
Non-classical logics

Lecture 20:

• Dynamic logic (Part 2)

• First-order modal logic

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

The idea of dynamic logic

• Annotated programs use formulas within programs

• Dynamic Logic uses programs within formulas

• Instead of “assert F” after program segment α, write: [α]F

7→ multi-modal logic

2

Propositional Dynamic Logic

Syntax

Prog set of programs

Prog0 ⊆ Prog: set of atomic programs

Π: set of propositional variables

The set of formulae FmaPDL
Prog,Π of (regular) propositional dynamic logic and

the set of programs P0 are defined by simultaneous induction as follows:

3

PDL: Syntax
Formulae:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| p p ∈ Π0 (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| [α]F if α ∈ Prog

| 〈α〉 F if α ∈ Prog

Programs:

α, β, γ ::= α0 α0 ∈ Prog0 (atomic program)

| F? F formula (test)

| α; β (sequential composition)

| α ∪ β (non-deterministic choice)

| α∗ (non-deterministic repetition)

4

Semantics

A PDL structure K = (S ,R(), I) is a multimodal Kripke structure with an

accessibility relation for each atomic program. That is it consists of:

• a non-empty set S of states

• an interpretation R() : Prog0 → P(S × S) of atomic programs that

assigns a transition relation R(α) ⊆ S × S to each atomic program α

• an interpretation I : Π× S → {0, 1}

The interpretation of PDL relative to a PDL structure K = (S ,R(), I)

is defined by extending R() to Prog and extensing I to FmaPDL
Prop0

by the

following simultaneously inductive definition:

5

Interpretation of formulae/programs

valK(p, s) = I (p, s)

valK(¬F , s) = ¬BoolvalK(F , s)

valK(F ∧ G , s) = valK(F , s) ∧Bool valK(G , s)

valK(F ∨ G , s) = valK(F , s) ∨Bool valK(G , s)

valK([α]F , s) = 1 iff for all t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

valK(〈α〉 F , s) = 1 iff for some t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

R([F?]) = {(s, s) | valK(F , s) = 1}

(F? has the same meaning as: if F then skip else do not terminate)

R(α ∪ β) = R(α) ∪ R(β)

R(α; β) = {(s, t) | there exists u ∈ S s.t.(s, u) ∈ R(α) and (u, t) ∈ R(β)}

R(α∗) = {(s, t) | there exists n ≥ 0 and there exist u0, . . . , un ∈ S with

s = u0, y = un, (u0, u1), . . . , (un−1, un) ∈ R(α)}

6

Interpretation of formulae/programs

• (K, s) satisfies F (notation (K, s) |= F) iff valK(F , s) = 1.

• F is valid in K (notation K |= F) iff (K, s) |= F for all s ∈ S .

• F is valid (notation |= F) iff K |= F for all PDL-structures K.

7

Axiom system for PDL
Axioms

(D1) All propositional logic tautologies

(D2) [α](A → B) → ([α]A → [α]B)

(D3) [α](A ∧ B) ↔ [α]A ∧ [α]B

(D4) [α; β]A ↔ [α][β]A

(D5) [α ∪ β]A ↔ [α]A ∧ [β]A

(D6) [A?]B ↔ (A → B)

(D7) [α∗]A ↔ A ∧ [α][α∗]A,

(D8) [α∗](A → [α]A) → (A → [α∗]A]

Inference rules

MP P, P→Q
Q

Gen F
[α]F

We show that PDL is determined by PDL structures, and has the finite model property.

8

Soundness and Completeness of PDL

Proof similar to the proof in the case of the modal system K (with small differences)

Theorem. If the formula F is provable in the inference system for PDL then F is valid

in all PDL structures.

Proof: Induction of the length of the proof, unsing the following facts:

1. The axioms are valid in every PDL structure. Easy computation.

2. If the premises of an inference rule are valid in a structure K, the conclusion is also

valid in K.

(MP) If K |= F ,K |= F → G then K |= G (follows from the fact that for every state

s of L if (K, s) |= F , (K, s) |= F → G then (K, s) |= G

(Gen) Assume that K |= F . Then (K, s) |= F for every state s of K.

Let t be a state of K. (K, t) |= [α]F if for all t′ with (t, t′) ∈ R(α) we have

(K, t′) |= F . But under the assumption that K |= F the latter is always the

case. This shows that (K, t) |= [α]F for all t.

9

Soundness and Completeness of PDL

Theorem. If the formula F is is valid in all PDL structures then F is

provable in the inference system for PDL.

Proof

Idea:

Assume that F is not provable in the inference system for PDL.

We show that:

(1) ¬F is consistent with the set L of all theorems of PDL

(2) We can construct a “canonical” PDL structure KL and a state w

in this PDL structure such that (K,w) |= ¬F .

Contradiction!

10

Consistent sets of formulae

Let L be a set of PDL formulae which:

(1) contains all propositional tautologies

(2) contains axiom PDL

(3) is closed under modus ponens and generalization

(4) is closed under instantiation

Definition. A subset F ⊆ L is called L-inconsistent iff there exist formulae

A1, . . . ,An ∈ F such that

(¬A1 ∨ · · · ∨ ¬An) ∈ L

F is called L-consistent iff it is not L-inconsistent.

Definition. A consistent set F of PDL formulae is called maximal L-consistent if for

every formula A wither A ∈ F or ¬A ∈ F .

11

Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Theorem. Every consistent set F of formulae is contained in a maximally consistent

set of formulae.

Lemma. If F is not provable in PDL then ¬F is consistent with the set L of all

theorems of PDL, so it is contained in a maximally conststent set of formulae W¬F .

12

Canonical models

Goal: Assume F is not a PDL theorem. Construct a PDL structure K and

a state w of K such that (K,w) |= ¬F .

States:

State of K: maximal consistent set of formulae.

Intuition: (K,W) |= φ iff φ ∈ W .

Then: (K,W¬F) |= ¬F

Accessibility relation:

Intuition:

(K,W) |= [α]F iff for all W ′, ((W ,W ′) ∈ R(α) → (K,W ′) |= F

[α]F ∈ W iff for all W ′, ((W ,W ′) ∈ R(α) → F ∈ W ′)

(W ,W ′) ∈ R(α) iff W ′ ⊇ {F | [α]F ∈ W }

13

Canonical models

Theorem. K satisfies all PDL structure conditions except R(α∗) ⊆ (R(α))∗.

Proof: By direct checking.

Example: R(α; β) ⊆ R(α) ◦ R(β)

Assume (W ,W ′) ∈ R(α; β). Then W ′ ⊆ {F | [α; β]F ∈ W}.

We want to show that there exists W0 with (W ,W0) ∈ R(α) and (W0,W
′) ∈ R(β).

• (W ,W0) ∈ R(α) iff {A | [α]A ∈ W} ⊆ W0

• (W0,W
′) ∈ R(β) iff {B | [β]B ∈ W0} ⊆ W ′ iff {¬[β]D | D 6∈ W ′} ⊆ W0.

It is sufficient to show that W0 = {B | [α]B ∈ W} ∪ {¬[β]D | D 6∈ W ′} is

PDL-consistent.

For this, the PDL-theorem [α][β]A → [α][β]A is used.

14

Canonical models
Proof: (ctd.) We show that {A | [α]A ∈ W} ∪ {¬[β]B | B 6∈ W ′} is PDL-consistent.

Assume that the set is not PDL consistent. Then there is a theorem

⊢ A1 ∧ · · · ∧ Am ∧ ¬[β]B1 ∧ . . .¬[β]Bn →⊥

where [α]Ai ∈ W and Bj 6∈ W ′. Let B = B1 ∨ · · · ∨ Bn.

Since ⊢ [β]B1 ∨ · · · ∨ [β]Bn → [β]B it follows that ⊢ A1 ∧ · · · ∧ Am → [β]B

hence:

⊢ [α](A1 ∧ · · · ∧ Am) → [α][β]B

and since ⊢ [α]A1 ∧ · · · ∧ [α]Am → [α](A1 ∧ · · · ∧ Am) we showed that

⊢ [α]A1 ∧ · · · ∧ [α]Am → [α][β]B

Using the PDL-theorem [α][β]B → [α; β]B it then follows that

⊢ [α]A1 ∧ · · · ∧ [α]Am → [α; β]B

Since [α]Ai ∈ W and W is maximally consistent it follows that [α; β]B ∈ W , hence

B = B1 ∨ · · · ∨ Bn ∈ W ′. But then (as W ′ maximally consistent) Bj ∈ W ′ for some

j which is a contradiction.

15

Canonical models

Theorem. Assume F is not a PDL theorem. We can construct a PDL

structure K′ and a state w of K′ such that (K′,w) |= ¬F .

Proof. To obtain a PDL structure that falsifies F we will collapse K by a

suitable Γ that contains F . The closure rules for Γ that will be needed are:

• Γ is closed under subformulae;

• [B?]D ∈ Γ implies B ∈ Γ;

• [α;β]B ∈ Γ implies [α][β]B ∈ Γ;

• [α ∪ β]B ∈ Γ implies [α]B, [β]B ∈ Γ;

• [α∗]B ∈ Γ implies [α][α∗]B ∈ Γ

A set Γ satisfying these conditions will be called closed.

16

Completeness/Decidability of PDL

Theorem. If Γ is the smallest closed set containing a given formula F , then

Γ is finite.

Proof. The point is to show that closing Subformulae(F) under the above

rules produces only finitely many new formulae.

Define a formula to be boxed if it is prefixed by a modal connective, i.e. is

of the form [α]B for some α and B. Each time we apply a closure rule, new

boxed formulae appear on the right side of the rule, and further rules may

apply to these new formulae.

But observe that the programs α indexing prefixes [α] on the right side are

in all cases shorter in length than those indexing the prefix on the left of

the rule in question. Hence we will eventually produce only atomic prefixes

on the right, and run out of rules to apply.

17

Completeness/Decidability of PDL

Having determined that Γ, the smallest closed set containing F , is finite,

we identify the states which satisfy the same formulae in Γ:

Fix a model K = (S ,R, I) and a set Γ ⊆ FmaΣ that is closed under

subformulae, i.e. B ∈ Γ implies Subformulae(B) ⊆ Γ.

For each s ∈ S , define

Γs = {B ∈ Γ | (K, s) |= B}

and put s ∼Γ t iff Γs = Γt ,

Then s ∼Γ t iff for all B ∈ Γ, (K, s) |= B iff (K, t) |= B.

Fact: ∼Γ is an equivalence relation on S .

Let [s] = {t | s ∼Γ t} be the ∼Γ-equivalence class of s.

Let SΓ := {[s] | s ∈ S} be the set of all such equivalence classes.

18

Decidability/Completeness

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′).

Step 1: S′ := SΓ, where Γ = Subformulae(S)

Step 2: I ′ : (Π ∩ Γ) × S′ → {0, 1} def. by I ′(P, [s]) = I (P, s)

Step 3: R′(α) def. e.g. by: ([s], [t]) ∈ R′(α) iff ∃s′ ∈ [s], ∃t′ ∈ [t]: (s′, t′) ∈ R(α)

Theorem: K′ is a PDL structure and it is a filtration of K, i.e. has the properties:

(F1) If sR(α)t then [s]R′(α)[t]

(F2) If [s]R′(α)[t] then for all formulae B,

if [α]B ∈ Γ and (K, s) |= [α]B then (K, t) |= B

Since (K,W¬F) |= ¬F it can easily be seen that (K′, [W¬F]) |= ¬F . 7→ completeness

Lemma. If Γ is finite, then SΓ is finite and has at most 2n elements, where n is the

number of elements of Γ. 7→ decidability

19

Conclusions

PDL is decidable (it has the finite model propety).

Proof calculi for PDL exist (e.g. sequent calculi, tableau calculi)

For really reasoning about programs, often first order dynamic logic is

needed (undecidable)

Nevertheless, many systems used for verification use sequent or tableau

calculi also for first order dynamic logic.

20

First-order modal logic

21

First-order modal logic

We introduce first-order modal logic and consider its relationship

to classical first-order logic.

22

First-order modal logic

Syntax

Semantics

23

Syntax

Given:

A signature Σ = (Ω,Π),

A set X of variables

24

Syntax

Given:

A signature Σ = (Ω,Π),

A set X of variables

Terms are defined as for classical logic

Atomic formulae are defined as for classical logic

25

General first-order formulae

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| 2F

| 3F

| ∀x F (universal quantification)

| ∃x F (existential quantification)

26

Semantics

A Kripke structure K = (S ,R, I) consists of Kripke frame F = (S ,R) and a

mapping I that assigns to each world s ∈ S a first-order structure

I (s) = (UI (s), {fI (s)}f∈Ω, {pI (s)}p∈Π)

such that, for each s, t ∈ S with sRt, I (s) is a substructure of I (t), i.e.:

• the universe of I (s) is a subset of the universe of I (t) (monotonicity),

and

• the structures I (s) and I (t) agree on the interpretation of all function

symbols on the (smaller) universe of I (s).

A Kripke structure (S ,R, I) is called Kripke structure with constant domain

if all the models {I (s) | s ∈ S} are required to have the same universe.

27

Semantics

Interpretation of quantified modal formulae

(K, s) |= p(t1, . . . , tk) iff I (s) |= p(t1, . . . , tk) for atomic formulae p(t1, . . . , tk)

(K, s) |= F ∧ G iff (K, s) |= F and (K, s) |= G

(K, s) |= F ∨ G iff (K, s) |= F or (K, s) |= G

(K, s) |= F → G iff (K, s) 6|= F or (K, s) |= G

(K, s) |= ¬F iff (K, s) 6|= F

(K, s) |= 2F iff for all t with R(s, t), (K, s) |= F

(K, s) |= 3F iff there exists t with R(s, t) and (K, s) |= F

(K, s) |= ∀xF (x) iff for all d ∈ UI (s), (K, s) |= F (d)

(K, s) |= ∃xF (x) iff there exists d ∈ UI (s), (K, s) |= F (d)

28

Semantics

Interpretation of quantified modal formulae

(K, s) |= p(t1, . . . , tk) iff I (s) |= p(t1, . . . , tk) for atomic formulae p(t1, . . . , tk)

(K, s) |= F ∧ G iff (K, s) |= F and (K, s) |= G

(K, s) |= F ∨ G iff (K, s) |= F or (K, s) |= G

(K, s) |= F → G iff (K, s) 6|= F or (K, s) |= G

(K, s) |= ¬F iff (K, s) 6|= F

(K, s) |= 2F iff for all t with R(s, t), (K, s) |= F

(K, s) |= 3F iff there exists t with R(s, t) and (K, s) |= F

(K, s) |= ∀xF (x) iff for all d ∈ UI (s), (K, s) |= F (d)

(K, s) |= ∃xF (x) iff there exists d ∈ UI (s), (K, s) |= F (d)

29

Semantics

Goal: formalize the last statements using variable assignments,

as for first-order logic

A (variable) assignment, also called a valuation (over a given

Σ-algebra A), is a map β : X → A.

30

Semantics

Goal: formalize the last statements using variable assignments,

as for first-order logic

A (variable) assignment, also called a valuation (over a given

Σ-algebra A), is a map β : X → A.

Difficulty: the domains of the structures are different from world

to world.

31

Semantics

In varying domain semantics, quantifiers may possibly refer to a different

set of objects, depending on the world.

In constant domain semantics, quantifiers refer to the same set of objects

(same universe U) in all worlds.

Variable assignment: β : X → U.

Evaluation of quantified formulae as in classical first-order logic.

32

Proof calculi

Tableau calculi

Translation to first-order logic and resolution

33

Proof calculi

Tableau calculi

need to take into account γ and δ rules

(as for classical first-order logic)

Translation to first-order logic and resolution

out of the scope of this lecture

34

First-order Dynamic Logic

First-order dynamic logic (DL) extends PDL (although DL had been

developed first) to a first-order logic and gives concrete atomic programs

with specific effects, as opposed to abstract atomic programs with unknown

effects as in PDL.

35

First-order Dynamic Logic

Definition. Let X be a set of variables. The set FmaDL of formulas of

dynamic logic and the set of programs Prog are defined by simultaneous

induction as:

• ⊥,⊤ ∈ FmaDL (propositional constants)

• All instances of formulas of first-order logic are in FmaDL

• If F ,G ∈ FmaDL then ¬F , (F ∧ G), (F ∨ G) ∈ FmaDL

• If F ∈ FmaDL and x ∈ X is a variable then ∀xF , ∃xF ∈ FmaDL

• If F ∈ FmaDL, α ∈ Prog then [α]F , 〈α〉F ∈ FmaDL

• (x := t) ∈ Prog are atomic programs for variables x ∈ X and terms t.

• If F ∈ FmaDL then F? ∈ Prog.

• If α,β ∈ Prog then α;β,α ∪ β,α∗ ∈ Prog.

36

First-order Dynamic Logic

The semantics of DL is extended from that of PDL in the obvious way where

the set of states is chosen to be W := DX , i.e., the set of assignments

s : X → D of elements of the domain D (of the first-order structure) to the

variables X.

Predicate symbols, function symbols, and terms are interpreted as usual in

first-order logic.

Because there are no other atomic programs, we only need to specify the

accessibility relation belonging to an assignment x := t:

R(x := t) = {(s, s′) | s′(x) = s(t) and s′(z) = s(z) for all z 6= x}

37

First-order Dynamic Logic

DL can inherit the axioms of first-order logic and of PDL. One typical

axiom that DL needs in addition is an axiom that relates assignment to

substitution:

(D15) 〈x := t〉F ↔ F t
x

It says that formula F is true after assigning t to x if and only if F is true

after substituting the new value t for x .

38

First-order Dynamic Logic

DL cannot be decidable because it includes first-order logic, where validity

is only semidecidable.

But DL does not have a sound and complete effective calculus. Note

here that DL formulas can state the halting problem for Turing machines.

Nevertheless, there are proofs showing that DL has a relatively complete or

arithmetically complete proof calculus.

39

Temporal logic

40

Motivation

The purpose of temporal logic (TL) is:

• reasoning about time (in philosophy), and

• reasoning about the behaviour of systems evolving over time

(in computer science).

41

How to define a TL?

To define a temporal logic (TL), we need to specify:

• the language for talking about time or temporal systems;

• our model of time.

42

Motivation

What model of time should we use?

What is the structure of time?

43

Motivation

What model of time should we use?

What is the structure of time?

A very liberal definition:

A flow of time is a pair (T ,<), where T is a non-empty set of time points,

and < is an irreflexive and transitive binary relation on T .

Depending on the intended application, we often require additional

properties. One of the most fundamental decisions is whether or not time

should be linear.

(T ,<) is linear if, for all x , y ∈ T with x 6= y , we have x < y or y < x .

44

Models of time

Important additional properties for linear flows of time:

Boundedness: We have four options by combining:

• Bounded to the past: there exists an x ∈ T such that x ≤ y for

all y ∈ T (genesis).

• Bounded to the future: there exists a an x ∈ T such that y ≤ x

for all y ∈ T (doomsday).

Discreteness: Existence of direct predecessors and successors:

• If x ∈ T is not genesis, then there exists a y ∈ T such that y < x

and y < z < x holds for no z ∈ T .

• If x ∈ T is not doomsday, then there exists a y ∈ T such that

x < y and x < z < y holds for no z ∈ T .

It can be seen that one does not follow from the other.

45

Models of time

Important additional properties for linear flows of time:

Density: For all x , y ∈ T with x < y , there is a z ∈ T such that x < z < y .

Dedekind completeness: Any non-empty subset S ⊆ T that has an upper

bound has a least upper bound:

Definitions:

Upper bound for S : x ∈ T with y ≤ x for all y ∈ S ;

Least upper bound for S : upper bound x for S such that there is no

x′ ∈ T with x′ < x and x′ upper bound for S .

46

Models of time

The following are among the most natural linear flows of time:

• The natural numbers N with the usual order <.

Linear, discrete, bounded to the past, not bounded to the future.

Note that other flows of time have these properties as well:

T := N× {0} ∪ Z× {1}, where:

(x , a) < (y , b) if (i) a < b or (ii) a = b and x < y .

NOTE: above example not Dedekind complete.

47

Models of time

The following are among the most natural linear flows of time:

• The rational numbers Q.

A natural dense flow of time, though with gaps (e.g. π).

The unique countable linear dense flow of time without endpoints (up

to isomorphism).

• The real numbers R.

Up to isomorphism, the unique dense, Dedekind-complete flow of time

without end points that is separable:

There exists a countable subset D ⊆ T such that, for all x , y ∈ T

with x < y , there is a z ∈ D with t < z < u.

48

Models of time

The alternative to linear time is branching time.

Time can be:

• Branching to the future reflecting that there are many possible

futures;

• Branching to the past reflecting that many different histories are

considered possible (due to incomplete knowledge).

Branching to the future and linear to the past is the most popular option

for each x ∈ T , the set {y ∈ T |y < x} is linearly ordered by <.

We can identify additional properties similar to the linear case. Usually,

branching time is assumed to be discrete and has a genesis.

49

