Non-classical logics

Lecture 17: Description Logics

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

Modal logic

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory

First-order definability

Theorem proving in modal logics

Decidability

Today

Description logics

subfield of Knowledge Representation which is a subfield of AI.

- **Description** comes from concept description (formal expression which determines a set of individuals with common properties)
- Logics comes from the fact that the semantics of concept description can be defined using logic (a fragment of first-order logic)

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor

 $\forall x \quad \texttt{Teaching-Assistant}(x) \rightarrow \neg \texttt{Undergrad}(x) \lor \texttt{Professor}(x)$

Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor

 $\forall x \quad \texttt{Teaching-Assistant}(x) \rightarrow \neg \texttt{Undergrad}(x) \lor \texttt{Professor}(x)$

More concise description

Concept names: Teaching-Assistant, Undergrad, Professor

Teaching-Assistant \sqsubseteq ¬Undergrad \sqcup Professor

If predicate logic is directly used without some kind of restriction, then

- the structure of the knowledge/information is lost;
- the expressive power is too high for having good computational properties and efficient procedures.

Example

Teaching-Assistant \sqsubseteq \neg Undergrad \sqcup Professor

```
\forall x \quad \texttt{Teaching-Assistant}(x) \rightarrow \neg \texttt{Undergrad}(x) \lor \texttt{Professor}(x)
```

A necessary condition in order to be a teaching assistant is to be either not undergraduated or a professor.

Example

Teaching-Assistant \sqsubseteq $\neg \texttt{Undergrad} \sqcup$ Professor

```
\forall x \quad \texttt{Teaching-Assistant}(x) \rightarrow \neg \texttt{Undergrad}(x) \lor \texttt{Professor}(x)
```

A necessary condition in order to be a teaching assistant is to be either not undergraduated or a professor.

When the left-hand side is an atomic concept, the " \sqsubseteq " symbol introduces a *primitive definition* – giving only necessary conditions.

Teaching-Assistant $\doteq \neg$ Undergrad \sqcup Professor

 $\forall x \quad \texttt{Teaching-Assistant}(x) \leftrightarrow \neg \texttt{Undergrad}(x) \lor \texttt{Professor}(x)$

The " \doteq " symbol introduces a real definition – with necessary and sufficient conditions. In general, we can have complex concept expressions at the left-hand side as well.

The description logic ALC: Syntax

Concepts: • primitive concepts N_C

• complex concepts (built using constructors \neg , \sqcap , \sqcup , $\exists R$, $\forall R$, \top , \bot)

Roles: N_R

10

The description logic ALC: Syntax

Concept	s: • prin	• primitive concepts N_C				
	• com	plex concepts (built using constructors \neg , \sqcap , \sqcup , $\exists R$, $\forall R$, \top , \bot)				
Roles:	N_R					
Concept	s:					
C :=	Т					
	⊥					
	A	primitive concept				
	$ C_1 \sqcap C_2 $					
	$ C_2 \sqcup C_2 $					
	$ \neg C$					
	$ \forall R.C$					
	$\exists R.C$					

The description logic ALC: Semantics

Interpretations:
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
• $C \in N_C \mapsto C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ • $R \in N_R \mapsto R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

We can also interpret "individuals" (as elements of $\Delta^{\mathcal{I}}$).

The description logic ALC

Syntax	Semantics	Name
A	$\mathcal{A}^\mathcal{I} \subseteq \Delta^\mathcal{I}$	primitive concept
R	$\mathcal{R}^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$	primitive role
Т	$\Delta^{\mathcal{I}}$	top
\perp	Ø	bottom
$\neg C$	$\Delta^\mathcal{I} \setminus \mathcal{C}^\mathcal{I}$	complement
$C \sqcap D$	$\mathcal{C}^\mathcal{I} \cap \mathcal{D}^\mathcal{I}$	conjunction
$C \sqcup D$	$\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$	disjunction
$\forall R.C$	$\{x \mid \forall y \; \; R^{\mathcal{I}}(x, y) \rightarrow y \in C^{\mathcal{I}}\}$	universal quantification
		(universal role restriction)
$\exists R.C$	$\{x \mid \exists y \; \; \mathcal{R}^{\mathcal{I}}(x, y) \; \land y \in \mathcal{C}^{\mathcal{I}}\}$	existential quantification
		(existential role restriction)

The description logic ALC: Semantics

- **Conjunction** is interpreted as *intersection* of sets of individuals.
- **Disjunction** is interpreted as *union* of sets of individuals.
- **Negation** is interpreted as *complement* of sets of individuals.

For every interpretation \mathcal{I} :

- $(\neg (C \sqcap D))^{\mathcal{I}} = (\neg C \sqcup \neg D)^{\mathcal{I}}$
- $(\neg (C \sqcup D))^{\mathcal{I}} = (\neg C \sqcap \neg D)^{\mathcal{I}}$
- $(\neg(\forall R.C))^{\mathcal{I}} = (\exists R.\neg C)^{\mathcal{I}}$
- $(\neg(\exists R.C))^{\mathcal{I}} = (\forall R.\neg C)^{\mathcal{I}}$

Knowledge Bases

- Terminological Axioms (TBox): $C \sqsubseteq D$, $C \doteq D$
 - Student = Person □ ∃NAME.String □
 ∃ADDRESS.String □
 ∃ENROLLED.Course
 Student □ ∃ENROLLED.Course
 - $\exists \texttt{TEACHES}.\texttt{Course} \sqsubseteq \neg \texttt{Undergrad} \sqcup \texttt{Professor}$
- Membership statements (ABox): C(a), R(a, b)
 - Student(john)
 - ENROLLED(john, cs415)
 - (Student ⊔ Professor)(paul)

We consider the descriptive semantics, based on classical logics.

- An interpretation \mathcal{I} satisfies the statement $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.
- An interpretation \mathcal{I} satisfies the statement $C \doteq D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$.

An interpretation \mathcal{I} is a *model* for a TBox \mathcal{T} if \mathcal{I} satisfies all the statements in \mathcal{T} .

A set A of assertions (membership or relationship statements) is called an ABox.

If $\mathcal{I} = (D^{\mathcal{I}}, \cdot_{\mathcal{I}})$ is an interpretation,

- C(a) is satisfied by \mathcal{I} if $a^{\mathcal{I}} \in C^{\mathcal{I}}$.
- R(a, b) is satisfied by \mathcal{I} if $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$.

An interpretation \mathcal{I} is said to be a *model* of the ABox \mathcal{A} if every assertion of \mathcal{A} is satisfied by \mathcal{I} .

The ABox \mathcal{A} is said to be *satisfiable* if it admits a model.

Semantics

An interpretation $\mathcal{I} = (D^{\mathcal{I}}, \cdot_{\mathcal{I}})$ is said to be a *model* of a knowledge base $(\mathcal{T}, \mathcal{A})$ if every axiom of the knowledge base is satisfied by \mathcal{I} .

A knowledge base $(\mathcal{T}, \mathcal{A})$ is said to be *satisfiable* if it admits a model.

Logical Implication

 $(\mathcal{T}, \mathcal{A}) \models \varphi$ if every model of $(\mathcal{T}, \mathcal{A})$ is a model of φ

Example 1:

- TBox: \mathcal{T}
 - Student \doteq Person $\sqcap \exists$ NAME.String \sqcap

 $\exists \text{ADDRESS.String} \sqcap$

 \exists ENROLLED.Course

- Student $\sqsubseteq \exists ENROLLED.Course$
- $\exists \texttt{TEACHES}.\texttt{Course} \sqsubseteq \neg \texttt{Undergrad} \sqcup \texttt{Professor}$
- ABox: $\mathcal{A} = \emptyset$

$$(\mathcal{T},\mathcal{A}) \stackrel{?}{\models} \mathtt{Student} \sqsubseteq \mathtt{Person}$$

 $(\mathcal{T}, \mathcal{A}) \models \varphi$ if every model of Σ is a model of φ

Example 2:

```
TBox: \mathcal{T}

\exists \texttt{TEACHES.Course} \sqsubseteq \neg \texttt{Undergrad} \sqcup \texttt{Professor}
```

```
ABox: A
TEACHES(john, cs415), Course(cs415),
Undergrad(john)
```

```
(\mathcal{T},\mathcal{A})\models \texttt{Professor(john)}
```

```
TBox: \mathcal{T}

\existsTEACHES.Course \sqsubseteq

\negUndergrad \sqcup Professor
```

```
ABox: A
TEACHES(john, cs415), Course(cs415),
Undergrad(john)
```

```
(\mathcal{T}, \mathcal{A}) \stackrel{?}{\models} \texttt{Professor(john)}
(\mathcal{T}, \mathcal{A}) \stackrel{?}{\models} \neg \texttt{Professor(john)}
```

Reasoning Problems

• Concept Satisfiability

 $(\mathcal{T},\mathcal{A}) \not\models \mathcal{C} \equiv \bot$ Student $\sqcap \lnot \mathsf{Person}$

the problem of checking whether C is satisfiable w.r.t. Σ , i.e. whether there exists a model \mathcal{I} of Σ such that $C^{\mathcal{I}} \neq \emptyset$

• Subsumption

 $(\mathcal{T}, \mathcal{A}) \models C \sqsubseteq D$ Student \sqsubseteq Person

the problem of checking whether C is subsumed by D w.r.t. Σ , i.e. whether $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of $(\mathcal{T}, \mathcal{A})$

• Satisfiability

 $(\mathcal{T}, \mathcal{A}) \not\models \mathsf{false}$ Student $\doteq \neg \mathsf{Person}$

the problem of checking whether $(\mathcal{T}, \mathcal{A})$ is satisfiable, i.e. whether it has a model

• Instance Checking

 $(\mathcal{T}, \mathcal{A}) \models C(a)$ Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of $(\mathcal{T}, \mathcal{A})$

Reduction to concept satisfiability

• Concept Satisfiability

 $(\mathcal{T}, \mathcal{A}) \not\models \mathcal{C} \equiv \bot \quad \leftrightarrow \\ \mathcal{T} \cup \mathcal{A} \cup \{\mathcal{C}(x)\} \text{ has a model}$

• Subsumption

$$(\mathcal{T}, \mathcal{A}) \models C \sqsubseteq D \quad \leftrightarrow \\ (\mathcal{T}, \mathcal{A}) \models C \sqcap \neg D \equiv \bot \quad \leftrightarrow \\ (\mathcal{T}, \mathcal{A}) \cup \{(C \sqcap \neg D)(x)\} \text{ has no models}$$

• Instance Checking

 $(\mathcal{T}, \mathcal{A}) \models C(a) \iff$ $(\mathcal{T}, \mathcal{A}) \cup \{\neg C(a)\}$ has no models

Other reasoning problems

Classification

- Given a concept C and a TBox T, for all concepts D of T determine whether D subsumes C, or D is subsumed by C.
- Intuitively, this amounts to finding the "right place" for C in the taxonomy implicitly present in T.
- *Classification* is the task of inserting new concepts in a taxonomy. It is *sorting* in partial orders.

Goal

- Prove decidability of description logic
- Give efficient decision procedures

Goal

- Prove decidability of description logic
- Give efficient decision procedures

 \mathcal{ALC} : Express it as a multi-modal logic

We translate every concept C of ALC into a formula F_C in a many-modal logic which contains modal operators

 \Box_R , \diamondsuit_R for every role *R*

We translate every concept C of ALC into a formula in a many-modal logic which contains modal operators

 \Box_R , \diamondsuit_R for every role *R*

In the translation we replace every primitive concept symbol with a propositional variable.

$$C \mapsto F_C := C$$
 if C is a primitive concept

We translate every concept C of ALC into a formula in a many-modal logic which contains modal operators

 \Box_R , \diamondsuit_R for every role *R*

In the translation we replace every primitive concept symbol with a propositional variable.

С	\mapsto	$F_C := C$	if C is a primitive concept
$C_1 \sqcap C_2$	\mapsto	$F_{C_1 \sqcap C_2} := F_{C_1} \land F_{C_2}$	
$C_1 \sqcup C_2$	\mapsto	$F_{C_1\sqcup C_2}:=F_{C_1}\vee F_{C_2}$	
$\neg C$	\mapsto	$F_{\neg C} := \neg F_C$	
$\forall R.C$	\mapsto	$F_{\forall R.C} := \Box_R F_C$	
$\exists R.C$	\mapsto	$F_{\exists R.C} := \diamondsuit_R F_C$	

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ where

$$\mathcal{C}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$
 $\mathcal{R}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$

clearly corresponds to a (multi-modal) Kripke structure $\mathcal{K} = (S, \{\rho_R\}_{R \in N_R}, I)$ where

•
$$S = \Delta^{\mathcal{I}}$$

•
$$\rho_R = R^2$$

• $I: \Pi \times S \rightarrow \{0, 1\}$ (where $\Pi = N_C$) is defined by: I(C, x) = 1 iff $x \in C^{\mathcal{I}}$ **Lemma.** For every ALC concept C and every interpretation \mathcal{I} we have:

$$C^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid (\mathcal{K}, d) \models F_C \}.$$

Proof: Structural induction

If $C \in N_C$ the result follows from the way the valuation of \mathcal{K} is defined.

For the induction step we here only consider the case $C = \forall R.C_1$ Induction hypothesis (IH): property holds for C_1 .

Lemma There exists an interpretation \mathcal{I} and a $d \in \Delta^{\mathcal{I}}$ such that $d \in C^{\mathcal{I}}$ iff F_C is satisfiable in the multi-modal logic.

Proof Immediate consequence of the previous lemma.