Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
November 29, 2012

Exercises for "Non-Classical Logics"
 Exercise sheet 6

Exercise 6.1: (2 P)

Check the unsatisfiability of the set $\left\{C_{1}, C_{2}, C_{3}\right\}$ of signed clauses by using the signed propositional resolution calculus.

C_{1}	$\{0\}: P$
C_{2}	$\{0, u\}: Q \vee\{1\}: P$
C_{3}	$\{1\}: Q \vee\{u\}: R$
C_{4}	$\{0,1\}: R$

Exercise 6.2: (4 P)
Consider the following operations on $[0,1]$:

- $\sqcup:[0,1]^{2} \rightarrow[0,1]$ defined by $x \sqcup y=(\neg x) \Rightarrow y$;
- $\sqcap:[0,1]^{2} \rightarrow[0,1]$ defined by $x \sqcap y=\neg((\neg x) \sqcup(\neg y))$;
where \neg, \Rightarrow are the Łukasiewicz negation resp. implication.
(1) Prove that:
- $x \sqcup y=\min (1, x+y)$
- $x \sqcap y=\max (0, x+y-1)$
(2) Prove by induction that for every $m \in \mathbb{N}, m \geq 2$:

$$
\sqcup^{m} x=\underbrace{x \sqcup x \sqcup \cdots \sqcup x}_{m \text { times }}=\min (1, m \cdot x)
$$

Infer from this that $\Pi^{m} x=\underbrace{x \sqcap x \sqcap \cdots \sqcap x}_{m \text { times }}=1-\min (1, m \cdot(1-x))$.
Hint: Use the fact that $x \sqcap y=\neg((\neg x) \sqcup(\neg y))$.
(3) Use (2) to show that $\bigsqcup^{m-1} \neg x=1$ if and only if $x \leq \frac{m-2}{m-1}$.

Supplementary exercises

(to be discussed in the next exercise session)

Exercise 6.3: (4 P)
With the notation in Exercise 6.2, show that:
(1) $\left(x \sqcup\left(\sqcap^{m-2} x\right)\right)=1$ if and only if $x \geq \frac{m-2}{m-1}$.
(2) Let F be a propositional formula in the signature of Lukasiewicz logic, and let C_{m-1} be the following formula:

$$
C_{m-1}:=\left(\sqcup^{m-1} \neg P\right) \wedge\left(P \sqcup\left(\sqcap^{m-2} P\right)\right)
$$

where P is a propositional variable.
From (1) and $6.2(3)$ infer that for every valuation $\mathcal{A}: \Pi \rightarrow[0,1]$ the following are equivalent:
(i) $\mathcal{A}\left(C_{m-1}\right)=1$
(ii) $\mathcal{A}(P)=\frac{m-2}{m-1}$

Exercise 6.4: (6 P)
Let $\mathcal{L}_{n}, \mathcal{L}_{m}$ be the finitely-valued Łukasiewicz logics with truth values $W_{n}=\left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, \frac{n-2}{n-1}, 1\right\}$ and respectively $W_{m}=\left\{0, \frac{1}{m-1}, \frac{2}{m-1}, \ldots, \frac{m-2}{m-1}, 1\right\}$.
(1) Assume that $W_{m} \nsubseteq W_{n}$. Show that in this case $\frac{1}{m-1} \notin W_{n}$ and $\frac{m-2}{m-1} \notin W_{n}$.
(2) Let C_{m} be the formula defined in Exercise 6.3(2) and $G:=\sqcup^{n-1} \neg C_{m-1}$. Show that:
(i) for every valuation $\mathcal{A}: \Pi \rightarrow W_{m}$ if $\mathcal{A}(P)=\frac{m-2}{m-1}$ then $\mathcal{A}(G)=0$.
(ii) for every valuation $\mathcal{A}: \Pi \rightarrow W_{n}, \mathcal{A}(G)=1$.
(3) Assume that $W_{m} \nsubseteq W_{n}$, hence, by (1), that $\frac{m-2}{m-1} \notin W_{n}$. Show that in this case G is an \mathcal{L}_{n}-tautology, but is not an \mathcal{L}_{m}-tautology.
(4) Assume that Tautologies $\left(\mathcal{L}_{n}\right) \subseteq \operatorname{Tautologies}\left(\mathcal{L}_{m}\right)$.
(i) Show that then $W_{m} \subseteq W_{n}$.
(ii) Use the fact that $\frac{1}{m-1} \in W_{n}$ to show that $(n-1)$ is a multiple of $(m-1)$, i.e. there exists $k \in \mathbb{N}$ such that $n-1=k \cdot(m-1)$.

Please submit your solution until Tuesday, December 4, 2012, 14:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name on your solution. Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with "Homework Non-Classical Logics" in subject.
- Put your solution in the box close to the printer in Room B 222.

