Universität Koblenz-Landau

FB 4 Informatik

Exercises for "Non-Classical Logics"
 Exercise sheet 2

Exercise 2.1: (4 P)

Use a tableau procedure to prove the satisfiability or unsatisfiability of the following formulae:
(1) $(Q \rightarrow P) \wedge(P \rightarrow Q) \wedge(R \rightarrow Q) \wedge(Q \rightarrow \neg R)$
(2) $(R \rightarrow(P \vee Q)) \wedge(Q \rightarrow(P \wedge R)) \wedge(R \vee Q) \wedge(P \rightarrow \neg R)$

Exercise 2.2: (1 P)

Let $\Sigma=(\Omega, \Pi)$ be a signature, where $\Omega=\{f / 2, g / 1, a / 0, b / 0\}$ and $\Pi=\{p / 2\}$; let X be the set of variables $\{x, y, z\}$. Which of the following expressions are terms over Σ and X, which are atoms/literals/clauses/formulae, which are neither?
(a) $\neg p(g(a), f(x, y))$
(b) $f(x, x) \approx x$
(c) $p(f(x, a), x) \vee p(a, b)$
(d) $p(\neg g(x), g(y))$
(e) $\neg p(f(x, y))$
(f) $p(a, b) \wedge p(x, y) \wedge y$
(g) $\exists y(\neg p(f(y, y), y))$
(h) $\forall x \forall y(g(p(x, y)) \approx g(x))$

Exercise 2.3: (2 P)
Compute the results of the following substitutions:
(a) $f(g(x), x)[g(a) / x]$
(b) $p(f(y, x), g(x))[x / y]$
(c) $\forall y(p(f(y, x), g(y)))[x / y]$
(d) $\forall y(p(f(y, x), x))[y / x]$
(e) $\forall y(p(f(z, g(y)), g(x)) \vee \exists z(g(z) \approx y))[g(b) / z]$
(f) $\exists y(f(x, y) \approx x \rightarrow \forall x(f(x, y) \approx x))[g(y) / y, g(z) / x]$

Exercise 2.4: (3 P)
Reminder: A formula F is valid in a Σ-algebra \mathcal{A} under assignment β (Notation: $\mathcal{A}, \beta \models F$) if $\mathcal{A}(\beta)(F)=1$. F is valid in \mathcal{A} (Notation: $\mathcal{A} \models F$) iff $\mathcal{A}, \beta \models F$, for all $\beta \in X \rightarrow U_{\mathcal{A}}$.

Let $\Sigma=\{\Omega, \Pi\}$ where $\Omega=\{0, s,+\}$ and $\Pi=\{\approx\}$.
Consider the following formulae in the signature Σ :

1. $F_{1}=\forall x(x+0 \approx x)$
2. $F_{2}=\forall x, y(x+s(y) \approx s(x+y))$
3. $F_{3}=\forall x, y \quad(x+y \approx y+x)$.

Find a Σ-structure in which F_{1} and F_{2} are valid but F_{3} is not.

Please submit your solution until Wednesday, November 9, 2011 in the evening. Please do not forget to write your name on your solution.

Submission possibility:

- Hand the solution in at the lecture.
- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.

