation of) variables.

Many-sorted case:

We assume that for every sort $s \in S$, X_s is a given countably infinite set of symbols which we use for (the denotation of) variables of sort s.

Terms

Terms over Σ (resp., Σ -terms) are formed according to these syntactic rules:

$$t,u,v$$
 ::= x , $x\in X$ (variable) $f(t_1,...,t_n)$, $f/n\in\Omega$ (functional term)

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X).

A term not containing any variable is called a ground term.

By T_{Σ} we denote the set of Σ -ground terms.

Many-sorted case:

a variable $x \in X_s$ is a term of sort s

if $a(f) = s_1 \dots s_n \to s$, and t_i are terms of sort s_i , $i = 1, \dots, n$ then $f(t_1, \dots, t_n)$ is a term of sort s.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$A,B$$
 $::=$ $p(t_1,...,t_m)$, $p/m\in\Pi$ $\Big[(tpprox t')$ (equation) $\Big]$

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic, (cf. exercises). But deductive systems where equality is treated specifically can be much more efficient.

Many-sorted case:

If $a(p) = s_1 \dots s_m$, we require that t_i is a term of sort s_i for $i = 1, \dots, m$.

Literals, Clauses

Literals

Clauses

$$C,D$$
 ::= ota (empty clause) $L_1 ee \ldots ee L_k, \ k \geq 1$ (non-empty clause)

General First-Order Formulas

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

Example: Peano Arithmetic

Signature:

$$\Sigma_{PA} = (\Omega_{PA}, \Pi_{PA})$$
 $\Omega_{PA} = \{0/0, +/2, */2, s/1\}$
 $\Pi_{PA} = \{\le /2,
 $+, *, <, \le infix; * >_p + >_p < >_p \le$$

Examples of formulas over this signature are:

$$\forall x, y(x \leq y \leftrightarrow \exists z(x + z \approx y))$$

$$\exists x \forall y(x + y \approx y)$$

$$\forall x, y(x * s(y) \approx x * y + x)$$

$$\forall x, y(s(x) \approx s(y) \rightarrow x \approx y)$$

$$\forall x \exists y(x < y \land \neg \exists z(x < z \land z < y))$$

Example: Specifying LISP lists

Signature:

$$\begin{split} & \Sigma_{\mathsf{Lists}} = \left(\Omega_{\mathsf{Lists}}, \Pi_{\mathsf{Lists}}\right) \\ & \Omega_{\mathsf{Lists}} = \left\{\mathsf{car}/1, \mathsf{cdr}/1, \mathsf{cons}/2\right\} \\ & \Pi_{\mathsf{Lists}} = \emptyset \end{split}$$

Examples of formulae:

$$\forall x, y \ \operatorname{car}(\operatorname{cons}(x, y)) \approx x$$
 $\forall x, y \ \operatorname{cdr}(\operatorname{cons}(x, y)) \approx y$
 $\forall x \ \operatorname{cons}(\operatorname{car}(x), \operatorname{cdr}(x)) \approx x$

Many-sorted signatures

Example:

Signature

```
S = \{ 	ext{array, index, element} \} set of sorts \Omega = \{ 	ext{read, write} \} a(	ext{read}) = 	ext{array} 	imes 	ext{index} 	o 	ext{element} a(	ext{write}) = 	ext{array} 	imes 	ext{index} 	imes 	ext{element} 	o 	ext{array} \Pi = \emptyset X = \{ X_s \mid s \in S \}
```

Examples of formulae:

```
\forall x : \text{array} \ \forall i : \text{index} \ \forall j : \text{index} \ (i \approx j \rightarrow \text{write}(x, i, \text{read}(x, j)) \approx x)
\forall x : \text{array} \ \forall y : \text{array} \ (x \approx y \leftrightarrow \forall i : \text{index} \ (\text{read}(x, i) \approx \text{read}(y, i)))
```