
Formal Specification and Verification

Classical logic (6)

19.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now

• First order logic

Syntax:

(Many sorted) Signature

Terms, Formulae

Substitutions

Semantics:

Σ-structures

Models, Validity, Satisfiability

Entailment, Equivalence

Theories

2

Logical theories

Syntactic view

first-order theory: given by a set F of (closed) first-order Σ-formulae.

the models of F : Mod(F) = {A ∈ Σ-alg | A |= G , for all G in F}

Semantic view

given a class M of Σ-algebras

the first-order theory of M: Th(M) = {G ∈ FΣ(X) closed | M |= G}

3

Examples

1. Groups

Let Σ = ({e/0, ∗/2, i/1}, ∅)

Let F consist of all (universally quantified) group axioms:

A

x , y , z x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z
A

x x ∗ i(x) ≈ e ∧ i(x) ∗ x ≈ e

A

x x ∗ e ≈ x ∧ e ∗ x ≈ x

Every group G = (G , eG , ∗G , iG) is a model of F

Mod(F) is the class of all groups

F ⊂ Th(Mod(F))

4

Examples

2. Linear (positive)integer arithmetic

Let Σ = ({0/0, s/1,+/2}, {≤ /2})

Let Z+ = (Z, 0, s, +,≤) the standard interpretation of integers.

{Z+} ⊂ Mod(Th(Z+))

3. Uninterpreted function symbols

Let Σ = (Ω,Π) be arbitrary

Let M = Σ-alg be the class of all Σ-structures

The theory of uninterpreted function symbols is Th(Σ-alg) the family

of all first-order formulae which are true in all Σ-algebras.

5

Examples

4. Lists

Let Σ = ({car/1, cdr/1, cons/2}, ∅)

Let F be the following set of list axioms:

car(cons(x , y)) ≈ x

cdr(cons(x , y)) ≈ y

cons(car(x), cdr(x)) ≈ x

Mod(F) class of all models of F

ThLists = Th(Mod(F)) theory of lists (axiomatized by F)

6

“Most general” models

We assume that Π = ∅.

Term algebras

A term algebra (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f

fA(△, . . . ,△) =

△ . . . △

7

Term algebras

In other words, values are fixed to be ground terms and functions

are fixed to be the term constructors.

8

Free algebras

Let K be the class of Σ-algebras which satisfy a set of axioms which are either

equalities

A

x : t(x) ≈ s(x)

or implications:

A

x : t1(x) ≈ s1(x) ∧ · · · ∧ tn(x) ≈ sn(x) → t(x) ≈ s(x)

We can construct the “most general” model in K:

• Construct the term algebra TΣ(X) (resp. TΣ)

• Identify all terms t, t′ such that K |= t ≈ t
′

(all terms which become equal as a consequence of the axioms).

∼ congruence relation

Construct the algebra of equivalence classes: TΣ(X)/∼ (resp. TΣ/∼)

• TΣ(X)/∼ is the free algebra in K freely generated by X .

TΣ/∼ is the free algebra in K.

9

Universal property of the free algebras

For every A ∈ K and every β : X → A there exists a unique extension β′

of β which is an algebra homomorphism:

β′ : TΣ(X)/ ∼→ A

10

Examples

TΣ(X) is the free algebra freely generated by X for the class of all algebras

of type Σ.

Let X be a set of symbols and X∗ be the class of all finite strings of

elements in X , including the empty string.

We construct the monoid (X∗, ·, 1) by defining · to be concatenation, and

1 is the empty string.

(X∗, ·, 1) is the free monoid freely generated by X .

11

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

12

Formal specification

• Specification languages for describing programs/processes/systems

• Specification languages for properties of programs/processes/systems

13

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

Axiom-based specification

Declarative specifications

• Specification languages for properties of programs/processes/systems

14

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

Declarative specifications

• Specification languages for properties of programs/processes/systems

15

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

• Specification languages for properties of programs/processes/systems

16

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

17

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

18

Algebraic specification

• appropriate for specifying the interface of a module or class

• enables verification of implementation w.r.t. specification

• for every ADT operation: argument and result types (sorts)

• semantic equations over operations (axioms) e.g. for every combination

of “defined function” (e.g. top, pop) and constructor with the

corresponding sort (e.g. push, empty)

• problem: consistency?, completeness?

19

Example: Algebraic specification

20

Example: Algebraic specification

reduce pop(push(X,S)) == S .

reduce top(pop(push(X,push(Y,S)))) == Y .

reduce S == push(X,S2) implies push(top(S),pop(S)) == S .

reduce S == push(X,S2) implies length(pop(S)) + 1 == length(S) .

• the equations can be used as term rewriting rules

• this allows proving properties of the specification

21

Syntax of Algebraic Specifications

Signatures: as in FOL (S , Ω, Π)

Example:

STACK = ({Stack,Nat},

{empty : ǫ → Stack,

push : Nat × Stack → Stack,

pop : Stack → Stack,

top : Stack → Nat,

length : Stack → Nat,

0 : ǫ → Nat, 1 : ǫ → Nat

}

22

Semantics of Algebraic Specifications

Σ-algebras

Observations

• different Σ-algebras are not necessarily “equivalent”

• we seek the most “abstract” Σ-algebra,

since it anticipates as little implementation decisions as possible

23

Semantics of Algebraic Specifications

Σ-algebras

Observations

• different Σ-algebras are not necessarily “equivalent”

• we seek the most “abstract” Σ-algebra,

since it anticipates as little implementation decisions as possible

No equations: Term algebras

Equations/Horn clauses: free algebras

TΣ/ ∼, where

t ∼ t′ iff

Ax |= t ≈ t′ iff

For every A ∈ Mod(Ax), A |= t ≈ t′

24

Algebraic Specification

“A gentle introduction to CASL”

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/∼bidoit/GENTLE.pdf

(cf. also the slides of the lecture available online)

A subset of the slides was discussed today.

25

