
Formal Specification and Verification

Formal specification (2)

26.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now

• Logic

• Formal specification (generalities)

Algebraic specification

2

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

Temporal logic

3

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

4

Algebraic Specification

“A gentle introduction to CASL”

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/∼bidoit/GENTLE.pdf

5

Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

6

Transition systems

Transition systems

• Executions

• Modeling data-dependent systems

7

Transition systems

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

8

Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α
→ s′ instead of (s,α, s′) ∈→.

9

A beverage vending machine

10

Direct successors and predecessors

Post(s,α) = {s′ ∈ S | s
α
→ s′}, Post(s) =

⋃

α∈Act Post(s,α)

Pre(s,α) = {s′ ∈ S | s′
α
→ s}, Pre(s) =

⋃

α∈Act Pre(s,α)

Post(C ,α) =
⋃

s∈C Post(s,α),

Post(C) =
⋃

α∈Act Post(C ,α) for C ⊆ S

Pre(C ,α) =
⋃

s∈C Pre(s,α),

Pre(C) =
⋃

α∈Act Pre(C ,α) for C ⊆ S

State s is called terminal if and only if Post(s) = ∅

11

Action- and AP-determinism

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is action-

deterministic iff:

| I |≤ 1 and | Post(s,α) |≤ 1 for all s ∈ S ,α ∈ Act

(at most one initial state and for every action, a state has at most one

successor)

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is AP-deterministic

iff

• | I |≤ 1, and

• for all s ∈ S ,A ⊆ AP: | Post(s) ∩ {s′ ∈ S | L(s′) = A} |≤ 1

(at most one initial state; for every state s and every A ⊆ AP there exists

at most a successor of s in which all atomic propositions in A hold)

12

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

13

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

14

Transition systems 6= finite automata

As opposed to finite automata, in a transition system:

• there are no accept states

• set of states and actions may be countably infinite

• may have infinite branching

• actions may be subject to synchronization

• nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

15

Executions

• A finite execution fragment ρ of TS is an alternating sequence of

states and actions ending with a state:

ρ = s0α1s1α2...αnsn such that si
αi+1
−→ si+1 for all 0 ≤ i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0α1s1α2s2α3... such that si
αi+1
−→ si+1 for all 0 ≤ i .

• An execution of TS is an initial, maximal execution fragment

– a maximal execution fragment is either finite ending in a terminal

state, or infinite

– an execution fragment is initial if s0 ∈ I

16

Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite

17

Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite

• Execution fragments ρ1 and ρ are initial, but ρ2 is not.

• ρ is not maximal as it does not end in a terminal state.

• Assuming that ρ1 and ρ2 are infinite, they are maximal

18

Reachable states

Definition. State s ∈ S is called reachable in TS if there exists an initial,

finite execution fragment

s0
α1→ s1

α2→ · · ·
αn→ sn = s

Reach(TS) denotes the set of all reachable states in TS .

19

Detailed description of states

Variables; Predicates

20

Beverage vending machine revisited

“Abstract” transitions:

start
true:coin

−−−−−−→ select and start
true:refill

−−−−−−→ start

select
nsprite>0:sget
−−−−−−→ start and select

nbeer>0:bget
−−−−−−→ start

select
nsprite=0∧nbeer=0:ret-coin

−−−−−−−−−−−→ start

Action Effect on variables

coin

ret-coin

sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max

21

Program graph representation

22

Program graph representation

Some preliminaries

• typed variables with a valuation that assigns values in a fixed structure

to variables

- e.g., β(x) = 17 and β(y) = −2

• Boolean conditions: set of formulae over Var

- propositional logic formulas whose propositions are of the form

“x ∈ D”

- (−3 < x ≤ 5) ∧ (y = green) ∧ (x ≤ 2 ∗ x′)

• effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

- e.g., α ≡ x := y + 5 and evaluation β(x) = 17 and β(y) = −2

- Effect(α, β)(x) = β(y) + 5 = 3,

- Effect(α, β)(y) = β(y) = −2

23

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,→, Loc0, g0)

where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• → ⊆ Loc × (Cond(Var)
︸ ︷︷ ︸

Boolean conditions on Var

×Act)× Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: l
g :α
→ l′ denotes (l , g ,α, l′) ∈→.

24

Beverage Vending Machine

• Loc = {start, select} with Loc0 = {start}

• Act = {bget, sget, coin, ret-coin, refill}

• Var = {nsprite, nbeer} with domain {0, 1, ...,max}

• Effect : Act × Eval(Var) → Eval(Var) defined as follows:

Effect(coin,β) = β

Effect(ret-coin,β) = β

Effect(sget, β) = β[nsprite 7→ β(nsprite)− 1]

Effect(bget, β) = β[nbeer 7→ β(nbeer)− 1]

Effect(refill , β) = β[nsprite 7→ max , nbeer 7→ max]

• g0 = (nsprite = max ∧ nbeer = max)

25

From program graphs to transition systems

• Basic strategy: unfolding

- state = location (current control) l + data valuation β (l ,β)

- initial state = initial location + data valuation satisfying

the initial condition g0

• Propositions and labeling

- propositions: “at l” and “x ∈ D” for D ⊆ dom(x)

- < l , β > is labeled with “at l” and all conditions that hold in β.

• l
g :α
→ l′ and g holds in β then < l ,β >

α
→< l′,Effect(< l ,β >) >

26

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,→,Loc0, g0)

over set Var of variables is the tuple (S ,Act,→, I ,AP, L) where:

• S = Loc × Eval(Var)

• → S × Act × S is defined by the rule:

If l
g :α
→ l′ and β |= g then < l ,β >

α
→< l′,Effect(< l ,β >) >

• I = {< l ,β >| l ∈ Loc0,β |= g0}

• AP = Loc ∪ Cond(Var) and

• L(< l , β >) = {l} ∪ {g ∈ Cond(Var) | β |= g}.

27

Transition systems for program graphs

#2: Transition systems Model Checking

start

select

startstart

selectselect

start
startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coincoincoin

bget

sget

coincoin

sget

bget

spritebeer

bget

sget

bget

sget

coinret coin

refill

refill refill

c© JPK 23

28

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

• Probabilistic systems: Markov chains, Probabilistic hybrid automata, ...

29

