Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

January 17, 2012

Exercises for "Non-Classical Logics" Exercise sheet 10

Exercise 10.1: (4 P)

Compute the translation into first order logic used for checking the validity of a modal formula Φ (of the form $\exists x P_{\neg \Phi}(x) \land \mathsf{Rename}(\neg \Phi)$) for the following formulae:

- (1) $\Phi_1: (\Diamond P \lor \Diamond Q) \to \Diamond (P \lor Q)$
- (2) Φ_2 : $((\Box \Diamond P \land \Diamond P) \rightarrow \Diamond \Box P)$

Exercise 10.2: (4 P)

Consider the formula $F = \Box Q \lor Q$. Check the satisfiability of the formula using the following steps:

- Construct the set of clauses N corresponding to $\exists x P_F(x) \land \mathsf{Rename}(F)$
- Use the ordered resolution with selection calculus Res_S^{\succ} introduced in the lecture for checking the satisfiability of N.

Supplementary exercises

(to be discussed in the next exercise class)

Exercise 10.3: (10 P)

Let F be a formula in propositional modal logic, F' a subformula of F, and F'' another formula.

F' has positive polarity in F if it occurs under an even number of negations (we think of $A \to B$ as $\neg A \lor B$). Otherwise, F' has negative polarity in F.

Prove:

- (1) Assume F' has positive polarity in F. Let $\mathcal{K} = (S, R, I)$. If $(\mathcal{K}, s) \models F[F']$ and for all $t \in S$ we have $(\mathcal{K}, t) \models (F' \to F'')$ then $(\mathcal{K}, s) \models F[F'']$.
- (2) Assume F' has negative polarity in F. Let $\mathcal{K} = (S, R, I)$. If $(\mathcal{K}, s) \models F[F']$ and for all $t \in S$ we have $(\mathcal{K}, t) \models (F'' \to F')$ then $(\mathcal{K}, s) \models F[F'']$.

Exercise 10.4: (5 *P*)

Let F be a formula in propositional modal logic, and F' a subformula of F. Let P be a new propositional variable, not occurring in F.

- (3) Assume F' has positive polarity in F. Then F[F'] is satisfiable iff there exists a Kripke model $\mathcal{K} = (S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models F[P]$ and for every state $t \in S$ we have $(\mathcal{K}, t) \models (P \to F')$.
- (4) Assume F' has negative polarity in F. Then F[F'] is satisfiable iff there exists a Kripke model $\mathcal{K} = (S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models F[P]$ and for every state $t \in S$ we have $(\mathcal{K}, t) \models (F' \to P)$.

Please submit your solution until Tuesday, January 29, 2013, 14:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with "Homework Non-Classical Logics" in subject.
- Put your solution in the box close to the printer in Room B 222.