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Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

2



1.1 Syntax

• propositional variables

• logical symbols

⇒ Boolean combinations
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Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.
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Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F , G , H ::= ⊥ (falsum)

| ⊤ (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)
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Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∧ >p ∨ >p → >p ↔ (binding precedences)

– ∨ and ∧ are associative and commutative
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1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two

truth values “true” and “false” which we shall denote, respectively,

by 1 and 0.

There are multi-valued logics having more than two truth values.
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Valuations

A propositional variable has no intrinsic meaning. The meaning of a

propositional variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.
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Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1} is

defined inductively over the structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F ) = 1 −A∗(F )

A∗(FρG) = Bρ(A
∗(F ),A∗(G))

with Bρ the Boolean function associated with ρ

For simplicity, we write A instead of A∗.
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Truth Value of a Formula in A

Example: Let’s evaluate the formula

(P → Q) ∧ (P ∧ Q → R) → (P → R)

w.r.t. the valuation A with

A(P) = 1,A(Q) = 0,A(R) = 1

(On the blackboard)
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1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).
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1.3 Models, Validity, and Satisfiability

Examples:

F → F and F ∨ ¬F are valid for all formulae F .

Obviously, every valid formula is also satisfiable

F ∧ ¬F is unsatisfiable

The formula P is satisfiable, but not valid
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Entailment and Equivalence

F entails (implies) G (or G is a consequence of F ), written F |= G ,

if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent if for all Π-valuations A we have

A |= F ⇔ A |= G .

Proposition 1.1:

F entails G iff (F → G) is valid

Proposition 1.2:

F and G are equivalent iff (F ↔ G) is valid.
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Entailment and Equivalence

Extension to sets of formulas N in the “natural way”, e.g., N |= F if

for all Π-valuations A: if A |= G for all G ∈ N, then A |= F .

Definition A set N of formulae is satisfiable if there exists a

Π-valuation A which makes true all formulae in N.

If there is no Π-valuation A which makes true all formulae in N we

say that N is unsatisfiable

Remark: N unsatisfiable iff N |=⊥.
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Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 1.3:

F valid ⇔ ¬F unsatisfiable

N |= F ⇔ N ∪ ¬F unsatisfiable

Hence in order to design a theorem prover (validity/entailment

checker) it is sufficient to design a checker for unsatisfiability.
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Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.

Obviously, A(F ) depends only on the values of those finitely many

variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to

check 2n valuations to see whether F is satisfiable or not.

⇒ truth table.

So the satisfiability problem is clearly decidable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth

tables to check the satisfiability of a formula. (later more)
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Some Important Equivalences

The following equivalences are valid for all formulas F , G , H:

(F ∧ F ) ↔ F

(F ∨ F ) ↔ F (Idempotency)

(F ∧ G) ↔ (G ∧ F )

(F ∨ G) ↔ (G ∨ F ) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)

(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)
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Some Important Equivalences

The following equivalences are valid for all formulas F , G , H:

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)

(¬¬F ) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)

¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology

(F ∨ G) ↔ ⊤, if G is a tautology (Tautology Laws)

(F ∧ G) ↔ ⊥, if G is unsatisfiable

(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)
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1.4 Normal Forms

We define conjunctions of formulas as follows:

V0
i=1 Fi = ⊤.

V1
i=1 Fi = F1.

Vn+1
i=1 Fi =

Vn

i=1 Fi ∧ Fn+1.

and analogously disjunctions:

W0
i=1 Fi = ⊥.

W1
i=1 Fi = F1.

Wn+1
i=1 Fi =

Wn

i=1 Fi ∨ Fn+1.
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Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P.

A clause is a (possibly empty) disjunction of literals.
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Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

⊥ the empty clause

P positive unit clause

¬P negative unit clause

P ∨ Q ∨ R positive clause

P ∨ ¬Q ∨ ¬R clause

P ∨ P ∨ ¬Q ∨ ¬R ∨ R allow repetitions/complementary literals

21



CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form),

if it is a conjunction of disjunctions of literals (or in other words, a

conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction

of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?
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Conversion to CNF/DNF

Proposition 1.4:

For every formula there is an equivalent formula in CNF (and also an

equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F )
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Conversion to CNF/DNF

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

The formula obtained from a formula F after applying steps 1-4 is called

the negation normal form (NNF) of F
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Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate ⊤ and ⊥:

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K ⊤

¬⊤ ⇒K ⊥
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Conversion to CNF/DNF

Proving termination is easy for most of the steps; only step 3 and

step 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that disjunctions have to be pushed downward in step 5.
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Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.
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Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that |= F ↔ G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ iff G |= ⊥”

we can get an efficient transformation.
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Satisfiability-preserving Transformations

Idea:

A formula F [F ′ ] is satisfiable iff F [P] ∧ (P ↔ F ′) is satisfiable

(where P new propositional variable that works as abbreviation for F ′).

We can use this rule recursively for all subformulas in the original formula

(this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an

additional factor (each formula P ↔ F ′ gives rise to at most one application

of the distributivity law).
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Optimized Transformations

A further improvement is possible by taking the polarity of the

subformula F into account.

Assume that F contains neither → nor ↔. A subformula F ′ of F has

positive polarity in F , if it occurs below an even number of negation

signs; it has negative polarity in F , if it occurs below an odd number

of negation signs.
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Optimized Transformations

Proposition 1.5:

Let F [F ′] be a formula containing neither → nor ↔; let P be a

propositional variable not occurring in F [F ′].

If F ′ has positive polarity in F , then F [F ′] is satisfiable if and only if

F [P] ∧ (P → F ′) is satisfiable.

If F ′ has negative polarity in F , then F [F ′] is satisfiable if and only if

F [P] ∧ (F ′ → P) is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called

structure-preserving transformation to clause form.
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Optimized Transformations

Example: Let F = (Q1 ∧ Q2) ∨ (R1 ∧ R2).

The following are equivalent:

• F |=⊥

• PF ∧ (PF ↔ (PQ1∧Q2 ∨ PR1∧R2) ∧ (PQ1∧Q2 ↔ (Q1 ∧ Q2))

∧ (PR1∧R2 ↔ (R1 ∧ R2)) |=⊥

• PF ∧ (PF → (PQ1∧Q2 ∨ PR1∧R2) ∧ (PQ1∧Q2 → (Q1 ∧ Q2))

∧ (PR1∧R2 → (R1 ∧ R2)) |=⊥

• PF ∧ (¬PF ∨ PQ1∧Q2 ∨ PR1∧R2) ∧ (¬PQ1∧Q2 ∨ Q1) ∧ (¬PQ1∧Q2 ∨ Q2)

∧ (¬PR1∧R2 ∨ R1) ∧ (¬PR1∧R2 ∨ R2)) |=⊥
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Decision Procedures for Satisfiability

• Simple Decision Procedures

truth table method

• The Resolution Procedure

• Tableaux

...
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1.5 The Propositional Resolution Calculus

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A
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The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by propositional clauses

and atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that

A and ¬A can occur anywhere in their respective clauses.

35



Sample Refutation

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨ Q (Res. 2. into 1.)

6. ¬P ∨ Q (Fact. 5.)

7. Q ∨ Q (Res. 2. into 6.)

8. Q (Fact. 7.)

9. ¬R (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)
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Resolution with Implicit Factorization RIF

C ∨ A ∨ . . . ∨ A ¬A ∨ D

C ∨ D

1. ¬P ∨ ¬P ∨ Q (given)

2. P ∨ Q (given)

3. ¬R ∨ ¬Q (given)

4. R (given)

5. ¬P ∨ Q ∨ Q (Res. 2. into 1.)

6. Q ∨ Q ∨ Q (Res. 2. into 5.)

7. ¬R (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)
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Soundness and Completeness

Theorem 1.6. Propositional resolution is sound.

for both the resolution rule and the positive factorization rule

the conclusion of the inference is entailed by the premises.

If N is satisfiable, we cannot deduce ⊥ from N using the

inference rules of the propositional resolution calculus.

If we can deduce ⊥ from N using the inference rules of the

propositional resolution calculus then N is unsatisfiable

Theorem 1.7. Propositional resolution is refutationally complete.

If N |=⊥ we can deduce ⊥ starting from N and using the

inference rules of the propositional resolution calculus.
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Notation

N ⊢Res ⊥: we can deduce ⊥ starting from N and using the inference

rules of the propositional resolution calculus.
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Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and construct a

series of valuations.

• The limit valuation can be shown to be a model of N.
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Clause Orderings

1. We assume that ≻ is any fixed ordering on propositional

variables that is total and well-founded.

2. Extend ≻ to an ordering ≻L on literals:

[¬]P ≻L [¬]Q , if P ≻ Q

¬P ≻L P

3. Extend ≻L to an ordering ≻C on clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

(well-founded)
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Stratified Structure of Clause Sets

Let A ≻ B. Clause sets are then stratified in this form:

{

{
.
..

..

.
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A
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Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
S

n≥0 Resn(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N.

Proposition 1.12

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ ⇔ ⊥ ∈ Res
∗(N)
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Construction of Interpretations

Given: set N of clauses, atom ordering ≻.

Wanted: Valuation A such that

• “many” clauses from N are valid in A;

• A |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺. We construct a

model for N incrementally.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

In what follows, instead of referring to partial valuations

AC we will refer to partial interpretations IC (the set of

atoms which are true in the valuation AC ).

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1, P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5
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Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1, P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3 {P1, P2, P4} ∅ P3 not maximal;

min. counter-ex.

7 ¬P1 ∨ P5 {P1, P2, P4} {P5}

I = {P1, P2, P4,P5} = A−1(1): A is not a model of the clause set

⇒ there exists a counterexample.
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Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.
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Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

anything from IC and the truth value of clauses smaller than C

should be maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if

A occurs positively in C (adding A will make C become true)

and if this occurrence in C is strictly maximal in the ordering on

literals (changing the truth value of A has no effect on smaller

clauses).
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Resolution Reduces Counterexamples

¬P1 ∨ P4 ∨ P3 ∨ P0 ¬P1 ∨ ¬P4 ∨ P3

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2} ∅ P3 occurs twice

minimal counter-ex.

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4}

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ counterexample

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

The same I , but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

¬P1 ∨ ¬P1 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.
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Construction of Candidate Models Formally

Let N,≻ be given. We define sets IC and ∆C for all ground clauses

C over the given signature inductively over ≻:

IC :=
S

C≻D
∆D

∆C :=

8

<

:

{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′ , IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
S

C
∆C .

We also simply write IN , or I , for I≻N if ≻ is either irrelevant or known

from the context.

57



Structure of N ,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
.
.
.

.

..
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D with max(D) = B

all C with max(C) = A
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Model Existence Theorem

Theorem 1.14 (Bachmair & Ganzinger):

Let ≻ be a clause ordering, let N be saturated wrt. Res, and suppose

that ⊥ 6∈ N. Then I≻N |= N.

Corollary 1.15:

Let N be saturated wrt. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.
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Model Existence Theorem

Proof:

Suppose ⊥ 6∈ N, but I≻N 6|= N. Let C ∈ N minimal (in ≻) such that

I≻N 6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C .

Case 1: C = ¬A ∨ C ′ (i.e., the maximal atom occurs negatively)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer

that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

Case 2: C = C ′ ∨ A ∨ A. Then C′∨A∨A
C′∨A

yields a smaller

counterexample C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .
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Ordered Resolution with Selection

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem) one only

needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection
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Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A
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Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of

clauses.
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Resolution Calculus Res
≻
S

C ∨ A D ∨ ¬A

C ∨ D
[ordered resolution with selection]

if

(i) A ≻ C ;

(ii) nothing is selected in C by S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).
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Resolution Calculus Res
≻
S

C ∨ A ∨ A

(C ∨ A)
[ordered factoring]

if A is maximal in C and nothing is selected in C .
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Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B

3 ¬A ∨ B

4 ¬A ∨ ¬B

5 B ∨ B Res 1, 3

6 B Fact 5

7 ¬A Res 6, 4

8 A Res 6, 2

9 ⊥ Res 8, 7

we assume A ≻ B and S as in-

dicated by X . The maximal

literal in a clause is depicted

in red.

With this ordering and selection function the refutation proceeds

strictly deterministically in this example. Generally, proof search will

still be non-deterministic but the search space will be much smaller

than with unrestricted resolution.
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