Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 19, 2012

Exercises for "Non-Classical Logics" Exercise sheet 10

Exercise 10.1: (6 P)

Compute the translation into first order logic used for checking the validity of a modal formula Φ (of the form $\exists x P_{\neg \Phi}(x) \land \mathsf{Rename}(\neg \Phi)$) for the following formulae:

- (1) $\Phi_1: (\Diamond P \lor \Diamond Q) \to \Diamond (P \lor Q)$
- (2) $\Phi_2: \Diamond (P \land Q) \to (\Diamond P \land \Diamond Q)$

Exercise 10.2: (3 P)

Compute the translation into first order logic (of the form $\exists x P_{\Phi}(x) \land \mathsf{Rename}(\Phi)$) which can be used for checking the satisfiability of the formula:

$$\Phi: \quad ((\Box \Diamond P \land \Diamond P) \to \Diamond \Box P)$$

Exercise 10.3: (1 P)

Let F be a formula in propositional modal logic, P a propositional variable not occurring in F, and F' a subformula of F. Prove:

- If F' has positive polarity in F then F[F'] is satisfiable in a Kripke structure $\mathcal{K} = (S, R, I)$ if and only if F[P] is satisfiable in the Kripke structure $\mathcal{K} = (S, R, I')$, with $I' : (\Pi \cup \{P\}) \times S \to \{0, 1\}$ is s.t. I'(Q, s) = I(Q, s) for every $Q \in \Pi$ and every $s \in S$, and $I'(P, s) \leq val_{\mathcal{K}}(F')(s)$ (i.e. for every $s \in S$, $(val_{\mathcal{K}}(P)(s) \to_{\mathsf{Bool}} val_{\mathcal{K}}(F')) = 1$).
- If F' has negative polarity in F then F[F'] is satisfiable in a Kripke structure $\mathcal{K} = (S, R, I)$ if and only if F[P] is satisfiable in the Kripke structure $\mathcal{K} = (S, R, I')$, with $I' : (\Pi \cup \{P\}) \times S \to \{0, 1\}$ is s.t. I'(Q, s) = I(Q, s) for every $Q \in \Pi$ and every $s \in S$, and $I'(P, s) \geq val_{\mathcal{K}}(F')(s)$ (i.e. for every $s \in S$, $(val_{\mathcal{K}}(F')(s) \to Bool val_{\mathcal{K}}(P)) = 1$).

Please submit your solution until Wednesday, January 25, 2012. Please do not forget to write your name on your solution.