Formal Specification and Verification

Formal specification (2)

26.11.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

Until now

e Logic
e Formal specification (generalities)

Algebraic specification

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml, ...)

rewriting systems (very close to algebraic specification): ELAN, SPIKE, ...
e Specification languages for properties of programs/processes/systems

Temporal logic

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE
e Specification languages for properties of programs/processes/systems

Temporal logic

Algebraic Specification

“A gentle introduction to CASL"
M. Bidoit and P. Mosses

http://www.lsv.ens-cachan.fr/~bidoit/GENTLE. pdf

Formal specification

e Specification languages for describing programs/processes/systems

Model based specification

transition systems, abstract state machines, specifications based on set theory
Axiom-based specification

algebraic specification
Declarative specifications

logic based languages (Prolog)

functional languages, A-calculus (Scheme, Haskell, OCaml)

rewriting systems (very close to algebraic specification): ELAN, SPIKE
e Specification languages for properties of programs/processes/systems

Temporal logic

Transition systems

Transition systems
e Executions

e Modeling data-dependent systems

Transition systems

Model to describe the behaviour of systems
Digraphs where nodes represent states, and edges model transitions

State: Examples
— the current colour of a traffic light
— the current values of all program variables 4+ the program counter
— the current value of the registers together with the values of the
input bits
Transition (“state change”): Examples
— a switch from one colour to another
— the execution of a program statement

— the change of the registers and output bits for a new input

Transition systems

Definition.
A transition system TS is a tuple (S, Act, —, I, AP, L) where:
e S is a set of states
e Act is a set of actions
o —-C S x Act X S is a transition relation
e /| C S is a set of initial states
e AP is a set of atomic propositions
e L:S — 24" is a labeling function

S and Act are either finite or countably infinite

Notation: s = s’ instead of (s, o, s’) €—-.

A beverage vending machine

pay

get_sprite get_beer
msert_con
— select ——" beer

states? actions? transitions?, initial states?

10

Direct successors and predecessors

Post(s, o) = {s’ € S| s = s}, Post(s) = | Post (s,)

aEAct
Pre(s,a) = {s’ € S| s’ = s}, Pre(s) = U,ecac Pre(s, @)

Post(C,) = J,c ¢ Post(s,),

Post(C) = | Post(C,a) for CC S

acAct
Pre(C, a) = ;e c Pre(s,),
Pre(C) = U cact Pre(C,a) for CCS

State s is called terminal if and only if Post(s) = @

Action- and AP-determinism

Definition. Transition system TS = (S, Act,—, I, AP, L) is action-
deterministic iff:

| 1 |<1and | Post(s,a) |[<1forallse S, ae Act

(at most one initial state and for every action, a state has at most one
SUCCessor)

Definition. Transition system TS = (S, Act, —, I, AP, L) is AP-deterministic
iff

e |/|<1, and
o foralls e S, AC AP: | Post(s)N{s’" € S| L(s")=A}|<1

(at most one initial state; for every state s and every A C AP there exists
at most a successor of s in which all atomic propositions in A hold)

12

Non-determinism

Nondeterminism is a feature!

e to model concurrency by interleaving
- no assumption about the relative speed of processes

e to model implementation freedom
- only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
- use incomplete information

13

Non-determinism

Nondeterminism is a feature!

e to model concurrency by interleaving
- no assumption about the relative speed of processes

e to model implementation freedom
- only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems
- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct
but that's not the issue here!

14

Transition systems # finite automata

As opposed to finite automata, in a transition system:
e there are no accept states
e set of states and actions may be countably infinite
e may have infinite branching
e actions may be subject to synchronization

e nondeterminism has a different role

Transition systems are appropriate for modelling reactive system behaviour

15

Executions

e A finite execution fragment p of TS is an alternating sequence of

states and actions ending with a state:
i1 .
P = SoQ1S1Q2...0nSy such that s; — s;1 for all 0 <7 < n.

e An infinite execution fragment p of TS is an infinite, alternating

sequence of states and actions:
&jt1 .
p = Sp1S12s23... such that s; — s;,1 for all 0 < /.

e An execution of TS is an initial, maximal execution fragment

— a maximal execution fragment is either finite ending in a terminal
state, or infinite

— an execution fragment is initial if sy € [

16

Examples of Executions

coin T ., sget coin T ., sget
pay p1 : pay — select — sprite — pay —— select — sprite —

get_sprite get_beer sget bget

T ., S8 coin T
po : select — sprite — pay —— select — beer —»

msert_comn sget

coin T . coin T .
p : pay —> select — sprite — pay — select — sprite

17

Examples of Executions

coin T ., sget coin T ., sget
pay p1 : pay — select — sprite — pay —— select — sprite —

get_sprite get_beer sget bget

T ., S8 coin T
po : select — sprite — pay —— select — beer —»

msert_comn sget

coin T . coin T .
p : pay —> select — sprite — pay — select — sprite

e Execution fragments p; and p are initial, but p is not.
e p is not maximal as it does not end in a terminal state.

e Assuming that p; and po are infinite, they are maximal

18

Reachable states

Definition. State s € S is called reachable in TS if there exists an initial,

finite execution fragment

Sogslog---a#snzs

Reach(TS) denotes the set of all reachable states in TS.

19

Detailed description of states

Variables: Predicates

20

Beverage vending machine revisited

“Abstract” transitions:

true:coin true:refill
start s select and start > start
nsprite >0:sget nbeer >0:bget
select s start and select v start

nsprite=0A nbeer=0:ret-coin

select . start
Action Effect on variables
coin
ret-coin
sget nsprite := nsprite — 1
bget nbeer := nbeer — 1
refill nsprite :— max; nbeer := max

Program graph representation

22

Program graph representation

Some preliminaries

e typed variables with a valuation that assigns values in a fixed structure
to variables

- e.g., B(x) =17 and B(y) = —2

e Boolean conditions: set of formulae over Var
- propositional logic formulas whose propositions are of the form
“x e D"
- (-3 < x<B)A(y =green) A (x <2xx")

e effect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

- e.g.,, @« = x := y + 5 and evaluation B(x) = 17 and 8(y) = —2
- Effect(a, B)(x) = B(y) +5 = 3,
- Effect(a, B)(y) = B(y) = =2

23

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple
(Loc, Act, Effect, —, Locy, g0o)
where
e [oc is a set of locations with initial locations Locy C Loc

e Act is a set of actions
e FEffect : Act x Eval(Var) — Eval(Var) is the effect function

o - C Locx(Cond(Var) X Act) X Loc, transition relation

Boolean conditions on Var

e go € Cond(Var) is the initial condition.

Notation: | £5 I’ denotes (1, g, o, I’) €—.

24

Beverage Vending Machine

Loc = {start, select} with Locy = {start}

Act = {bget, sget, coin, ret-coin, refill }

Var = {nsprite, nbeer} with domain {0, 1, ..., max}

Effect : Act x Eval(Var) — Eval(Var) defined as follows:

Effect(coin, (3) =
Effect(ret-coin, (3)
Effect(sget, 3) =
Effect(bget, 3)
Effect(refill, 3) =

&)
B
B
B

B

nsprite — B(nsprite) — 1]
nbeer — [(B(nbeer) — 1]

[nsprite — max, nbeer — max]

go = (nsprite = max N\ nbeer = max)

25

From program graphs to transition systems

e Basic strategy: unfolding
- state = location (current control) / + data valuation (1, 8)

- initial state = initial location + data valuation satisfying
the initial condition gy

e Propositions and labeling
- propositions: “at I" and “x € D" for D C dom(x)
- < I, B > is labeled with “at /" and all conditions that hold in 3.

o /¥ 1 and g holds in B then < I, 8 > < I, Effect(< I, 8 >) >

26

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc, Act, Effect, —, Locy, go)

over set Var of variables is the tuple (S, Act, —, I, AP, L) where:

S = Loc x Eval(Var)

— S X Act X S is defined by the rule:
If 1 <5) and B = g then < I, B >3< I, Effect(< I, 8 >) >

| ={<1,8>|1€ Locy,B =g0}
AP = Loc U Cond(Var) and

L(<I1,6>)={l} U{g € Cond(Var) | B = g}

27

Transition

systems for program

graphs

refill o refill
..

28

Generalizations of transition systems

More detailed description of states: Abstract state machines

Emphasis on processes and their interdependency: CSP

Durations: Timed automata

Continuous evolution + discrete control: Hybrid automata

Probabilistic systems: Markov chains, Probabilistic hybrid automata, ...

29

