## Formal Specification and Verification

Formal specification (2)

26.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

#### **Until now**

- Logic
- Formal specification (generalities)

Algebraic specification

## Formal specification

Specification languages for describing programs/processes/systems

Specification languages for properties of programs/processes/systems
Temporal logic

## Formal specification

Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages,  $\lambda$ -calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE

• Specification languages for properties of programs/processes/systems

Temporal logic

## **Algebraic Specification**

"A gentle introduction to CASL"

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/~bidoit/GENTLE.pdf

## Formal specification

Specification languages for describing programs/processes/systems

Specification languages for properties of programs/processes/systems
Temporal logic

# **Transition systems**

#### **Transition systems**

- Executions
- Modeling data-dependent systems

#### **Transition systems**

- Model to describe the behaviour of systems
- Digraphs where nodes represent states, and edges model transitions
- State: Examples
  - the current colour of a traffic light
  - the current values of all program variables + the program counter
  - the current value of the registers together with the values of the input bits
- Transition ("state change"): Examples
  - a switch from one colour to another
  - the execution of a program statement
  - the change of the registers and output bits for a new input

## **Transition systems**

#### Definition.

A transition system TS is a tuple  $(S, Act, \rightarrow, I, AP, L)$  where:

- *S* is a set of states
- Act is a set of actions
- $\rightarrow \subset S \times Act \times S$  is a transition relation
- $I \subseteq S$  is a set of initial states
- AP is a set of atomic propositions
- $L: S \to 2^{AP}$  is a labeling function

S and Act are either finite or countably infinite

**Notation:**  $s \stackrel{\alpha}{\rightarrow} s'$  instead of  $(s, \alpha, s') \in \rightarrow$ .

# A beverage vending machine



states? actions?, transitions?, initial states?

#### Direct successors and predecessors

$$Post(s, \alpha) = \{s' \in S \mid s \stackrel{\alpha}{\rightarrow} s'\},$$

$$Post(s) = \bigcup_{\alpha \in Act} Post(s, \alpha)$$

$$Pre(s, \alpha) = \{s' \in S \mid s' \xrightarrow{\alpha} s\},\$$

$$Pre(s) = \bigcup_{\alpha \in Act} Pre(s, \alpha)$$

$$Post(C, \alpha) = \bigcup_{s \in C} Post(s, \alpha),$$

$$Post(C) = \bigcup_{\alpha \in Act} Post(C, \alpha)$$
 for  $C \subseteq S$ 

$$Pre(C, \alpha) = \bigcup_{s \in C} Pre(s, \alpha),$$

$$Pre(C) = \bigcup_{\alpha \in Act} Pre(C, \alpha)$$
 for  $C \subseteq S$ 

State s is called terminal if and only if  $Post(s) = \emptyset$ 

#### Action- and AP-determinism

**Definition.** Transition system  $TS = (S, Act, \rightarrow, I, AP, L)$  is action-deterministic iff:

$$\mid I \mid \leq 1$$
 and  $\mid Post(s, \alpha) \mid \leq 1$  for all  $s \in S$ ,  $\alpha \in Act$ 

(at most one initial state and for every action, a state has at most one successor)

**Definition.** Transition system  $TS = (S, Act, \rightarrow, I, AP, L)$  is AP-deterministic iff

- ullet  $\mid$   $I\mid$   $\leq$  1, and
- for all  $s \in S$ ,  $A \subseteq AP$ :  $|Post(s) \cap \{s' \in S \mid L(s') = A\}| \leq 1$

(at most one initial state; for every state s and every  $A \subseteq AP$  there exists at most a successor of s in which all atomic propositions in A hold)

#### Non-determinism

#### Nondeterminism is a feature!

- to model concurrency by interleaving
  - no assumption about the relative speed of processes
- to model implementation freedom
  - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
  - use incomplete information

#### Non-determinism

#### Nondeterminism is a feature!

- to model concurrency by interleaving
  - no assumption about the relative speed of processes
- to model implementation freedom
  - only describes what a system should do, not how
- to model under-specified systems, or abstractions of real systems
  - use incomplete information

In automata theory, nondeterminism may be exponentially more succinct but that's not the issue here!

#### Transition systems $\neq$ finite automata

As opposed to finite automata, in a transition system:

- there are no accept states
- set of states and actions may be countably infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

#### **Executions**

• A finite execution fragment  $\rho$  of TS is an alternating sequence of states and actions ending with a state:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 ... \alpha_n s_n$$
 such that  $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$  for all  $0 \le i < n$ .

• An infinite execution fragment  $\rho$  of TS is an infinite, alternating sequence of states and actions:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots$$
 such that  $s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$  for all  $0 \leq i$ .

- An execution of TS is an initial, maximal execution fragment
  - a maximal execution fragment is either finite ending in a terminal state, or infinite
  - an execution fragment is initial if  $s_0 \in I$

## **Examples of Executions**



#### **Examples of Executions**



- Execution fragments  $\rho_1$  and  $\rho$  are initial, but  $\rho_2$  is not.
- ullet  $\rho$  is not maximal as it does not end in a terminal state.
- ullet Assuming that  $ho_1$  and  $ho_2$  are infinite, they are maximal

#### Reachable states

**Definition.** State  $s \in S$  is called reachable in TS if there exists an initial, finite execution fragment

$$s_0 \stackrel{\alpha_1}{\rightarrow} s_1 \stackrel{\alpha_2}{\rightarrow} \cdots \stackrel{\alpha_n}{\rightarrow} s_n = s$$

Reach(TS) denotes the set of all reachable states in TS.

# **Detailed description of states**

Variables; Predicates

### Beverage vending machine revisited

#### "Abstract" transitions:

$$true:coin \\ start \xrightarrow{} select \quad and \quad start \xrightarrow{} true:refill \\ \xrightarrow{} nsprite>0:sget \\ select \xrightarrow{} start \quad and \quad select \xrightarrow{} nbeer>0:bget \\ select \xrightarrow{} start \quad and \quad select \xrightarrow{} start$$

| Action   | Effect on variables                    |
|----------|----------------------------------------|
| coin     |                                        |
| ret-coin |                                        |
| sget     | ${\it nsprite} := {\it nsprite} - 1$   |
| bget     | $\mathit{nbeer} := \mathit{nbeer} - 1$ |
| refill   | nsprite := max; nbeer := max           |

# Program graph representation

#### Program graph representation

#### Some preliminaries

- typed variables with a valuation that assigns values in a fixed structure to variables
  - e.g.,  $\beta(x) = 17$  and  $\beta(y) = -2$
- Boolean conditions: set of formulae over Var
  - propositional logic formulas whose propositions are of the form " $x \in D$ "
  - $(-3 < x ≤ 5) \land (y = green) \land (x ≤ 2 * x')$
- effect of the actions is formalized by means of a mapping:

$$\textit{Effect}: \textit{Act} \times \textit{Eval}(\textit{Var}) \rightarrow \textit{Eval}(\textit{Var})$$

- e.g.,  $\alpha \equiv x := y + 5$  and evaluation  $\beta(x) = 17$  and  $\beta(y) = -2$
- *Effect*( $\alpha$ ,  $\beta$ )(x) =  $\beta$ (y) + 5 = 3,
- Effect( $\alpha$ ,  $\beta$ )(y) =  $\beta$ (y) = -2

#### Program graph representation

#### **Program graphs**

A program graph PG over set Var of typed variables is a tuple

$$(Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

#### where

- Loc is a set of locations with initial locations  $Loc_0 \subseteq Loc$
- Act is a set of actions
- Effect :  $Act \times Eval(Var) \rightarrow Eval(Var)$  is the effect function
- ullet  $\to \subseteq Loc \times (\underbrace{Cond(Var)}_{\text{Boolean conditions on } Var} \times Act) \times Loc$ , transition relation
- $g_0 \in Cond(Var)$  is the initial condition.

Notation:  $I \stackrel{g:\alpha}{\to} I'$  denotes  $(I, g, \alpha, I') \in \to$ .

## **Beverage Vending Machine**

•  $Loc = \{start, select\}$  with  $Loc_0 = \{start\}$ • Act = {bget, sget, coin, ret-coin, refill} •  $Var = \{nsprite, nbeer\}$  with domain  $\{0, 1, ..., max\}$ • Effect :  $Act \times Eval(Var) \rightarrow Eval(Var)$  defined as follows:  $Effect(coin, \beta) = \beta$  $Effect(ret-coin, \beta) = \beta$  $Effect(sget, \beta) = \beta[nsprite \mapsto \beta(nsprite) - 1]$  $Effect(bget, \beta) = \beta[nbeer \mapsto \beta(nbeer) - 1]$ Effect(refill,  $\beta$ ) =  $\beta$ [nsprite  $\mapsto$  max, nbeer  $\mapsto$  max] •  $g_0 = (nsprite = max \land nbeer = max)$ 

#### From program graphs to transition systems

- Basic strategy: unfolding
  - state = location (current control)  $I + \text{data valuation } \beta$  ( $I, \beta$ )
  - initial state = initial location + data valuation satisfying the initial condition  $g_0$
- Propositions and labeling
  - propositions: "at I" and " $x \in D$ " for  $D \subseteq dom(x)$
  - < I,  $\beta$  > is labeled with "at I" and all conditions that hold in  $\beta$ .
- $I \stackrel{g:\alpha}{\to} I'$  and g holds in  $\beta$  then  $\langle I, \beta \rangle \stackrel{\alpha}{\to} \langle I', Effect(\langle I, \beta \rangle) \rangle$

#### Transition systems for program graphs

The transition system TS(PG) of program graph

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

over set Var of variables is the tuple  $(S, Act, \rightarrow, I, AP, L)$  where:

- $S = Loc \times Eval(Var)$
- $\rightarrow S \times Act \times S$  is defined by the rule: If  $I \stackrel{g:\alpha}{\rightarrow} I'$  and  $\beta \models g$  then  $\langle I, \beta \rangle \stackrel{\alpha}{\rightarrow} \langle I', Effect(\langle I, \beta \rangle) \rangle$
- $I = \{ \langle I, \beta \rangle | I \in \mathsf{Loc}_0, \beta \models g_0 \}$
- $AP = Loc \cup Cond(Var)$  and
- $L(\langle I, \beta \rangle) = \{I\} \cup \{g \in Cond(Var) \mid \beta \models g\}.$

# Transition systems for program graphs



#### Generalizations of transition systems

- More detailed description of states: Abstract state machines
- Emphasis on processes and their interdependency: CSP
- Durations: Timed automata
- Continuous evolution + discrete control: Hybrid automata
- Probabilistic systems: Markov chains, Probabilistic hybrid automata, ...