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Until now

• Logic

• Formal specification (generalities)

Algebraic specification
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Formal specification

• Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory

Axiom-based specification

algebraic specification

Declarative specifications

logic based languages (Prolog)

functional languages, λ-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...

• Specification languages for properties of programs/processes/systems

Temporal logic
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Algebraic Specification

“A gentle introduction to CASL”

M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/∼bidoit/GENTLE.pdf
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Transition systems

Transition systems

• Executions

• Modeling data-dependent systems
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Transition systems

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input
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Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α
→ s′ instead of (s,α, s′) ∈→.
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A beverage vending machine
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Direct successors and predecessors

Post(s,α) = {s′ ∈ S | s
α
→ s′}, Post(s) =

⋃

α∈Act Post(s,α)

Pre(s,α) = {s′ ∈ S | s′
α
→ s}, Pre(s) =

⋃

α∈Act Pre(s,α)

Post(C ,α) =
⋃

s∈C Post(s,α),

Post(C) =
⋃

α∈Act Post(C ,α) for C ⊆ S

Pre(C ,α) =
⋃

s∈C Pre(s,α),

Pre(C) =
⋃

α∈Act Pre(C ,α) for C ⊆ S

State s is called terminal if and only if Post(s) = ∅
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Action- and AP-determinism

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is action-

deterministic iff:

| I |≤ 1 and | Post(s,α) |≤ 1 for all s ∈ S ,α ∈ Act

(at most one initial state and for every action, a state has at most one

successor)

Definition. Transition system TS = (S ,Act,→, I ,AP, L) is AP-deterministic

iff

• | I |≤ 1, and

• for all s ∈ S ,A ⊆ AP: | Post(s) ∩ {s′ ∈ S | L(s′) = A} |≤ 1

(at most one initial state; for every state s and every A ⊆ AP there exists

at most a successor of s in which all atomic propositions in A hold)
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Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information
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Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!
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Transition systems 6= finite automata

As opposed to finite automata, in a transition system:

• there are no accept states

• set of states and actions may be countably infinite

• may have infinite branching

• actions may be subject to synchronization

• nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour
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Executions

• A finite execution fragment ρ of TS is an alternating sequence of

states and actions ending with a state:

ρ = s0α1s1α2...αnsn such that si
αi+1
−→ si+1 for all 0 ≤ i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating

sequence of states and actions:

ρ = s0α1s1α2s2α3... such that si
αi+1
−→ si+1 for all 0 ≤ i .

• An execution of TS is an initial, maximal execution fragment

– a maximal execution fragment is either finite ending in a terminal

state, or infinite

– an execution fragment is initial if s0 ∈ I
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Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ sprite

sget
→ . . .

ρ2 : select
τ
→ sprite

sget
→ pay

coin
−→ select

τ
→ beer

bget
→ . . .

ρ : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
→ select

τ
→ sprite
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Examples of Executions

ρ1 : pay
coin
−→ select

τ
→ sprite

sget
→ pay

coin
−→ select

τ
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sget
→ . . .

ρ2 : select
τ
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• Execution fragments ρ1 and ρ are initial, but ρ2 is not.

• ρ is not maximal as it does not end in a terminal state.

• Assuming that ρ1 and ρ2 are infinite, they are maximal
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Reachable states

Definition. State s ∈ S is called reachable in TS if there exists an initial,

finite execution fragment

s0
α1→ s1

α2→ · · ·
αn→ sn = s

Reach(TS) denotes the set of all reachable states in TS .
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Detailed description of states

Variables; Predicates
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Beverage vending machine revisited

“Abstract” transitions:

start
true:coin

−−−−−−→ select and start
true:refill

−−−−−−→ start

select
nsprite>0:sget
−−−−−−→ start and select

nbeer>0:bget
−−−−−−→ start

select
nsprite=0∧nbeer=0:ret-coin

−−−−−−−−−−−→ start

Action Effect on variables

coin

ret-coin

sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max
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Program graph representation
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Program graph representation

Some preliminaries

• typed variables with a valuation that assigns values in a fixed structure

to variables

- e.g., β(x) = 17 and β(y) = −2

• Boolean conditions: set of formulae over Var

- propositional logic formulas whose propositions are of the form

“x ∈ D”

- (−3 < x ≤ 5) ∧ (y = green) ∧ (x ≤ 2 ∗ x′)

• effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

- e.g., α ≡ x := y + 5 and evaluation β(x) = 17 and β(y) = −2

- Effect(α, β)(x) = β(y) + 5 = 3,

- Effect(α, β)(y) = β(y) = −2
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Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,→, Loc0, g0)

where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• → ⊆ Loc × ( Cond(Var)
︸ ︷︷ ︸

Boolean conditions on Var

×Act)× Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: l
g :α
→ l′ denotes (l , g ,α, l′) ∈→.
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Beverage Vending Machine

• Loc = {start, select} with Loc0 = {start}

• Act = {bget, sget, coin, ret-coin, refill}

• Var = {nsprite, nbeer} with domain {0, 1, ...,max}

• Effect : Act × Eval(Var) → Eval(Var) defined as follows:

Effect(coin,β) = β

Effect(ret-coin,β) = β

Effect(sget, β) = β[nsprite 7→ β(nsprite)− 1]

Effect(bget, β) = β[nbeer 7→ β(nbeer)− 1]

Effect(refill , β) = β[nsprite 7→ max , nbeer 7→ max]

• g0 = (nsprite = max ∧ nbeer = max)
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From program graphs to transition systems

• Basic strategy: unfolding

- state = location (current control) l + data valuation β (l ,β)

- initial state = initial location + data valuation satisfying

the initial condition g0

• Propositions and labeling

- propositions: “at l” and “x ∈ D” for D ⊆ dom(x)

- < l , β > is labeled with “at l” and all conditions that hold in β.

• l
g :α
→ l′ and g holds in β then < l ,β >

α
→< l′,Effect(< l ,β >) >

26



Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,→,Loc0, g0)

over set Var of variables is the tuple (S ,Act,→, I ,AP, L) where:

• S = Loc × Eval(Var)

• → S × Act × S is defined by the rule:

If l
g :α
→ l′ and β |= g then < l ,β >

α
→< l′,Effect(< l ,β >) >

• I = {< l ,β >| l ∈ Loc0,β |= g0}

• AP = Loc ∪ Cond(Var) and

• L(< l , β >) = {l} ∪ {g ∈ Cond(Var) | β |= g}.
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Transition systems for program graphs

#2: Transition systems Model Checking
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Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

• Probabilistic systems: Markov chains, Probabilistic hybrid automata, ...
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