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Until now

Modal logic
Syntax
Semantics
Kripke models
global and local entailment; deduction theorem
Correspondence theory
First-order definability
Theorem proving in modal logics
Decidability
Today

Description logics



Description Logics

subfield of Knowledge Representation which is a subfield of Al.

e Description— comes from concept description (formal expression which
determines a set of individuals with common properties)

e Logics — comes from the fact that the semantics of concept description

can be defined using logic (a fragment of first-order logic)



Why description logics?

Examples of concepts
teaching assistant, undergraduate, professor
Examples of properties

Every teaching assistant is either not an undergraduated or a professor.
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Why description logics?

Examples of concepts
teaching assistant, undergraduate, professor
Examples of properties

Every teaching assistant is either not an undergraduated or a professor.

Formal description in first-order logic

Unary predicates: Teaching-Assistant, Undergrad, Professor
Vx Teaching-Assistant(x) — —Undergrad(x) V Professor(x)
More concise description

Concept names: Teaching-Assistant, Undergrad, Professor

Teaching-Assistant L —Undergrad L/ Professor



Why description logics?

If predicate logic is directly used without some kind of restriction, then
e the structure of the knowledge/information is lost;

e the expressive power is too high for having good computational
properties and efficient procedures.



Example

Teaching-Assistant [ —Undergrad Ll Professor

Vx Teaching-Assistant(x) — —Undergrad(x) V Professor(x)

A necessary condition in order to be a teaching assistant is to be either not

undergraduated or a professor.



Example

Teaching-Assistant [ —Undergrad Ll Professor

Vx Teaching-Assistant(x) — —Undergrad(x) V Professor(x)

A necessary condition in order to be a teaching assistant is to be either not
undergraduated or a professor.

When the left-hand side is an atomic concept, the “C." symbol introduces a primitive

definition — giving only necessary conditions.

Teaching-Assistant = —Undergrad L! Professor

Vx Teaching-Assistant(x) <> —Undergrad(x) V Professor(x)

The “=" symbol introduces a real definition — with necessary and sufficient conditions.

In general, we can have complex concept expressions at the left-hand side as well.



The description logic ALC: Syntax

Concepts: e primitive concepts N¢
e complex concepts (built using constructors —, M, U, 3R, VR, T, 1)
Roles: Ngr
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The description logic ALC: Syntax

Concepts: e primitive concepts N¢

e complex concepts (built using constructors —, M, U, 3R, VR, T, L)
Roles: Ngr

Concepts:
C.= T
L
A primitive concept
C1 MG
G UG
-C
VR.C
dR.C
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The description logic ALC: Semantics

Interpretations: 7 = (AZ, 1) e CeNcr CtC AT
e Rc Np —RLC AT x AL

We can also interpret “individuals” (as elements of AZ).
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The description logic ALC

Syntax Semantics Name
A AL C AT primitive concept
R RL C AL x AL primitive role
T AL top
1L 0 bottom
-C AL \ cL complement
cCrbD ctnD?t conjunction
cCubD ctuD?t disjunction
VR.C | {x|Vy R%Z(x,y)—y & CZ} | universal quantification
(universal role restriction)
JR.C | {x |3y RZ(x,y) Ay € CT} | existential quantification
(existential role restriction)
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The description logic ALC: Semantics

e Conjunction is interpreted as intersection of sets of individuals.

e Disjunction is interpreted as union of sets of individuals.

e Negation is interpreted as complement of sets of individuals.

For every interpretation Z:
o (-(Cn D)) =(-Cu-D)*
o (-(CuD))* = (-Cn-D)*
o (~(VR.C))Z = (3R-C)?
e (-(3R.C))* = (VR.-C)*
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Knowledge Bases

e Terminological Axioms (TBox): CC D, C=D

— Student = Person 1 ANAME.String M
JADDRESS.String Il

JENROLLED.Course
— Student L JENROLLED.Course

— JTEACHES.Course L —Undergrad Ll Professor

e Membership statements (ABox): C(a), R(a, b)
— Student(john)
— ENROLLED(john, cs415)
— (Student U Professor)(paul)
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Semantics

We consider the descriptive semantics, based on classical logics.

e An interpretation Z satisfies the statement C C” D if C£ C DZ.

e An interpretation Z satisfies the statement C = D if CZ = DZ.

An interpretation Z is a model for a TBox T if Z satisfies all the statements

in 7T .
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ABox

A set A of assertions (membership or relationship statements)
is called an ABox.

If 7 = (DI, -7) is an interpretation,
e C(a) is satisfied by T if a£ € CZ.
e R(a, b) is satisfied by T if (a*, b%) € RZ.

An interpretation 7 is said to be a model of the ABox A if every assertion
of A is satisfied by 7.

The ABox A is said to be satisfiable if it admits a model.
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Semantics

An interpretation Z = (DZ,-7) is said to be a model of a knowledge base
(7, A) if every axiom of the knowledge base is satisfied by Z.

A knowledge base (7, .4) is said to be satisfiable if it admits a model.
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Logical Implication

(T, A) &= ¢ if every model of (T, .A) is a model of ¢

Example 1:

e TBox: T

— Student = Person 1 INAME.String I
JADDRESS.String Il

JENROLLED.Course
— Student L JENROLLED.Course

— JTEACHES.Course L —Undergrad L! Professor
e ABox: A =10

?
(7,A) &= Student C Person
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Logical Implication

(7,A) E ¢ if every model of X is a model of ¢

Example 2:

TBox: T
JTEACHES.Course L —Undergrad LI Professor

ABox: A
TEACHES(john, cs415), Course(cs415),
Undergrad(john)

(7, A) = Professor(john)

20



Logical Implication

TBox: T
JTEACHES.Course L
—Undergrad LI Professor

ABox: A
TEACHES(john, cs415), Course(cs415),
Undergrad(john)

?

(T, A) = Professor(john)

?

(T, A) | —=Professor(john)
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Reasoning Problems

e Concept Satisfiability
(T, AL C=1 Student ' —Person

the problem of checking whether C is satisfiable w.r.t. ¥, i.e. whether there exists a
model Z of ¥ such that C* # ()

e Subsumption
(T, AY=ECLCD Student C Person

the problem of checking whether C is subsumed by D w.r.t. ¥, i.e. whether C* C D%
in every model Z of (7, .A)

e Satisfiability

(T, .A) = false Student = —Person

the problem of checking whether (7, A) is satisfiable, i.e. whether it has a model
e Instance Checking

(T, A) = C(a) Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of (7, A)
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Reduction to concept satisfiability

e Concept Satisfiability

(T, AEC=1 <«
T UAU{C(x)} has a model

e Subsumption

(T, AYECLCD <+
(T, A AECn-D=1 <+

(7, A)U{(C 1 -D)(x)} has no models
e Instance Checking

(T AEC@E «

(7, A)U{—=C(a)} has no models
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Other reasoning problems

Classification

e Given a concept C and a TBox T, for all concepts D of T determine
whether D subsumes C, or D is subsumed by C.

e Intuitively, this amounts to finding the “right place” for C in the
taxonomy implicitly present in T.

e C(lassification is the task of inserting new concepts in a taxonomy. It is
sorting in partial orders.
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Goal

e Prove decidability of description logic

e Give efficient decision procedures
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Goal

e Prove decidability of description logic

e Give efficient decision procedures

ALC: Express it as a multi-modal logic
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ALC as a multi-modal logic

We translate every concept C of ALC into a formula F¢ in a many-modal
logic which contains modal operators

Ogr, Or  for every role R
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ALC as a multi-modal logic

We translate every concept C of ALC into a formula in a many-modal logic
which contains modal operators

Op, Op  for every role R

In the translation we replace every primitive concept symbol with a
propositional variable.

C +— Fc:=C if Cis a primitive concept
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ALC as a multi-modal logic

We translate every concept C of ALC into a formula in a many-modal logic
which contains modal operators

Op, Op  for every role R

In the translation we replace every primitive concept symbol with a
propositional variable.

C — Fc:=C if C is a primitive concept
GG =  Fgng = Fcg NFg,

GuG = Fcucg i=Fcq VFg

-C —  Foc:=—-Fc¢

VR.C —  Fyrc := 0OgrFc

dR.C —  Fapc = OgrFc



ALC as a multi-modal logic

An interpretation Z = (A%, -Z) where
CI C AI
RT C AT x AT

clearly corresponds to a (multi-modal) Kripke structure
IC = (5, {pR}RENRv I) where

e S—=AZ

e pr =R*

e /|:MxS— {0,1} (where 1= N¢) is defined by:

I(C,x)=1iff x € C*
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ALC as a multi-modal logic

Lemma. For every ALC concept C and every interpretation Z we have:

Ct={de A’ | (K, d)=Fc}.

Proof: Structural induction
If C € N¢ the result follows from the way the valuation of K is defined.

For the induction step we here only consider the case C = VR.(;
Induction hypothesis (IH): property holds for Cj.

{de AT | (K, d)EFct={de At | (K. d) F Frg} =

{d e AT | (K,d) = OgFg }
{d € AT | for all e with R(d, e) we have (K, e) = Fc,}

d e AL | for all e with R(d, €) we have e € CZ — (VR.C{)* = C*
1
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ALC as a multi-modal logic

Lemma There exists an interpretation Z and a d € AZ such that d € CZ
iff Fc is satisfiable in the multi-modal logic.

Proof Immediate consequence of the previous lemma.
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