Non-classical logics

Lecture 18: Description Logics (Part 2)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

Description logics

 \mathcal{ALC} : Syntax, Semantics

Knowledge Base (KB): TBOX, ABOX

Reasoning problems; reduction to concept satisfiability/satisfiability of KB

 $\mathsf{Decidability} \mapsto \mathsf{express} \ \mathcal{ALC} \ \mathsf{as} \ \mathsf{multi-modal} \ \mathsf{logic}.$

Lemma $C_1 \sqsubseteq C_2$ iff $F_{C_1 \sqcap \neg C_2}$ is unsatisfiable in the multi-modal logic.

Proof. $C_1 \sqsubseteq C_2$ iff for all \mathcal{I} and all $d \in \Delta^{\mathcal{I}}$ we have: $d \notin (C_1 \sqcap \neg C_2)^{\mathcal{I}}$ From the first lemma, this happens iff $(\mathcal{K}, d) \not\models F_{C_1} \land \neg F_{C_2}$ for all \mathcal{I} and all $d \in \Delta^{\mathcal{I}}$.

This is the same as saying that $F_{C_1 \square \neg C_2}$ is unsatisfiable.

- Terminating, efficient and complete algorithms for deciding satisfiability

 and all the other reasoning services are available.
- Algorithms are based on tableaux-calculi techniques or resolution.

Description logics

Two directions of research:

- Extensions in order to increase expressivity
- Restrict language in order to identify "tractable" description logics

Description logics

Two directions of research:

- Extensions in order to increase expressivity SHIQ
- Restrict language in order to identify "tractable" description logics
 - \mathcal{EL}

Some extensions of ALC

SHIQ:

Syntax:

- N_C primitive concept symbols
- N_R^0 set of atomic role symbols
- $N_t^0 \subseteq N_R^0$ set of transitive role symbols

The set N_R of role symbols contains all atomic roles and for every role $R \in N_R^0$ also its inverse role R^- .

Some extensions of ALC

SHIQ:

Role hierarchy:

A role hierarchy is a finite set ${\mathcal H}$ of formulae of the form

 $R_1 \sqsubseteq R_2$

for R_1 , $R_2 \in N_R$.

All following definitions assume that a role hierarchy is given (and fixed)

С	:=	A	if A is a primitive concept
		$ \top$	
		$ \neg C$	
		$ C_1 \sqcap C_2 $	
		$ C_2 \sqcup C_2 $	
		∃ <i>R</i> . <i>C</i>	
		$ \forall R.C$	
		$ \leq nR.C$	where $n \in \mathbb{N}$, R simple role
		$ \geq nR.C$	where $n\in\mathbb{N}$, R simple role

R is a simple role if $R \not\in N_t^0$ and R does not contain any transitive sub-role.

С	:=	A	if A is a primitive concept
		$ \top$	
		$ \neg C$	
		$ C_1 \sqcap C_2 $	
		$ C_2 \sqcup C_2 $	
		∃ <i>R</i> . <i>C</i>	
		$ \forall R.C$	
		$ \leq nR.C$	where $n \in \mathbb{N}$, R simple role
		$ \geq nR.C$	where $n \in \mathbb{N}$, R simple role

R is a simple role if $R \notin N_t^0$ and *R* does not contain any transitive sub-role. **Abbreviations:** $\geq nR := \geq nR.\top \leq nR := \geq nR.\top$ Role quantification cannot express that a woman has *at least 3* (or *at most 5*) children.

Cardinality restrictions can express conditions on the number of fillers:

- Busy-Woman \doteq Woman \sqcap (\geq 3CHILD)
- Woman-with-at-most5children \doteq Woman \sqcap (\leq 5CHILD)

$$(\geq 1R) \Longleftrightarrow (\exists R)$$

Interpretations for SHIQ

Interpretations:
$$\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
• $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ • $R \in N_R \mapsto R^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$

such that:

- ullet for all $R\in N^0_t$, $R^{\mathcal{I}}$ is a transitive relation
- ullet for all $R\in N^0_R$, $(R^{-1})^{\mathcal{I}}$ is the inverse of $R^{\mathcal{I}}$
- for all $R_1 \sqsubseteq R_2 \in \mathcal{H}$ we have $R_1^\mathcal{I} \subseteq R_2^\mathcal{I}$

Constructor	Syntax	Semantics
concept name	A	$A^\mathcal{I}\subseteq D^\mathcal{I}$
top	Т	$D^{\mathcal{I}}$
bottom	\perp	Ø
conjunction	$C \sqcap D$	$\mathcal{C}^\mathcal{I}\cap \mathcal{D}^\mathcal{I}$
disjunction	$C \sqcup D$	$\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$
negation	$\neg C$	$D^\mathcal{I} \setminus C^\mathcal{I}$
universal	$\forall R.C$	$\{x \mid \forall y (R^{\mathcal{I}}(x, y) \rightarrow y \in C^{\mathcal{I}})\}$
existential	$\exists R.C$	$\{x \mid \exists y (R^{\mathcal{I}}(x, y) \land y \in C^{\mathcal{I}}\}$
cardinality	\geq nR	$\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y)\} \geq n\}$
	$\leq nR$	$\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y)\} \leq n\}$
qual. cardinality	$\geq nR.C$	$\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y) \land y \in C^{\mathcal{I}}\} \geq n\}$
	$\leq nR.C$	$\{x \mid \#\{y \mid R^{\mathcal{I}}(x, y) \land y \in C^{\mathcal{I}}\} \leq n\}$

Theorem. The satisfiability and subsumption problem for SHIQ are decidable

Proof: cf. Horrocks et al.

Theorem. If in the definition of SHIQ we do not impose the restriction about simple roles, the satisfiability problem becomes undecidable

(even if we only allow for cardinality restrictions of the form $\leq nR.\top$ and $\geq nR.\top$).

Proof: cf. Horrocks et al.

- For decidable description logic it is important to have efficient reasoning procedures which are sound, complete and termination.
- Literature: tableau calculi

Goals:

- Completeness is important for the usability of description logics in real applications.
- Efficiency: Algorithms need to be efficient for both average and real knowledge bases, even if the problem in the corresponding logic is in PSPACE or EXPTIME.

Tractable description logic: $\mathcal{EL}, \mathcal{EL}^+$ and extensions [Baader'03–] used e.g. in medical ontologies (SNOMED)

Concepts: • primitive concepts N_C

• complex concepts (built using concept constructors $\Box, \exists r$)

Roles: N_R

Interpretations: $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$ • $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ • $r \in N_R \mapsto r^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$

Constructor name	Syntax	Semantics
conjunction	$C_1 \sqcap C_2$	$\mathcal{C}_1^\mathcal{I}\cap\mathcal{C}_2^\mathcal{I}$
existential restriction	$\exists r.C$	$\{x \mid \exists y((x,y) \in r^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}})\}$

Concepts: • primitive concepts N_C

• complex concepts (built using concept constructors $\Box, \exists r$)

Roles: N_R

Interpretations: $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$ • $C \in N_C \mapsto C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ • $r \in N_R \mapsto r^{\mathcal{I}} \subseteq D^{\mathcal{I}} \times D^{\mathcal{I}}$

Problem:Given: TBox (set \mathcal{T} of concept inclusions $C_i \sqsubseteq D_i$)
concepts C, DTask: test whether $C \sqsubseteq_{\mathcal{T}} D$, i.e. whether for all $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$
if $C_i^{\mathcal{I}} \subseteq D_i^{\mathcal{I}} \quad \forall C_i \sqsubseteq D_i \in \mathcal{T}$ then $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Primitive concepts:	protein, process, substance
Roles:	catalyzes, produces
Terminology:	$enzyme = protein \sqcap \exists catalyzes.reaction$
(TBox)	$catalyzer = \exists catalyzes.process$
	reaction = process $\sqcap \exists produces.substance$
Query:	enzyme 🔄 catalyzer?

\mathcal{EL}^+ : generalities

 N_R

Concepts: • primitive concepts N_C

• complex concepts (built using concept constructors $\Box, \exists r$)

Roles:

Problem:Given: CBox $C = (\mathcal{T}, RI)$, where \mathcal{T} set of concept inclusions $C_i \sqsubseteq D_i$;
RI set of role inclusions $r \circ s \sqsubseteq t$ or $r \sqsubseteq t$
concepts C, DTask: test whether $C \sqsubseteq_C D$, i.e. whether for all $\mathcal{I} = (D^{\mathcal{I}}, \cdot^{\mathcal{I}})$
if $C_i^{\mathcal{I}} \subseteq D_i^{\mathcal{I}} \quad \forall C_i \sqsubseteq D_i \in \mathcal{T}$ and
 $r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq t^{\mathcal{I}} \quad \forall r \circ s \sqsubseteq t \in RI$ then $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Primitive concepts:	protein, process, substance
Roles:	catalyzes, produces, helps-producing
Terminology:	enzyme = protein $\Box \exists catalyzes.reaction$
(TBox)	reaction = process $\sqcap \exists produces.substance$
Role inclusions:	catalyzes o produces L helps-producing
Query:	$enzyme \sqsubseteq protein \sqcap \exists helps-producing.substance ?$

Complexity

 $T\text{-}\mathsf{Box}$ subsumption for \mathcal{EL} decidable in PTIME

C-Box subsumption for \mathcal{EL}^+ decidable in PTIME

Methods:

Reductions to checking satisfiability of clauses in propositional logic.

Primitive concepts:	protein, process, substance
Roles:	catalyzes, produces
Terminology:	enzyme = protein $\sqcap \exists$ catalyzes.reaction
(TBox)	$catalyzer = \exists catalyzes.process$
	reaction = process $\sqcap \exists produces.substance$
Query:	enzyme 🔄 catalyzer?

 $\begin{aligned} \mathsf{SLat} \cup \mathsf{Mon} \models \mathsf{enzyme} &= \mathsf{protein} \sqcap \mathsf{catalyzes}\operatorname{-some}(\mathsf{reaction}) \land \\ \mathsf{catalyzer} &= \mathsf{catalyze}\operatorname{-some}(\mathsf{process}) \land \\ \mathsf{reaction} &= \mathsf{process} \sqcap \mathsf{produces}\operatorname{-some}(\mathsf{substance}) \\ &\Rightarrow \mathsf{enzyme} \sqsubseteq \mathsf{catalyzer} \end{aligned}$

 $Mon: \forall C, D(C \sqsubseteq D \rightarrow catalyze-some(C) \sqsubseteq catalyze-some(D)) \\ \forall C, D(C \sqsubseteq D \rightarrow produces-some(C) \sqsubseteq produces-some(D))$

$G \wedge Mon$

```
enzyme = protein \sqcap catalyzes-some(reaction) \land
catalyzer = catalyze-some(process) \land
reaction = process \sqcap produces-some(substance) \land
enzyme \nvdash catalyzer
\forall C, D(C \sqsubseteq D \rightarrow \text{catalyze-some}(C) \sqsubseteq \text{catalyze-some}(D))
\forall C, D(C \sqsubseteq D \rightarrow \text{produces-some}(C) \sqsubseteq \text{produces-some}(D))
```


Solution 1: Use *DPLL*(SLat + *UIF*)

 $G \wedge Mon[G]$

```
enzyme = protein \sqcap catalyzes-some(reaction)
```

```
catalyzer = catalyzes-some(process)
```

```
reaction = process □ produces-some(substance)
```

 $\mathsf{enzyme} \not\leq \mathsf{catalyzer}$

reaction \triangleright process \rightarrow catalyzes-some(reaction) \triangleright catalyzes-some(process), $\triangleright \in \{\leq, \geq, =\}$

Solution 2: Hierarchical reasoning

Base theory (SLat)	Extension
$enzyme = protein \sqcap c_1$	$c_1 = catalyzes-some(reaction)$
$catalyzer = c_2$	$c_2 = catalyzes-some(process)$
reaction = process $\sqcap c_3$	$c_3 = produces-some(substance)$
enzyme 🗹 catalyzer	
reaction \triangleright process $\rightarrow c_1 \triangleright c_2 \triangleright \in \{\leq, \geq, =\}$	

Test satisfiability using any prover for SLat (e.g. reduction to SAT)

Idea in the translation to SAT:

Base theory \mapsto	SAT (FOL)	
$enzyme = protein \sqcap c_1$	$\forall x \; enzyme(x) \leftrightarrow protein(x) \land c_1(x)$	
catalyzer = c_2	$\forall x \; catalyzer(x) \leftrightarrow c_2(c)$	
reaction = process $\sqcap c_3$	$\forall x \; \operatorname{reaction}(x) \leftrightarrow \operatorname{process}(x) \land c_3(x)$	
enzyme 🗹 catalyzer	$enzyme(c) \land \neg catalyzer(c)$	
reaction \sqsubseteq process $\rightarrow c_1 \sqsubseteq c_2$	$(\forall x (reaction(x) \rightarrow process(x))) \rightarrow (\forall x (c_1(x) \rightarrow c_2(x)))$	
•••		
\downarrow		
$(\operatorname{reaction}(d) \to \operatorname{process}(d)) \to (\forall x (c_1(x) \to c_2(x)))$		
\downarrow		

Clause normal form: no function symbols of arity ≥ 1 ; Horn except for last class of clauses (a small amount of case distinction \mapsto no increase in compl.)

By Herbrand's theorem the set of clauses is satisfiable iff its set of instances is. Size of instantiated set: polynomial. Satisfiability of Horn clauses: in PTIME.