Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

December 8, 2011

Exercises for "Non-Classical Logics" Exercise sheet 7

Exercise 7.1: (2 P)Consider the inference system for the logic K described in the lecture:

Axioms:

All axioms of propositional logic

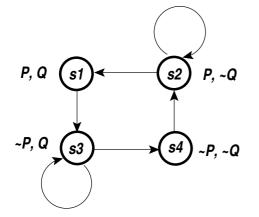
 $(K) \quad \Box(A \to B) \to (\Box A \to \Box B)$ Inference rules $\underbrace{A \quad A \to B}_{B} \quad [\text{Modus ponens}]$ $\underbrace{A \quad A \to B}_{\Box A} \quad [\text{G}]$

Prove that $\{Q \to P, \Box Q\} \vdash \Box (P \land Q)$ by constructing a proof of $\Box (P \land Q)$ from $N = \{Q \to P, \Box Q\}.$

Hint: In the proof you can use the following facts:

- in propositional logic $Q \to P$ is equivalent to $Q \to (P \land Q)$;
- use this equivalence and rule [G] to prove $\Box(Q \to (P \land Q))$ from N;
- use the axiom schema (K), with A := Q and $B := (P \land Q)$;
- apply two times the [Modus ponens] rule.

Exercise 7.2: (6 P) Consider the Kripke model $\mathcal{K} = (S, R, I)$ described below:



(1) Compute:

- $val_{\mathcal{K}}(\Box \neg P)(s_1)$
- $val_{\mathcal{K}}(\Box\Box\neg P)(s_1)$
- $val_{\mathcal{K}}(\Box\Box\neg P)(s_2)$

(2) Show that at every state $s \in S$ the following hold:

- $val_{\mathcal{K}}(P \land Q) \to \Box \neg P)(s) = 1$
- $val_{\mathcal{K}}((P \land Q) \to \Box \Box \neg P)(s) = 1$
- $val_{\mathcal{K}}((\neg P \land \neg Q) \to \Box P)(s) = 1$
- $val_{\mathcal{K}}((\neg P \land \neg Q) \to \Box \Box P)(s) = 1$

(3) Find a state $s \in S$ such that

$$val_{\mathcal{K}}((P \land Q) \to \Box \Box \Box \neg P)(s) = 0.$$

Exercise 7.3: (2 P)

- (1) Let $\mathcal{K} = (S, R, V)$, and let $s \in S$. Show that if $\{s' \in S \mid sRs'\} = \emptyset$ (i.e. if there is no s' with sRs') then $val_{\mathcal{K}}(\Box F)(s) = 1$ for any formula F.
- (2) Find a Kripke frame $\mathcal{F} = (S, R)$ with the property that for every Kripke model $\mathcal{K} = (S, R, I), val_{\mathcal{K}}(\Box \perp)(s) = 1$ for every $s \in S$.

Please submit your solution until Wednesday, December 14, 2011. Please do not forget to write your name on your solution.