Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 17, 2011

Exercises for "Non-Classical Logics" Exercise sheet 4

Exercise 4.1: (2 P)

Prove or refute the following statements (in classical logic):

- (a) If F and G are first-order formulae and x is a variable then $\forall x(F \land G) \models \forall xF \land \forall xG$ and $\forall xF \land \forall xG \models \forall x(F \land G)$.
- (b) If F and G are first-order formulae and x is a variable then $\exists x(F \land G) \models \exists xF \land \exists xG$ and $\exists xF \land \exists xG \models \exists x(F \land G)$.

Exercises 4.2–4.4 refer to the many-valued logic \mathcal{L}_3 . Let $\Sigma = (\Omega, \Pi)$ be a first-order signature, let $M = \{0, u, 1\}$ and \mathcal{F} be the set of connectives of \mathcal{L}_3 , and $\mathcal{Q} = \{\forall, \exists\}$. We will consider first-order formulae over this signature.

Exercise 4.2: (2 P)

Prove that the following formulae are \mathcal{L}_3 tautologies:

- (a) $\neg(\exists xF)$ id $\forall x(\neg F)$.
- (b) $\sim (\forall xF)$ id $\exists x (\sim F)$.
- (c) $\neg(\exists xF)$ id $\forall x(\neg F)$.

where the truth table of id is presented in the slides of lecture 6 (17.11.2011) on page 15.

Exercise 4.3: (2 P)Prove:

- (a) For every term $t, \forall xq(x) \subset q(x)[t/x]$ is an \mathcal{L}_3 -tautology.
- (b) $\forall xq(x) \rightarrow q(x)[t/x]$ is not an \mathcal{L}_3 -tautology.

Exercise 4.4: (4 P)

We say that an \mathcal{L}_3 -formula F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation $\beta: X \to \mathcal{A}$, we have $\mathcal{A}(\beta)(F) \neq 1$.

We say that an \mathcal{L}_3 -formula F is two-valued iff for every 3-valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in \{0, 1\}$.

Which of the following statements are true? Justify your answer.

- (a) If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
- (b) If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.
- (c) If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.
- (d) If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

Please submit your solution until Tuesday, November 24, 2011 at the lecture. Please do not forget to write your name on your solution.

Submission possibility:

- Hand the solution in at the lecture.
- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.