Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

December 1, 2011

Exercises for "Non-Classical Logics" Exercise sheet 6

Exercise 6.1: (3 P)

Use the method presented in the lecture for checking whether the formula

$$F := (P \Rightarrow Q) \lor (Q \Rightarrow P)$$

is a tautology in the Łukasiewicz logic \mathcal{L}_{\aleph^1} , with set of truth values [0, 1]. (For checking the satisfiability over [0, 1] of the constraints you obtain use any method you like (e.g. make case distinctions).)

Exercise 6.2: (3 P)

Use the method presented in the lecture for showing that the formula

 $F := (P \lor \neg P)$

is not a tautology in the Gödel logic with set of truth values [0, 1]. (For finding a satisfying assignment into [0, 1] for the constraints you obtain – and thus a variable assignment \mathcal{A} with $\mathcal{A}(F) \neq 1$ – you can use any method you like.)

Exercise 6.3: (4 P)

Consider the following operations on [0, 1]:

- $\sqcup : [0,1]^2 \to [0,1]$ defined by $x \sqcup y = (\neg x) \Rightarrow y;$
- $\Box : [0,1]^2 \to [0,1]$ defined by $x \Box y = \neg((\neg x) \sqcup (\neg y));$

where \neg, \Rightarrow are the Łukasiewicz negation resp. implication.

- (1) Prove that:
 - $x \sqcup y = \min(1, x + y)$
 - $x \sqcap y = \max(0, x + y 1)$
- (2) Prove by induction that for every $m \in \mathbb{N}, m \geq 2$:

$$\Box^m x = \underbrace{x \sqcup x \sqcup \cdots \sqcup x}_{m \text{ times}} = \min(1, m \cdot x)$$

Infer from this that $\Box^m x = \underbrace{x \sqcap x \sqcap \cdots \sqcap x}_{m \text{ times}} = 1 - \min(1, m \cdot (1 - x)).$

Hint: Use the fact that $x \sqcap y = \neg((\neg x) \sqcup (\neg y))$.

(3) Use (2) to show that $\bigsqcup^{m-1} \neg x = 1$ if and only if $x \leq \frac{m-2}{m-1}$.

Supplementary exercises

(not obligatory; to be discussed in the next exercise session)

Exercise 6.4: (4 P)

With the notation in Exercise 6.3, show that:

- (1) $(x \sqcup (\sqcap^{m-2} x)) = 1$ if and only if $x \ge \frac{m-2}{m-1}$.
- (2) Let F be a propositional formula in the signature of Łukasiewicz logic, and let C_{m-1} be the following formula:

$$C_{m-1} := (\sqcup^{m-1} \neg P) \land (P \sqcup (\sqcap^{m-2} P))$$

where P is a propositional variable.

From (1) and 6.3(3) infer that for every valuation $\mathcal{A} : \Pi \to [0,1]$ the following are equivalent:

(i) $\mathcal{A}(C_{m-1}) = 1$ (ii) $\mathcal{A}(P) = \frac{m-2}{m-1}$

Exercise 6.5: (6 P)

Let $\mathcal{L}_n, \mathcal{L}_m$ be the finitely-valued Lukasiewicz logics with truth values $W_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$ and respectively $W_m = \{0, \frac{1}{m-1}, \frac{2}{m-1}, \dots, \frac{m-2}{m-1}, 1\}.$

- (1) Assume that $W_m \not\subseteq W_n$. Show that in this case $\frac{1}{m-1} \notin W_n$ and $\frac{m-2}{m-1} \notin W_n$.
- (2) Let C_m be the formula defined in Exercise 6.4(2) and $G := \sqcup^{n-1} \neg C_{m-1}$. Show that:
 - (i) for every valuation $\mathcal{A}: \Pi \to W_m$ if $\mathcal{A}(P) = \frac{m-2}{m-1}$ then $\mathcal{A}(G) = 0$.
 - (ii) for every valuation $\mathcal{A}: \Pi \to W_n, \mathcal{A}(G) = 1.$
- (3) Assume that $W_m \not\subseteq W_n$, hence, by (1), that $\frac{m-2}{m-1} \notin W_n$. Show that in this case G is an \mathcal{L}_n -tautology, but is not an \mathcal{L}_m -tautology.
- (4) Assume that $\mathsf{Tautologies}(\mathcal{L}_n) \subseteq \mathsf{Tautologies}(\mathcal{L}_m)$.
 - (i) Show that then $W_m \subseteq W_n$.
 - (ii) Use the fact that $\frac{1}{m-1} \in W_n$ to show that (n-1) is a multiple of (m-1), i.e. there exists $k \in \mathbb{N}$ such that $n-1 = k \cdot (m-1)$.

Please submit your solution until Wednesday, December 7, 2011. Please do not forget to write your name on your solution.