
Formal Specification and Verification

Formal specification (2)

3.12.2018

Viorica Sofronie-Stokkermans

e-mail: sofronie@uni-koblenz.de

1

Until now

• Logic

• Formal specification (generalities)

Algebraic specification

Transition systems

2

Transition systems

Transition systems

• Executions

• Modeling data-dependent systems

3

Last time: Transition systems

• Model to describe the behaviour of systems

• Digraphs where nodes represent states, and edges model transitions

• State: Examples

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the

input bits

• Transition (“state change”): Examples

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

4

Last time: Transition systems

Definition.

A transition system TS is a tuple (S ,Act,→, I ,AP, L) where:

• S is a set of states

• Act is a set of actions

• →⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s
α

→ s′ instead of (s,α, s′) ∈→.

5

Last time: Direct successors and predecessors

Post(s,α) = {s′ ∈ S | s
α

→ s′}, Post(s) =
⋃

α∈Act Post(s,α)

Pre(s,α) = {s′ ∈ S | s′
α

→ s}, Pre(s) =
⋃

α∈Act Pre(s,α)

Post(C ,α) =
⋃

s∈C Post(s,α),

Post(C) =
⋃

α∈Act Post(C ,α) for C ⊆ S

Pre(C ,α) =
⋃

s∈C Pre(s,α),

Pre(C) =
⋃

α∈Act Pre(C ,α) for C ⊆ S

State s is called terminal if and only if Post(s) = ∅

6

Non-determinism

Nondeterminism is a feature!

• to model concurrency by interleaving

- no assumption about the relative speed of processes

• to model implementation freedom

- only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

- use incomplete information

In automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

7

Reachable states

Definition. State s ∈ S is called reachable in TS if there exists an initial,

finite execution fragment

s0
α1→ s1

α2→ · · ·
αn→ sn = s

Reach(TS) denotes the set of all reachable states in TS .

8

Detailed description of states

Variables; Predicates

7→ Program graph representation

9

Program graph representation

Program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,→, Loc0, g0)

where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• → ⊆ Loc × (Cond(Var)
︸ ︷︷ ︸

Boolean conditions on Var

×Act)× Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: l
g :α
→ l′ denotes (l , g ,α, l′) ∈→.

10

From program graphs to transition systems

• Basic strategy: unfolding

- state = location (current control) l + data valuation β (l ,β)

- initial state = initial location + data valuation satisfying

the initial condition g0

• Propositions and labeling

- propositions: “at l” and “x ∈ D” for D ⊆ dom(x)

- < l , β > is labeled with “at l” and all conditions that hold in β.

• l
g :α
→ l′ and g holds in β then < l ,β >

α

→< l′,Effect(< l ,β >) >

11

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect,→,Loc0, g0)

over set Var of variables is the tuple (S ,Act,→, I ,AP, L) where:

• S = Loc × Eval(Var)

• → S × Act × S is defined by the rule:

If l
g :α
→ l′ and β |= g then < l ,β >

α

→< l′,Effect(< l ,β >) >

• I = {< l ,β >| l ∈ Loc0,β |= g0}

• AP = Loc ∪ Cond(Var) and

• L(< l , β >) = {l} ∪ {g ∈ Cond(Var) | β |= g}.

12

Transition systems for program graphs

#2: Transition systems Model Checking

start

select

startstart

selectselect

start
startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coincoincoin

bget

sget

coincoin

sget

bget

spritebeer

bget

sget

bget

sget

coinret coin

refill

refill refill

c© JPK 23

13

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

• Probabilistic systems: Markov chains, Probabilistic hybrid automata, ...

14

Abstract state machines (ASM)

Purpose

Formalism for modelling/formalising (sequential) algorithms

Not: Computability / complexity analysis

Invented/developed by

Yuri Gurevich, 1988

Old name

Evolving algebras

15

ASMs

Three Postulates

Sequential Time Postulate:

An algorithm can be described by defining a set of states, a subset of initial

states, and a state transformation function

Abstract State Postulate:

States can be described as first-order structures

Bounded Exploration Postulate:

An algorithm explores only finitely many elements in a state to decide what

the next state is. There is a finite number of names (terms) for all these

“interesting” elements in all states.

16

Example: Computing Squares

Initial State

square = 0

count = 0

ASM for computing the square of input

if input < 0 then

input := - input

else if input > 0∧ count < input then

par

square := square + input

count := count +1

endpar

17

The Sequential Time Postulate

Sequential algorithm

An algorithm is associated with

• a set S of states

• a set I ⊆ S of initial states

• A function τ : S → S

(the one-step transformation of the algorithm)

Run (computation)

A run (computation) is a sequence X0,X1,X2 . . . of states such that

• X0 ∈ I

• τ(Xi) = Xi+1 for all i ≥ 0

18

Remark

Remark: In this formalism, algorithms are deterministic

τ : S → S can be also viewed as a relation R ⊆ S × {τ} × S with

(s, τ , s′) ∈ R iff τ(s) = s′.

19

The Abstract State Postulate

States are first-order structures where

• all states have the same vocabulary (signature)

• the transformation τ does not change the base set (universe)

• S and I are closed under isomorphism

• if f is an isomorphism from a state X onto a state Y , then f is also

an isomorphism from τ(X) onto τ(Y).

20

Example: Trees

Vocabulary

nodes: unary, boolean: the class of nodes

(type/universe)

strings: unary, boolean: the class of strings

parent: unary: the parent node

firstChild: unary: the first child node

nextSibling: unary: the first sibling

label: unary: node label

c: constant: the current node

21

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked relational (predicates)

• symbols can be marked static (default: dynamic)

22

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked relational (predicates)

• symbols can be marked static (default: dynamic)

Remark: This is not a restriction

• predicates with arity n can be regarded as functions with arity

s . . . s → bool

where s is the usual sort (for terms) and bool is a different sort

• The sort bool is described using a unary predicate Bool

• The sort Bool contains all formulae, in particular also ⊤,⊥ (“relational

constants”)

23

Vocabulary (Signature)

Signatures: A signature is a finite set of function symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked relational (predicates)

• symbols can be marked static (default: dynamic)

Each signature contains

• the constant undef (“undefined”)

• the relational constants ⊤ (true), ⊥ (false)

• the unary relational symbols Boole,¬

• the binary relational symbols ∧,∨,→,↔,≈

These special symbols are all static

24

Vocabulary (Signature)

Signatures: A signature is a finite set of function/predicate symbols, where

• each symbol is assigned an arity n ≥ 0

• symbols can be marked static (default: dynamic)

Each signature contains

• the constant undef (“undefined”)

• the relational constants true, false

• the unary relational symbols Boole,¬

• the binary relational symbols ∧,∨,→,↔,≈

These special symbols are all static

There is an infinite set of variables

Terms are built as usual from variables and function symbols

Formulae are built as usual

25

First-order Structures (States)

First-order structures (states) consist of

• a non-empty universe (called BaseSet)

• an interpretation of the symbols in the signature

Restrictions on states

• 0, 1, undef ∈ BaseSet (different)

• ⊥A= 0, ⊤A = 1

• undefA = undef

• If f relational then fA : BaseSet → {0, 1}

• BooleA = {0, 1}

• ¬,∨,∧,→,↔ are interpreted as usual

26

The reserve of a state

Reserve: Consists of the elements that are “unknown” in a state

The reserve of a state must be infinite

27

Extended States

Variable assignment

A function β : Var → BaseSet

(boolean variables are assigned 0 or 1)

Extended state

A pair (A, β) consisting of a state A and a variable assignment β.

28

Extended States

Variable assignment

A function β : Var → BaseSet

(boolean variables are assigned 0 or 1)

Extended state

A pair (A, β) consisting of a state A and a variable assignment β.

Evaluation of terms and formulae: as usual

29

Example: Trees

Vocabulary

nodes: unary, boolean: the class of nodes

(type/universe)

strings: unary, boolean: the class of strings

parent: unary: the parent node

firstChild: unary: the first child node

nextSibling: unary: the first sibling

label: unary: node label

c: constant: the current node

30

Example: Trees

Terms

parent(parent(c))

label(firstChild(c))

parent(firstChild(c)) = c (Boolean, formula)

nodes(x) → parent(x) = parent(nextSibling(x))

(x is a variable)

31

Isomorphism

Lemma (Isomorphism)

Isomorphic states (structures) are indistinguishable by ground terms:

Justification for postulate

Algorithm must have the same behaviour for indistinguishable states

Isomorphic states are different representations of the same abstract state!

32

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

33

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

An update is a triple (f , a, b) with

• (f , a) a location

• f not static

• b ∈ BaseSet

• if f is relational, then b ∈ {0, 1}

34

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

An update is a triple (f , a, b) with

• (f , a) a location

• f not static

• b ∈ BaseSet

• if f is relational, then b ∈ {0, 1}

Intended meaning:

f is changed by changing f (a) to b.

35

State updates

Locations. A location is a pair (f , a) with

• f an n-ary function symbol

• a ∈ BaseSetn an n-tuple

Examples

(parent, a), (firstChild , a), (nextSibling , a), (c,)

An update is a triple (f , a, b) with

• (f , a) a location

• f not static

• b ∈ BaseSet

• if f is relational, then b ∈ {tt,ff }

Intended meaning:

f is changed by changing f (a) to b.

An update is trivial if fA(a) = b

36

Generalizations of transition systems

• More detailed description of states: Abstract state machines

• Emphasis on processes and their interdependency: CSP

• Durations: Timed automata

• Continuous evolution + discrete control: Hybrid automata

37

Timed automata

• transition systems + timing constraints

38

Timed automata

A timed automaton is a finite automaton extended with a finite set of

real-valued clocks. During a run of a timed automaton, clock values increase

all with the same speed. Along the transitions of the automaton, clock

values can be compared to integers. These comparisons form guards that

may enable or disable transitions and by doing so constrain the possible

behaviors of the automaton. Further, clocks can be reset.

39

Timed automata

A timed automaton is a finite automaton extended with a finite set of

real-valued clocks. During a run of a timed automaton, clock values increase

all with the same speed. Along the transitions of the automaton, clock

values can be compared to integers. These comparisons form guards that

may enable or disable transitions and by doing so constrain the possible

behaviors of the automaton. Further, clocks can be reset.

Timed automata can be used to model and analyse the timing behavior of

computer systems, e.g., real-time systems or networks.

40

Timed automata

Example: Simple Light Control

WANT: if press is issued twice quickly then the light will get brighter;

otherwise the light is turned off.

41

Timed automata

Example: Simple Light Control

Solution: Add a real-valued clock x

Adding continuous variables to transition systems

42

Timed automata: Syntax

• A finite set Loc of locations

• A subset Loc0 ⊆ Loc of initial locations

• A finite set Act of labels (alphabet, actions)

• A finite set X of clocks

• Invariant Inv(l) for each location l ∈ Loc: (clock constraint over X)

• A finite set E of edges. Each edge has:

– source location l , target location l′

– label a ∈ Act (empty labels also allowed)

– guard g (a clock constraint over X)

– a subset X ′ of clocks to be reset

43

Timed automata: Semantics

For a timed automaton

A = (Loc,Loc0,Act,X , {Invl}l∈Loc ,E)

define an infinite state transition system S(A):

• States S : a state s is a pair (l , v), where

l is a location, and

v is a clock vector, mapping clocks in X to R, satisfying Inv(l)

• Initial States: (l , v) is initial state if l is in Loc0 and v(x) = 0

• Elapse of time transitions: for each nonnegative real number d ,

(l , v)
d
→ (l , v + d) if both v and v + d satisfy Inv(l)

• Location switch transitions: (l , v)
a
→ (l′, v ′) if there is an edge

(l , a, g ,X ′, l′) such that v satisfies g and v ′ = v [{x 7→ 0 | x ∈ X ′}].

44

Timed automata

Example: Simple Light Control

Timed automaton:

Loc = {Off, Light, Bright}, Loc0 = {Off}, Act = {Press}

X = {x}; Inv(Off) = Inv(Light) = Inv(Bright) = (x ≥ 0)

Edges: (Off, Press,⊤, {x}, Light), (Light, Press, x > 3,∅, Off)

(Light, Press, x ≤ 3,∅, Bright), (Bright, Press,⊤,∅, Off)

45

Timed automata

Example: Simple Light Control

States: (Off, v), (Light, v), (Bright, v) (v value of clock x).

Initial state: (Off, 0).

Transitions (Examples)

Elapse of time: (Off, 10)
5
→ (Off, 15)

Location switch: (Off, 10)
Press
→ (Light, 0)

46

Hybrid Automata

47

Hybrid Automata

Normal HeatT(t) < Tm

T(t) > TM

f : R −> R evolution of external temperature

h : R −> R evolution of heater temperature

dT/dt(t) = −k(T(t)−f(t))

T(t) > Tm

dT/dt(t) = −k[T(t) − (h(t)+f(t))]

T(t) < TM

48

Hybrid Automata

Hybrid automaton (HA) S = (X ,Q, flow, Inv, Init,E , jump) where:

(1) X = {x1, . . . , xn} finite set of real valued variables

Q finite set of control modes

(2) {flowq | q ∈ Q} specify the continuous dynamics in each control mode

(flowq predicate over {x1, . . . , xn} ∪ {
.
x1, . . . ,

.
xn}).

(3) {Invq | q ∈ Q} mode invariants (predicates over X).

(4) {Initq | q ∈ Q} initial states for control modes (predicates over X).

(5) E : control switches (finite multiset with elements in Q × Q).

(6) {guarde | e ∈ E} guards for control switches (predicates over X).

(7) Jump conditions {jumpe | e ∈ E}, (predicates over X ∪ X ′), where

X ′ = {x′1, . . . , x
′

n} is a copy of X consisting of “primed” variables.

49

Linear Hybrid Automata

Atomic linear predicate: linear inequality (e.g. 3x1 − x2 + 7x5 ≤ 4).

Convex linear predicate: finite conjunction of linear inequalities.

A state assertion s for S : family {s(q) | q ∈ Q}, where s(q) is a predicate

over X (expressing constraints which hold in state s for mode q).

Definition [Henzinger 1997] A linear hybrid automaton (LHA) is a

hybrid automaton which satisfies the following requirements:

(1) Linearity:

- For every q ∈ Q, flowq , Invq , and Initq are convex linear predicates.

- For every e = (q, q′) ∈ E , jumpe and guarde are convex linear predicates.

We assume that flowq are conjunctions of non-strict inequalities.

(2) Flow independence:

For every q ∈ Q, flowq is a predicate over
.
X only.

50

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react;

the resulting product is filtered out;

then the procedure is repeated.

51

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Chemical plant

Two substances are mixed; they react;

the resulting product is filtered out;

then the procedure is repeated.

Check:

• No overflow

• Substances in the right proportion

• If substances in wrong proportion,

tank can be drained in ≤ 200s.

52

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 1: Fill Temperature is low, 1 and 2 do not react.

Substances 1 and 2 (possibly mixed with a small quantity of 3)

are filled in the tank in equal quantities up to a margin of error.

Inv1 x1 + x2 + x3 ≤ Lf ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ min

flow1
.
x1 ≥dmin∧

.
x2 ≥dmin∧

.
x3 =0 ∧ −δa≤

.
x1 −

.
x2 ≤δa

If proportion not kept: system jumps into mode 4 (Dump);

If the total quantity of substances exceeds level Lf (tank filled)

the system jumps into mode 2 (React).

53

Example

Inv

flow

Inv

flow

Inv

flow

ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Mode 2: React Temparature is high. Substances 1 and 2 react.

The reaction consumes equal quantities of substances 1 and 2

and produces substance 3.

Inv2 Lf ≤ x1 + x2 + x3 ≤ Loverflow ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ 0 ≤ x3 ≤ max

flow2
.
x1≤ −dmin∧

.
x2≤ −dmin ∧ .x3 ≥ dmin

∧
.
x1=

.
x2 ∧

.
x3 +

.
x1 +

.
x2= 0

If the proportion between substances 1 and 2 is not kept

the system jumps into mode 4 (Dump);

If the total quantity of substances 1 and 2 is below some minimal

level min the system jumps into mode 3 (Filter).

54

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv

flow

Inv

flow

Mode 3: Filter Temperature is low. Substance 3 is filtered out.

Inv3 x1 + x2 + x3 ≤ Loverflow ∧
∧3

i=1 xi ≥ 0 ∧

−ǫa ≤ x1 − x2 ≤ ǫa ∧ x3 ≥ min

flow3
.
x1= 0∧

.
x2= 0 ∧

.
x3≤ −dmin

If proportion not kept: system jumps into mode 4 (Dump);

Otherwise, if the concentration of substance 3 is below some

minimal level min the system jumps into mode 1 (Fill).

55

Example

Inv

flow

Inv

flow ReactFill

Filter Dump

4

1

1

2

2

4 3

3

Inv Inv

flowflow

Mode 4: Dump The content of the tank is emptied.

For simplicity we assume that this happens instantaneously:

Inv4 :
∧3

i=1 xi = 0 and flow4 :
∧3

i=1

.
xi= 0.

56

Remark

The material on ASMs is not required for the exam (only the general idea)

The definitions of timed automata and hybrid automata are required for the

exam.

57

More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages

58

More complex specifications and specification

languages

• Languages for describing various processes

• Languages based on Set theory (OZ, B)

• Languages for describing durations

• Complex languages

59

CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

60

CSP

Communicating Sequential Processes, or CSP, is a language for describing

processes and patterns of interaction between them.

It is supported by an elegant, mathematical theory, a set of proof tools, and

an extensive literature.

• Each process: transition system

• Operations on processes: sequential, parallel composition

efects on states

61

CSP

General idea:

Given:

• Set of event names

• Process: behaviour pattern of an object (insofar as it can be described

in terms of the limited set of events selected as its alphabet)

62

CSP

Example:

Events: insert-coin, get-sprite, get-beer

63

CSP

Prefix:

P = a → Q (a then Q)

where a is an event and Q a process

After event a, process P behaves like process Q

64

CSP: Example

A simple vending machine which consumes one coin before breaking

(insert-coin → STOP)

65

CSP: Example

A simple vending machine that successfully serves two customers before

breaking

(insert-coint → (get-sprite → (insert-coin → (get-beer → STOP))))

66

CSP

Example: (recursive definitions)

Consider the simplest possible everlasting object, a clock which never does

anything but tick (the act of winding is deliberately ignored)

Events(CLOCK) = {tick}

Consider next an object that behaves exactly like the clock, except that it

first emits a single tick

(tick → CLOCK)

The behaviour of this object is indistinguishable from that of the original

clock. This reasoning leads to formulation of the equation

CLOCK = (tick → CLOCK)

This can be regarded as an implicit definition of the behaviour of the clock.

67

Modular Specifications: CSP-OZ-DC (COD)

COD [Hoenicke,Olderog’02] allows us to specify in a modular way:

• the control flow of a system
using Communicating Sequential Processes (CSP)

• the state space and its change
using Object-Z (OZ)

• (dense) real-time constraints over durations of events
using the Duration Calculus (DC)

68

Example: Controller for line track (RBC)

RBC

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc , req, updPos, updSpd

main
c
= ((enter → main)

✷ (leave → main)

✷ (updSpd → State1))

State1
c
= ((enter → State1)

✷ (leave → State1)

✷ (req → State2))

State2
c
= ((alloc → State3)

✷ (enter → State2)

✷ (leave → State2))

State3
c
= ((enter → State3)

✷ (leave → State3)

✷ (updPos → main))
SegmentData

train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData

segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

sd : SegmentData

td : TrainData

A

t : TrainΓtid(t) > 0

A

t1, t2 : Train | t1 6= t2Γtid(t1) 6= tid(t2)

A

s : SegmentΓprevs(nexts(s)) = s

A

s : SegmentΓnexts(prevs(s)) = s

A

s : SegmentΓsid(s) > 0

A

s : SegmentΓsid(nexts(s)) > sid(s)

A

s1, s2 : Segment | s1 6= s2Γsid(s1) 6= sid(s2)

A

s : Segment | s 6= snilΓlength(s) > d + gmax · ∆t

A

s : Segment | s 6= snilΓ0 < lmax(s) ∧ lmax(s) ≤ gmax

A

s : SegmentΓlmax(s) ≥ lmax(prevs(s)) − decmax · ∆t

A

s1, s2 : SegmentΓtid(incoming(s1)) 6= tid(train(s2))

Init

A

t : TrainΓtrain(segm(t)) = t

A

t : TrainΓnext(prev(t)) = t

A

t : TrainΓprev(next(t)) = t

A

t : TrainΓ0 ≤ pos(t) ≤ length(segm(t))

A

t : TrainΓ0 ≤ spd(t) ≤ lmax(segm(t))

A

t : TrainΓalloc(segm(t)) = tid(t)

A

t : TrainΓalloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

A

s : SegmentΓsegm(train(s)) = s

effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

.

.

.

CSP

OZ

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

69

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events:

• updSpd (speed update)

• req (request update)

• alloc (allocation update)

• updPos (position update)

(Request)

(Allocation)

(Speed)

(Enter)
(Leave)

(Enter)
(Leave)

(Enter)
(Leave)

2

34

1

(Enter)
(Leave)

(Position)

Between these events, trains may leave or enter the track (at specific

segments), modeled by the events leave and enter.

70

Example: Controller for line track (RBC)

CSP part: specifies the processes and their interdependency.

The RBC system passes repeatedly through four phases, modeled by events

with corresponding COD schemata:

CSP: −−−

method enter : [s1? : Segment; t0? : Train; t1? : Train; t2? : Train]

method leave : [ls? : Segment; lt? : Train]

local chan alloc, req, updPos, updSpd

main
c
=((updSpd→State1) State1

c
=((req→State2) State2

c
=((alloc→State3) State3

c
=((updPos→main)

✷(leave→main) ✷(leave→State1) ✷(leave→State2) ✷(leave→State3)

✷(enter→main)) ✷(enter→State1)) ✷(enter→State2)) ✷(enter→State3))

−−−

71

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

72

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system

Data structures:

train: trains
• 2-sorted pointers

segm: segments

SegmentData
train : Segment → Train

[Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z

[Allocated by train]

TrainData
segm : Train → Segment

[Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

73

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 1. Data classes declare function symbols that can change their values

during runs of the system, and are used in the OZ part of the

specification.

• 2. Axioms: define properties of the data structures and system

parameters which do not change

• gmax : R (the global maximum speed),

• decmax : R (the maximum deceleration of trains),

• d : R (a safety distance between trains),

• Properties of the data structures used to model trains/segments

74

Example: Controller for line track (RBC)

OZ part. Consists of data classes, axioms, the Init schema, update rules.

• 3. Init schema. describes the initial state of the system.

• trains - doubly-linked list; placed correctly on the track segments

• all trains respect their speed limits.

• 4. Update rules specify updates of the state space executed when the

corresponding event from the CSP part is performed.

Example: Speed update
effect updSpd

∆(spd)

A

t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · ∆t > 0

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ lmax(segm(t))

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)

Γmax{0, spd(t) − decmax · ∆t} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

A

t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)

Γspd′(t) = max{0, spd(t) − decmax · ∆t}

75

Formal specification

• Specification for program/system

• Specification for properties of program/system

Verification tasks:

Check that the specification of the program/system has the required

properties.

76

