
Formal Specification and Verification

Temporal logic (1)

10.12.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

2

Temporal logic

3

Motivation

The purpose of temporal logic (TL) is:

• reasoning about time (in philosophy), and

• reasoning about the behaviour of systems evolving over time

(in computer science).

4

How to define a TL?

To define a temporal logic (TL), we need to specify:

• the language for talking about time or temporal systems;

• our model of time.

5

Motivation

What model of time should we use?

What is the structure of time?

6

Motivation

What model of time should we use?

What is the structure of time?

A very liberal definition:

A flow of time is a pair (T ,<), where T is a non-empty set of time points,

and < is an irreflexive and transitive binary relation on T .

Depending on the intended application, we often require additional

properties. One of the most fundamental decisions is whether or not time

should be linear.

(T ,<) is linear if, for all x , y ∈ T with x 6= y , we have x < y or y < x .

7

Models of time

Important additional properties for linear flows of time:

Boundedness: We have four options by combining:

• Bounded to the past: there exists an x ∈ T such that x ≤ y for all

y ∈ T (genesis).

• Bounded to the future: there exists a an x ∈ T such that y ≤ x

for all y ∈ T (doomsday).

Discreteness: Existence of direct predecessors and successors:

• If x ∈ T is not genesis, then there exists a y ∈ T such that y < x

and y < z < x holds for no z ∈ T .

• If x ∈ T is not doomsday, then there exists a y ∈ T such that

x < y and x < z < y holds for no z ∈ T .

It can be seen that one does not follow from the other.

8

Models of time

Important additional properties for linear flows of time:

Density: For all x , y ∈ T with x < y , there is a z ∈ T such that x < z < y .

Dedekind completeness: Any non-empty subset S ⊆ T that has an upper

bound has a least upper bound:

Definitions:

Upper bound for S : x ∈ T with y ≤ x for all y ∈ S ;

Least upper bound for S : upper bound x for S such that there is no

x′ ∈ T with x′ < x and x′ upper bound for S .

9

Models of time

The following are among the most natural linear flows of time:

• The natural numbers N with the usual order <.

Linear, discrete, bounded to the past, not bounded to the future.

Note that other flows of time have these properties as well:

T := N× {0} ∪ Z× {1}, where:

(x , a) < (y , b) if (i) a < b or (ii) a = b and x < y .

NOTE: above example not Dedekind complete.

10

Models of time

The following are among the most natural linear flows of time:

• The rational numbers Q.

A natural dense flow of time, though with gaps (e.g. π).

The unique countable linear dense flow of time without endpoints (up

to isomorphism).

• The real numbers R.

Up to isomorphism, the unique dense, Dedekind-complete flow of time

without end points that is separable:

There exists a countable subset D ⊆ T such that, for all x , y ∈ T

with x < y , there is a z ∈ D with t < z < u.

11

Models of time

The alternative to linear time is branching time.

Time can be:

• Branching to the future reflecting that there are many possible

futures;

• Branching to the past reflecting that many different histories are

considered possible (due to incomplete knowledge).

Branching to the future and linear to the past is the most popular option

for each x ∈ T , the set {y ∈ T | y < x} is linearly ordered by <.

We can identify additional properties similar to the linear case. Usually,

branching time is assumed to be discrete and has a genesis.

12

Models of time

Which flow of time should we use?

13

Models of time

Which flow of time should we use?

This depends on the application!

14

Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Finite-state systems.

Finite-state systems can only take finitely many states.

(Often, infinite-state systems can be abstracted into finite-state ones

by grouping the states into a finite number of partitions.)

15

Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Reactive Systems.

A reactive system interacts with the environment frequently and usually

does not terminate. Its correctness is defined via these interactions.

This is in contrast to a classical algorithm that takes an input initially

and then eventually terminates producing a result.

16

Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Concurrent Systems.

Systems consisting of multiple, interacting processes. One process does

not know about the internal state of the others. May be viewed as a

collection of reactive systems.

17

Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

Task: Verificaton.

Given the (formal) description of a system and of its intended behaviour,

check whether the system indeed complies with this behaviour.

18

Transition systems

We use an abstract model of reactive and concurrent systems.

Definition (Transition system, simplified version)

Let Π be a finite set of propositional variables.

A transition system is a tuple (S ,→,Si , L) with

• S a non-empty set of states;

• →⊆ S × S is a transition relation that is total, i.e.

for each state s ∈ S , there is a state s′ ∈ S such that s → s′;

• Si ⊆ S is a set of initial states;

• L : S → {0, 1}AP is a valuation function

which we will also regard as a function L : AP × S → {0, 1}

19

Example

Consider the following simple mutual-exclusion protocol:

task body ProcA is

begin

loop

(0) Non_Critical_Section_A;

(1) loop [exit when Turn = 0] end loop;

(2) Critical_Section_A;

(3) Turn := 1;

end loop;

end ProcA;

task body ProcB is

begin

loop

(0) Non_Critical_Section_B;

(1) loop [exit when Turn = 1] end loop;

(2) Critical_Section_B;

(3) Turn := 0;

end loop;

end ProcA;

Assume that the processes run asynchronously, i.e., either Process A or B

makes a step, but not both. The order of executions is undetermined.

20

Example

Π = {(T = i) | i ∈ {0, 1}} ∪ {(X = i) | X ∈ {A,B}, i ∈ {0, 1, 2, 3}}

(T = i) means that Turn is set to i , and

(X = i) means the process X is currently in Line i .

21

Example

We define the following transition system (S ,→, Si , L):

• S = {0, 1} × {0, 1, 2, 3} × {0, 1, 2, 3}

(t, i , j) ∈ S : state in which Turn = t, A is at line i , B is at line j

• Si = {(0, 0, 0), (1, 0, 0)}

• →= RA ∪ RB , where

RA = {((t, i , j), (t′, i ′, j)) | (i ∈ {0, 2, 3} ∧ t′ = t) → i ′ = i + 1 (mod4),
t = 0, i = 1 → i ′ = 2
t = 1, i = 1 → i ′ = 1
i = 3 → t′ = 1}

and RB is defined similarly

• L((T = t′), (t, i , j)) = 1 iff t′ = t

L((A = i ′), (t, i , j)) = 1 iff i ′ = i

L((B = j′), (t, i , j)) = 1 iff j′ = j

22

Computations

Let TS = (S ,→, Si , L) be a transition system.

A computation (or execution) of TS is an infinite sequence s0s1 . . . of

states such that s0 ∈ Si and si → si+1 for all i ≥ 0.

Example: computation (execution) of the transition system from the

previous example:

(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), (0, 3, 1), (1, 0, 1), (1, 0, 2), . . .

This corresponds to an (asynchronous) execution of the concurrent system

with Processes A and B.

Note that our formalization allows computations that are unfair, e.g., in

which Process B is never executed. Such issues are not adressed on the

level of transition systems.

23

Example

Interesting properties that can be verified in this Example include the

following:

• Mutual exclusion: can A and B be at Line (2) at the same time?

• Guaranteed accessibility: if process X ∈ {A,B} is at Line (2), is it

guaranteed that it will eventually reach Line (3)?

(holds, but only in computations that execute both Process A and

Process B infinitely often)

Later, we will express such properties as temporal logic formulas.

24

Computation trees

Transition systems can be non-deterministic, i.e., for an s ∈ S , the set

{s′ | s → s′} can have arbitrary cardinality > 0.

Thus, in general there is more than a single computation.

Instead of considering single computations in isolation, we can arrange all

of them in a computation tree.

Informally, for s ∈ Si , the (infinite) computation tree T (TS , s) of TS at

s ∈ S is inductively constructed as follows:

• use s as the root node;

• for each leaf s′ of the tree, add successors {t ∈ S | s′ → t}.

25

Computation trees

The computation tree of the transition system from the previous example

starting at state (0, 0, 0) is:

(0, 0, 0)

 (0, 2, 0) (0, 1, 1)

 (0, 1, 0) (0, 0, 1)

(0, 3, 0) (0, 2, 1) (0, 2, 1) (0, 1, 1)

26

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

27

Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.

28

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

29

Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

• Computation (execution, path) in a model (S ,→, L)

infinite sequence of states π = s0, s1, s2, ... in S such that for each

i ≥ 0, si → si+1.

We write the path as s0 → s1 → s2 →
aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .

30

Linear Time Logic

Consider the path π = s0 → s1 →

It represents a possible future of our system.

We write πi for the suffix starting at si , e.g.,

π3 = s3 → s4 →

31

Linear Time Logic

Semantics

Let TS = (S ,→, L) be a model and π = s0 → ... be a path in TS .

Whether π satisfies an LTL formula is defined by the satisfaction relation

|= as follows:

• π |= ⊤

• π 6|=⊥

• π |= p iff p ∈ L(s0), if p ∈ Π

• π |= ¬F iff π 6|= F

• π |= F ∧ G iff π |= F and π |= G

• π |= F ∨ G iff π |= F or π |= G

• π |= ©F iff π1 |= F

• π |= FUG iff

E

m ≥ 0 s.t. πm |= G and

A

k ∈ {0, . . . ,m− 1} : πk |= F

32

Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S0S1 . . . with Si ⊆ Π for all

i ≥ 0. We define satisfaction of LTL formulas in M at time points n ∈ N as

follows:

• M, n |= p iff p ∈ Sn, if p ∈ Π

• M, n |= F ∧ G iff M, n |= F and M, n |= G

• M, n |= F ∨ G iff M, n |= F or M, n |= G

• M, n |= ¬F iff M, n 6|= F

• M, n |= ©F iff M, n + 1 |= F

• M, n |= FUG iff

E

m ≥ n s.t. M,m |= G and

A

k ∈ {n, . . . ,m − 1} : M, k |= F

Note that the time flow (N,<) is implicit.

33

Transition systems and LTL models

The connection between transition systems and LTL structures is as follows:

Every computation (evolution, path) of a transition system s0 → s1 . . .

gives rise to an LTL structure.

To see this, let TS = (S ,→,L) be a transition system.

A computation s0, s1, ... of TS induces an LTL structure

L(s0)L(s1) . . .

Such an LTL structure is called a trace of TS .

34

Abbreviations

• The future diamond

✸φ := ⊤Uφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ

• The future box

✷φ := ¬✸¬φ

π |= ✷φ iff

A

m ≥ 0 : πm |= φ

35

Abbreviations

• The future diamond

✸φ := ⊤Uφ Sometimes denoted also Fφ

π |= ✸φ iff

E

m ≥ 0 : πm |= φ M, n |= ✸φ iff

E

m ≥ n : M,m |= φ

• The future box

✷φ := ¬✸¬φ Sometimes also denoted Gφ

π |= ✷φ iff

A

m≥0 : πm |= φ M, n |= ✷φ iff

A

m≥n : M,m |= φ

36

Abbreviations

• The infinitely often operator

✸
∞φ := ✷✸φ

π |= ✸
∞φ iff {m ≥ 0 | πm |= φ} is infinite

M, n |= ✸
∞φ iff {m ≥ n | M,m |= φ} is infinite

• The almost everywhere operator

✷
∞φ := ✸✷φ

π |= ✷
∞φ iff {m ≥ 0 | πm 6|= φ} is finite.

M, n |= ✷
∞φ iff {m ≥ n | M,m 6|= φ} is finite.

37

Abbreviations

• The release operator

φRψ := ¬(¬φU¬ψ)

π |= φRψ iff (

E

m ≥ 0 : πm |= φ and

A

k ≤ m: πk |= ψ) or

(

A

k ≥ 0 : πk |= ψ)

M, n |= φRψ iff (

E

m ≥ n : M,m |= φ and

A

k ≤ m : M,m |= ψ) or

(

A

k ≥ m : M, k |= ψ)

Read as

“ψ always holds unless released by φ” i.e.,

“ψ holds permanently up to and including the first point where φ

holds (such an φ-point need not exist at all)”.

38

Abbreviations

• The strict until operator:

FU<G := ©(FUG)

π |= FU<G iff

E

m > 0 : πm |= G ∧

A

k ∈ {1, 2, . . . ,m − 1},πk |= F

M, n |= FU<G iff
E

m > n : M,m |= G ∧
A

k ∈ {n + 1, ...,m −

1},M, k |= F

The difference between standard and strict until is that strict until requires

G to happen in the strict future and that F needs not hold true of the

current point.

39

Equivalence

We say that two LTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all LTL structures M and i ≥ 0, we have M, i |= F iff M, i |= G .

equivalently:

if for all transition systems T and all paths π in T we have:

π |= F iff π |= G .

Note that:

© F ≡⊥ U<F and

FUG ≡ G ∨ (F ∧ (FU<G))

Thus, an equally expressive version of LTL is obtained by using U< as the

only temporal operator.

This cannot be done with the standard until

40

Equivalence

Some useful equivalences that will be useful later on (exercise: prove them):

¬© F ≡ ©¬F (self-duality of next)

✸✸F ≡ ✸F (idempotency of diamond)

©✸F ≡ ✸© F (commutation of next with Diamond)

✸✸
∞F ≡ ✸

∞F ≡ ✸
∞
✸F (absorption of diamonds by “infinitely often”)

FUG ≡ ¬(¬FR¬G) (until and release are duals)

FUG ≡ G ∨ (F ∧©(FUG)) (unfolding of until)

FRG ≡ (F ∧ G) ∨ (G ∧©(FRG)) (unfolding of release)

41

Temporal Properties

A temporal property is a set of LTL structures

(those on which the property is true).

Thus, a temporal property P can be defined using an LTL formula F :

P = {M | M, 0 |= F}.

When given a transition system TS representing a reactive system and an

LTL formula F representing a temporal property,

TS satisfies F if M, 0 |= F for all traces M of TS .

In this case, we write TS |= F .

Typical properties of reactive systems that need to be checked during

verification are safety properties, liveness properties, and fairness properties.

42

Safety properties

Intuitively, a safety property asserts that “nothing bad happens”

general form: Condition → ✷FSafe

Examples of safety properties:

• Mutual Exclusion. For the example:

✷(¬((A = 2) ∧ (B = 2)))

• Freedom from Deadlocks: At any time, some process should be

enabled:

✷(enabled1 ∨ · · · ∨ enabledk)

• Partial Correctness: If F is satisfied when the program starts, then G

will be satisfied if the program reaches a distinguished state:

F → ✷(Dist → G)

where Dist ∈ Π marks the distinguished state.

43

Liveness properties

Intuitively, a liveness property asserts that “something good will happen”

Examples of liveness properties:

• Guaranteed Accessibility. For the example:

✷(A = 1 → ✸(A = 2)) ∧ ✷(B = 1 → ✸(B = 2))

• Responsiveness: If a request is issued, it will eventually be granted:

✷(req → ✸grant)

• Total Correctness: If F is satisfied when the program starts, then the

program terminates in a distinguished state where G is satisfied:

φ→ ✸(Dist ∧ G)

Note that, in contrast, partial correctness is a safety property.

44

Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Unconditional Fairness: Every process is executed infinitely often:

∧

1≤i≤k

✸
∞executedi

Unconditional fairness is appropriate when processes can (and should!)

be executed and any time. This is not always the case.

45

Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Strong Fairness: Every process enabled infinitely often is executed

infinitely often:
∧

1≤i≤k

(✸∞enabledi → ✸
∞executedi)

Processes enabled only finitely often need not be guaranteed to be

executed: they eventually and forever retract being enabled.

46

Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Weak Fairness: Every process enabled almost everywhere is executed

infinitely often.

∧

1≤i≤k

(✷∞enabledi → ✸
∞executedi)

This means that a process cannot be enabled constantly in an infinite

interval without being executed in this interval.

47

