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Until now

Modal logic

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory

First-order definability

Theorem proving in modal logics

Decidability

Today

Description logics
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Description Logics

subfield of Knowledge Representation which is a subfield of AI.

• Description– comes from concept description (formal expression which

determines a set of individuals with common properties)

• Logics – comes from the fact that the semantics of concept description

can be defined using logic (a fragment of first-order logic)
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Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.
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Examples of concepts

teaching assistant, undergraduate, professor
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Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor
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Why description logics?

Examples of concepts

teaching assistant, undergraduate, professor

Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

More concise description

Concept names: Teaching-Assistant, Undergrad, Professor

Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor
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Why description logics?

If predicate logic is directly used without some kind of restriction, then

• the structure of the knowledge/information is lost;

• the expressive power is too high for having good computational

properties and efficient procedures.
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Example

Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

A necessary condition in order to be a teaching assistant is to be either not

undergraduated or a professor.
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Example

Teaching-Assistant ⊑ ¬Undergrad ⊔ Professor

∀x Teaching-Assistant(x) → ¬Undergrad(x) ∨ Professor(x)

A necessary condition in order to be a teaching assistant is to be either not

undergraduated or a professor.

When the left-hand side is an atomic concept, the “⊑” symbol introduces a primitive

definition – giving only necessary conditions.

Teaching-Assistant
.
= ¬Undergrad ⊔ Professor

∀x Teaching-Assistant(x) ↔ ¬Undergrad(x) ∨ Professor(x)

The “
.
=” symbol introduces a real definition – with necessary and sufficient conditions.

In general, we can have complex concept expressions at the left-hand side as well.
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The description logic ALC: Syntax

Concepts: • primitive concepts NC

• complex concepts (built using constructors ¬,⊓,⊔, ∃R, ∀R,⊤,⊥)

Roles: NR
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The description logic ALC: Syntax

Concepts: • primitive concepts NC

• complex concepts (built using constructors ¬,⊓,⊔, ∃R, ∀R,⊤,⊥)

Roles: NR

Concepts:

C := ⊤

|⊥

|A primitive concept

|C1 ⊓ C2

|C2 ⊔ C2

|¬C

|∀R.C

|∃R.C
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The description logic ALC: Semantics

Interpretations: I = (∆I , ·I) • C ∈ NC 7→ CI ⊆ ∆I

• R ∈ NR 7→ RI ⊆ ∆I ×∆I

We can also interpret “individuals” (as elements of ∆I).
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The description logic ALC

Syntax Semantics Name

A AI ⊆ ∆I primitive concept

R RI ⊆ ∆I ×∆I primitive role

⊤ ∆I top

⊥ ∅ bottom

¬C ∆I \ CI complement

C ⊓ D CI ∩ DI conjunction

C ⊔ D CI ∪ DI disjunction

∀R.C {x | ∀y RI(x , y) → y ∈ CI} universal quantification

(universal role restriction)

∃R.C {x | ∃y RI(x , y) ∧ y ∈ CI} existential quantification

(existential role restriction)
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The description logic ALC: Semantics

• Conjunction is interpreted as intersection of sets of individuals.

• Disjunction is interpreted as union of sets of individuals.

• Negation is interpreted as complement of sets of individuals.

For every interpretation I:

• (¬(C ⊓ D))I = (¬C ⊔ ¬D)I

• (¬(C ⊔ D))I = (¬C ⊓ ¬D)I

• (¬(∀R.C))I = (∃R.¬C)I

• (¬(∃R.C))I = (∀R.¬C)I
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Knowledge Bases

• Terminological Axioms (TBox): C ⊑ D , C
.
= D

– Student
.
= Person ⊓ ∃NAME.String ⊓

∃ADDRESS.String ⊓

∃ENROLLED.Course
– Student ⊑ ∃ENROLLED.Course

– ∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor

• Membership statements (ABox): C(a),R(a, b)

– Student(john)

– ENROLLED(john, cs415)

– (Student ⊔ Professor)(paul)
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Semantics

We consider the descriptive semantics, based on classical logics.

• An interpretation I satisfies the statement C ⊑ D if CI ⊆ DI .

• An interpretation I satisfies the statement C
.
= D if CI = DI .

An interpretation I is a model for a TBox T if I satisfies all the statements

in T .
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ABox

A set A of assertions (membership or relationship statements)

is called an ABox.

If I = (DI , ·I) is an interpretation,

• C(a) is satisfied by I if aI ∈ CI .

• R(a, b) is satisfied by I if (aI , bI) ∈ RI .

An interpretation I is said to be a model of the ABox A if every assertion

of A is satisfied by I.

The ABox A is said to be satisfiable if it admits a model.
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Semantics

An interpretation I = (DI , ·I) is said to be a model of a knowledge base

(T ,A) if every axiom of the knowledge base is satisfied by I.

A knowledge base (T ,A) is said to be satisfiable if it admits a model.
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Logical Implication

(T ,A) |= ϕ if every model of (T ,A) is a model of ϕ

Example 1:

• TBox: T

– Student
.
= Person ⊓ ∃NAME.String ⊓

∃ADDRESS.String ⊓

∃ENROLLED.Course
– Student ⊑ ∃ENROLLED.Course

– ∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor

• ABox: A = ∅

(T ,A)
?

|= Student ⊑ Person
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Logical Implication

(T ,A) |= ϕ if every model of Σ is a model of ϕ

Example 2:

TBox: T

∃TEACHES.Course ⊑ ¬Undergrad ⊔ Professor

ABox: A

TEACHES(john, cs415), Course(cs415),

Undergrad(john)

(T ,A) |= Professor(john)
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Logical Implication

TBox: T

∃TEACHES.Course ⊑

¬Undergrad ⊔ Professor

ABox: A

TEACHES(john, cs415), Course(cs415),

Undergrad(john)

(T ,A)
?

|= Professor(john)

(T ,A)
?

|= ¬Professor(john)

21



Reasoning Problems

• Concept Satisfiability

(T ,A) 6|= C ≡ ⊥ Student ⊓ ¬Person

the problem of checking whether C is satisfiable w.r.t. Σ, i.e. whether there exists a

model I of Σ such that CI 6= ∅

• Subsumption

(T ,A) |= C ⊑ D Student ⊑ Person

the problem of checking whether C is subsumed by D w.r.t. Σ, i.e. whether CI ⊆ DI

in every model I of (T ,A)

• Satisfiability

(T ,A) 6|= false Student
.
= ¬Person

the problem of checking whether (T ,A) is satisfiable, i.e. whether it has a model

• Instance Checking

(T ,A) |= C(a) Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of (T ,A)
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Reduction to concept satisfiability

• Concept Satisfiability

(T ,A) 6|= C ≡ ⊥ ↔

T ∪A ∪ {C(x)} has a model

• Subsumption

(T ,A) |= C ⊑ D ↔

(T ,A) |= C ⊓ ¬D ≡ ⊥ ↔

(T ,A) ∪ {(C ⊓ ¬D)(x)} has no models

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA

C

D

¬D

• Instance Checking

(T ,A) |= C(a) ↔

(T ,A) ∪ {¬C(a)} has no models
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Other reasoning problems

Classification

• Given a concept C and a TBox T , for all concepts D of T determine

whether D subsumes C , or D is subsumed by C .

• Intuitively, this amounts to finding the “right place” for C in the

taxonomy implicitly present in T .

• Classification is the task of inserting new concepts in a taxonomy. It is

sorting in partial orders.
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Goal

• Prove decidability of description logic

• Give efficient decision procedures
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Goal

• Prove decidability of description logic

• Give efficient decision procedures

ALC: Express it as a multi-modal logic
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ALC as a multi-modal logic

We translate every concept C of ALC into a formula FC in a many-modal

logic which contains modal operators

2R ,3R for every role R
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ALC as a multi-modal logic

We translate every concept C of ALC into a formula in a many-modal logic

which contains modal operators

2R ,3R for every role R

In the translation we replace every primitive concept symbol with a

propositional variable.

C 7→ FC := C if C is a primitive concept
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ALC as a multi-modal logic

We translate every concept C of ALC into a formula in a many-modal logic

which contains modal operators

2R ,3R for every role R

In the translation we replace every primitive concept symbol with a

propositional variable.

C 7→ FC := C if C is a primitive concept

C1 ⊓ C2 7→ FC1⊓C2
:= FC1

∧ FC2

C1 ⊔ C2 7→ FC1⊔C2
:= FC1

∨ FC2

¬C 7→ F¬C := ¬FC

∀R.C 7→ F∀R.C := 2RFC

∃R.C 7→ F∃R.C := 3RFC
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ALC as a multi-modal logic

An interpretation I = (∆I , ·I) where

CI ⊆ ∆I

RI ⊆ ∆I ×∆I

clearly corresponds to a (multi-modal) Kripke structure

K = (S , {ρR}R∈NR
, I ) where

• S = ∆I

• ρR = RI

• I : Π× S → {0, 1} (where Π = NC ) is defined by:

I (C , x) = 1 iff x ∈ CI
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ALC as a multi-modal logic

Lemma. For every ALC concept C and every interpretation I we have:

CI = {d ∈ ∆I | (K, d) |= FC}.

Proof: Structural induction

If C ∈ NC the result follows from the way the valuation of K is defined.

For the induction step we here only consider the case C = ∀R.C1

Induction hypothesis (IH): property holds for C1.

{d ∈ ∆I | (K, d) |= FC} = {d ∈ ∆I | (K, d) |= F∀R.C1
} =

{d ∈ ∆I | (K, d) |= 2RFC1
}

IH
=

{d ∈ ∆I | for all e with R(d , e) we have (K, e) |= FC1
} =

{d ∈ ∆I | for all e with R(d , e) we have e ∈ CI
1 } = (∀R.C1)

I = CI
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ALC as a multi-modal logic

Lemma There exists an interpretation I and a d ∈ ∆I such that d ∈ CI

iff FC is satisfiable in the multi-modal logic.

Proof Immediate consequence of the previous lemma.
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