
Non-classical logics

Lecture 18: Description Logics (Part 2)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

Description logics

ALC: Syntax, Semantics

Knowledge Base (KB): TBOX, ABOX

Reasoning problems; reduction to concept satisfiability/satisfiability of KB

Decidability 7→ express ALC as multi-modal logic.

2

ALC as a multi-modal logic

Lemma C1 ⊑ C2 iff FC1⊓¬C2
is unsatisfiable in the multi-modal logic.

Proof. C1 ⊑ C2 iff for all I and all d ∈ ∆I we have: d 6∈ (C1 ⊓ ¬C2)I

From the first lemma, this happens iff (K, d) 6|= FC1
∧ ¬FC2

for all I and

all d ∈ ∆I .

This is the same as saying that FC1⊓¬C2
is unsatisfiable.

3

Reasoning procedures

• Terminating, efficient and complete algorithms for deciding satisfiability

– and all the other reasoning services – are available.

• Algorithms are based on tableaux-calculi techniques or resolution.

4

Description logics

Two directions of research:

• Extensions in order to increase expressivity

• Restrict language in order to identify “tractable” description logics

5

Description logics

Two directions of research:

• Extensions in order to increase expressivity

SHIQ

• Restrict language in order to identify “tractable” description logics

EL

6

Some extensions of ALC

SHIQ:

Syntax:

NC primitive concept symbols

N0
R
set of atomic role symbols

N0
t ⊆ N0

R
set of transitive role symbols

The set NR of role symbols contains all atomic roles and for every role

R ∈ N0
R
also its inverse role R−.

7

Some extensions of ALC

SHIQ:

Role hierarchy:

A role hierarchy is a finite set H of formulae of the form

R1 ⊑ R2

for R1,R2 ∈ NR .

All following definitions assume that a role hierarchy is given (and fixed)

8

SHIQ concept descriptions: Syntax

C := A if A is a primitive concept

|⊤

|¬C

|C1 ⊓ C2

|C2 ⊔ C2

|∃R.C

|∀R.C

| ≤ nR.C where n ∈ N,R simple role

| ≥ nR.C where n ∈ N,R simple role

R is a simple role if R 6∈ N0
t and R does not contain any transitive sub-role.

9

SHIQ concept descriptions: Syntax

C := A if A is a primitive concept

|⊤

|¬C

|C1 ⊓ C2

|C2 ⊔ C2

|∃R.C

|∀R.C

| ≤ nR.C where n ∈ N,R simple role

| ≥ nR.C where n ∈ N,R simple role

R is a simple role if R 6∈ N0
t and R does not contain any transitive sub-role.

Abbreviations: ≥ nR :=≥ nR.⊤ ≤ nR :=≥ nR.⊤

10

Cardinality Restriction

Role quantification cannot express that a woman has at least 3

(or at most 5) children.

Cardinality restrictions can express conditions on the number of fillers:

• Busy−Woman
.
= Woman ⊓ (≥ 3CHILD)

• Woman−with−at−most5children
.
= Woman ⊓ (≤ 5CHILD)

(≥ 1R) ⇐⇒ (∃R)

11

Interpretations for SHIQ

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• R ∈ NR 7→ RI ⊆ DI × DI

such that:

• for all R ∈ N0
t , R

I is a transitive relation

• for all R ∈ N0
R
, (R−1)I is the inverse of RI

• for all R1 ⊑ R2 ∈ H we have RI
1 ⊆ RI

2

12

SHIQ constructors: Semantics

Constructor Syntax Semantics

concept name A AI ⊆ DI

top ⊤ DI

bottom ⊥ ∅

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

negation ¬C DI \ CI

universal ∀R.C {x | ∀y(RI(x , y) → y ∈ CI)}

existential ∃R.C {x | ∃y(RI(x , y) ∧ y ∈ CI}

cardinality ≥ nR {x | #{y | RI(x , y)} ≥ n}

≤ nR {x | #{y | RI(x , y)} ≤ n}

qual. cardinality ≥ nR.C {x | #{y | RI(x , y) ∧ y ∈ CI} ≥ n}

≤ nR.C {x | #{y | RI(x , y) ∧ y ∈ CI} ≤ n}

13

Decidability

Theorem. The satisfiability and subsumption problem for SHIQ are

decidable

Proof: cf. Horrocks et al.

14

Undecidability

Theorem. If in the definition of SHIQ we do not impose the restriction

about simple roles, the satisfiability problem becomes undecidable

(even if we only allow for cardinality restrictions of the form ≤ nR.⊤ and

≥ nR.⊤).

Proof: cf. Horrocks et al.

15

Reasoning procedures

• For decidable description logic it is important to have efficient

reasoning procedures which are sound, complete and termination.

• Literature: tableau calculi

Goals:

• Completeness is important for the usability of description logics in real

applications.

• Efficiency: Algorithms need to be efficient for both average and real

knowledge bases, even if the problem in the corresponding logic is in

PSPACE or EXPTIME.

16

A tractable DL

Tractable description logic: EL, EL+ and extensions [Baader’03–]

used e.g. in medical ontologies (SNOMED)

17

EL: Generalities

Concepts: • primitive concepts NC

• complex concepts (built using concept constructors ⊓, ∃r)

Roles: NR

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• r ∈ NR 7→ rI ⊆ DI × DI

Constructor name Syntax Semantics

conjunction C1 ⊓ C2 CI
1 ∩ CI

2

existential restriction ∃r .C {x | ∃y((x , y) ∈ rI and y ∈ CI)}

18

EL: Generalities

Concepts: • primitive concepts NC

• complex concepts (built using concept constructors ⊓, ∃r)

Roles: NR

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• r ∈ NR 7→ rI ⊆ DI × DI

Problem:

Given: TBox (set T of concept inclusions Ci ⊑ Di)

concepts C , D

Task: test whether C ⊑T D, i.e. whether for all I = (DI , ·I)

if CI
i ⊆ DI

i ∀Ci ⊑ Di ∈ T then CI ⊆ DI

19

EL : Example

Primitive concepts: protein, process, substance

Roles: catalyzes, produces

Terminology: enzyme = protein ⊓ ∃catalyzes.reaction

(TBox) catalyzer = ∃catalyzes.process

reaction = process ⊓ ∃produces.substance

Query: enzyme ⊑ catalyzer?

20

EL
+: generalities

Concepts: • primitive concepts NC

• complex concepts (built using concept constructors ⊓, ∃r)

Roles: NR

Interpretations: I = (DI , ·I) • C ∈ NC 7→ CI ⊆ DI

• r ∈ NR 7→ rI ⊆ DI × DI

Problem:

Given: CBox C = (T ,RI), where T set of concept inclusions Ci ⊑ Di ;
RI set of role inclusions r ◦ s ⊑ t or r ⊑ t

concepts C , D

Task: test whether C ⊑C D, i.e. whether for all I = (DI , ·I)

if CI
i

⊆ DI
i

∀Ci ⊑ Di ∈ T and
rI◦sI⊆tI ∀r ◦ s ⊑ t ∈ RI then CI ⊆ DI

21

EL
+: Example

Primitive concepts: protein, process, substance

Roles: catalyzes, produces, helps-producing

Terminology: enzyme = protein ⊓ ∃catalyzes.reaction

(TBox) reaction = process ⊓ ∃produces.substance

Role inclusions: catalyzes ◦ produces ⊑ helps-producing

Query: enzyme ⊑ protein ⊓ ∃helps-producing.substance ?

22

Complexity

T -Box subsumption for EL decidable in PTIME

C -Box subsumption for EL+ decidable in PTIME

Methods:

Reductions to checking satisfiability of clauses in propositional logic.

23

EL: Hierarchical reasoning

Primitive concepts: protein, process, substance

Roles: catalyzes, produces

Terminology: enzyme = protein ⊓ ∃catalyzes.reaction

(TBox) catalyzer = ∃catalyzes.process

reaction = process ⊓ ∃produces.substance

Query: enzyme ⊑ catalyzer?

SLat ∪ Mon |=enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance)

⇒ enzyme ⊑ catalyzer

Mon : ∀C ,D(C ⊑ D → catalyze-some(C) ⊑ catalyze-some(D))

∀C ,D(C ⊑ D → produces-some(C) ⊑ produces-some(D))

24

EL: Hierarchical reasoning

SLat ∪ Mon ∧

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6⊑ catalyzer
︸ ︷︷ ︸

G

|= ⊥

G ∧ Mon

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6⊑ catalyzer

∀C ,D(C ⊑ D → catalyze-some(C) ⊑ catalyze-some(D))

∀C ,D(C ⊑ D → produces-some(C) ⊑ produces-some(D))

25

EL: Hierarchical reasoning

SLat ∪ Mon ∧

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6≤ catalyzer
︸ ︷︷ ︸

G

|= ⊥

Solution 1: Use DPLL(SLat + UIF)

G ∧ Mon[G]

enzyme = protein ⊓ catalyzes-some(reaction)

catalyzer = catalyzes-some(process)

reaction = process ⊓ produces-some(substance)

enzyme 6≤ catalyzer

reaction ⊲ process → catalyzes-some(reaction) ⊲ catalyzes-some(process), ⊲∈ {≤,≥, =}

26

EL: Hierarchical reasoning

SLat ∪ Mon ∧

enzyme = protein ⊓ catalyzes-some(reaction) ∧

catalyzer = catalyze-some(process) ∧

reaction = process ⊓ produces-some(substance) ∧

enzyme 6≤ catalyzer
︸ ︷︷ ︸

G

|= ⊥

Solution 2: Hierarchical reasoning

Base theory (SLat) Extension

enzyme = protein ⊓ c1 c1 = catalyzes-some(reaction)

catalyzer = c2 c2 = catalyzes-some(process)

reaction = process ⊓ c3 c3 = produces-some(substance)

enzyme 6≤ catalyzer

reaction ⊲ process → c1 ⊲ c2 ⊲∈ {≤,≥, =}

Test satisfiability using any prover for SLat (e.g. reduction to SAT)

27

EL: Hierarchical reasoning

Idea in the translation to SAT:

Base theory 7→ SAT (FOL)

enzyme = protein ⊓ c1 ∀x enzyme(x) ↔ protein(x) ∧ c1(x)

catalyzer = c2 ∀x catalyzer(x) ↔ c2(c)

reaction = process ⊓ c3 ∀x reaction(x) ↔ process(x) ∧ c3(x)

enzyme 6⊑ catalyzer enzyme(c) ∧ ¬catalyzer(c)

reaction ⊑ process → c1 ⊑ c2 (∀x(reaction(x) → process(x))) → (∀x(c1(x) → c2(x)))

. . .

⇓

(reaction(d) → process(d)) → (∀x(c1(x) → c2(x)))

⇓

Clause normal form: no function symbols of arity ≥ 1; Horn except for last class of

clauses (a small amount of case distinction 7→ no increase in compl.)

By Herbrand’s theorem the set of clauses is satisfiable iff its set of instances is.

Size of instantiated set: polynomial. Satisfiability of Horn clauses: in PTIME.

28

