
Non-classical logics

Lecture 19: Dynamic Logic

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Motivation

A Simple Programming Language

Logical basis

Typed first-order predicate logic

(Types, variables, terms, formulas, . . .)

Assumption for examples

The signature contains a type Nat and appropriate symbols:

• function symbols 0, s, +, ∗

(terms s(0), s(s(0)), . . . written as 1,2, . . .)

• predicate symbols
.
=,≤,<,≥,>

NOTE: This is a “convenient assumption” not a definition

2

Motivation

Programs

• Assignments: X := t X : variable, t:term

• Test: if B then a else b fi

B: quant.-free formula, a, b: programs

• Loop: while B do a od

B: quantifier-free formula, a: program

• Composition: a; b a, b programs

WHILE is computationally complete

3

Motivation

WHILE: Examples

Compute the square of X and store it in Y

Y := X ∗ X

If X is positive then add one else subtract one

if X > 0 then X := X + 1 else X := X − 1 fi

4

Motivation

WHILE: Example - Square of a Number

Compute the square of X (the complicated way)

Making use of: n2 = 1 + 3 + 5 + · · ·+ (2 ∗ n − 1)

I := 0;

Y := 0;

while I < X do

Y :=Y +2*I+1;

I := I+1

od

5

Motivation

WHILE: Operational Semantics

Given

A (fixed) first-order structure A interpreting the function and predicate

symbols in the signature

State

s = (A, β) where β is a variable assignment (i.e. function interpreting the

variables)

6

Motivation

State update

s[e/X] = (A,β[X 7→ e])

with β[X 7→ e](Y) =







e if Y = X

β(Y) otherwise

7

Motivation

Define the relation R(α) as follows (we write s[α]s′ instead of sR(α)s′):

• s[X := t]s′ iff s′ = s[s(t)/X]

• s[if B then α else β fi]s′ iff s |= B and s[α]s′ or s |= ¬B and s[β]s′.

• s[while B do α od]s′ iff there are states s = s0, . . . , st = s′ s.t.

si |= B for 0 ≤ i ≤ t− 1 and st |= ¬B and s0[α]s1, s1[α]s2, . . . , st−1[α]st

• s[α;β]s′ iff there is a state s′′ such that s[α]s′′ and s′′[β]s′

If α is a deterministic program, [α] is a partial function

8

Motivation

A Different Approach to WHILE

Programs

• X := t (atomic program)

• α;β (sequential composition)

• α ∪ β (non-deterministic choice)

• α∗ (non-deterministic iteration, n times for some n ≥ 0)

• F? (test)

remains in initial state if F is true,

does not terminate if F is false

9

Motivation

Restriction to deterministic programs

Non-deterministic program constructors may only be used in

if B then α else β fi ≡ (B?;α) ∪ ((¬B)?; β)

while B do α od ≡ (B?;α)∗; (¬B)?

10

Motivation

Expressing Program Properties

Logic for expressing properties

Full first-order logic (usually with arithmetic)

Partial correctness assertion (Hoare formula)

{P}α{Q}

Meaning:

If α is started in a state satisfying P and terminates, then its final state

satisfies Q

Formally:

{P}α{Q} is valid iff for all states s, s′, if s |= P and s[a]s′, then s′ |= Q

11

Examples

{X > 0}X := X + 1{X > 1}

{even(X)}X := X + 2{even(X)}

where even(X) ≡ ∃Z(X = 2 ∗ Z)

{true}αsquare{Y = X ∗ X}

12

Examples

{X > 0}X := X + 1{X > 1}

{even(X)}X := X + 2{even(X)}

where even(X) ≡ ∃Z(X = 2 ∗ Z)

{true}αsquare{Y = X ∗ X}

Verification: Use annotation of programs with “invariants”

13

Dynamic Logic

The idea of dynamic logic

• Annotated programs use formulas within programs

• Dynamic Logic uses programs within formulas

• Instead of “assert F” after program segment α, write: [α]F

7→ multi-modal logic

14

Dynamic Logic

Dynamic logic is a language for specifying programming languages.

The original work on dynamic logic is by Vaughan Pratt (1976) and by

David Harel (1979).

15

Propositional Dynamic Logic

Propositional dynamic logic (PDL) is a multi-modal logic with structured

modalities.

For each program α, there is:

– a box-modality [α] and

– a diamond modality 〈α〉.

PDL was developed from first-order dynamic logic by Fischer-Ladner (1979)

and has become popular recently.

Here we consider regular PDL.

16

Propositional Dynamic Logic

Syntax

Prog set of programs

Prog0 ⊆ Prog: set of atomic programs

Π: set of propositional variables

The set of formulae FmaPDL
Prog,Π of (regular) propositional dynamic logic and

the set of programs P0 are defined by simultaneous induction as follows:

17

PDL: Syntax
Formulae:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| p p ∈ Π0 (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| [α]F if α ∈ Prog

| 〈α〉 F if α ∈ Prog

Programs:

α, β, γ ::= α0 α0 ∈ Prog0 (atomic program)

| F? F formula (test)

| α; β (sequential composition)

| α ∪ β (non-deterministic choice)

| α∗ (non-deterministic repetition)

18

Semantics

A PDL structure K = (S ,R(), I) is a multimodal Kripke structure with an

accessibility relation for each atomic program. That is it consists of:

• a non-empty set S of states

• an interpretation R() : Prog0 → S × S of atomic programs that

assigns a transition relation R(α) to each atomic program α

• an interpretation I : Π× S → {0, 1}

19

PDL: Semantics

The interpretation of PDL relative to a PDL structure K = (S ,R(), I)

is defined by extending R() to Prog and extensing I to FmaPDL
Prop0

by the

following simultaneously inductive definition:

20

Interpretation of formulae/programs

valK(p, s) = I (p, s)

valK(¬F , s) = ¬BoolvalK(F , s)

valK(F ∧ G , s) = valK(F , s) ∧Bool valK(G , s)

valK(F ∨ G , s) = valK(F , s) ∨Bool valK(G , s)

valK([α]F , s) = 1 iff for all t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

valK(〈α〉 F , s) = 1 iff for some t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

R([F?]) = {(s, s) | valK(F , s) = 1}

(F? has the same meaning as: if F then skip else do not terminate)

R(α ∪ β) = R(α) ∪ R(β)

R(α; β) = {(s, t) | there exists u ∈ S s.t.(s, u) ∈ R(α) and (u, t) ∈ R(β)}

R(α∗) = {(s, t) | there exists n ≥ 0 and there exist u0, . . . , un ∈ S with

s = u0, y = un, (u0, u1), . . . , (un−1, un) ∈ R(α)}

21

Interpretation of formulae/programs

• (K, s) satisfies F (notation (K, s) |= F) iff valK(F , s) = 1.

• F is valid in K (notation K |= F) iff (K, s) |= F for all s ∈ S .

• F is valid (notation |= F) iff K |= F for all PDL-structures K.

22

Axiom system for PDL

Camp : [α;β]A ↔ [α][β]A,

Alt : [α ∪ β]A ↔ [α]A ∧ [β]A,

Mix : [α∗]A → A ∧ [α][α∗]A,

Ind : [α∗](A → [a]A) → (A → [α∗]A),

Test : [A?]B ↔ (A → B).

We will show that PDL is determined by PDL structures, and has the finite

model property.

23

Soundness and Completeness of PDL

Proof similar to the proof in the case of the modal system K (with small

differences)

Theorem. If the formula F is provable in the inference system for PDL then

F is valid in all PDL structures.

Proof: The axioms are valid in every PDL structure. Easy computation

(examples on the blackboard).

24

Soundness and Completeness of PDL

Theorem. If the formula F is is valid in all PDL structures then F is

provable in the inference system for PDL.

Proof

Idea:

Assume that F is not provable in the inference system for PDL.

We show that:

(1) ¬F is consistent with the set L of all theorems of PDL

(2) We can construct a “canonical” PDL structure KL and a state w

in this PDL structure such that (K,w) |= ¬F .

Contradiction!

25

Consistent sets of formulae

Let L be a set of PDL formulae which:

(1) contains all propositional tautologies

(2) contains axiom PDL

(3) is closed under modus ponens and generalization

(4) is closed under instantiation

Definition. A subset F ⊆ L is called L-inconsistent iff there exist formulae

A1, . . . ,An ∈ F such that

(¬A1 ∨ · · · ∨ ¬An) ∈ L

F is called L-consistent iff it is not L-inconsistent.

Definition. A consistent set F of PDL formulae is called maximal

L-consistent if for every formula A wither A ∈ F or ¬A ∈ F .

26

Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Theorem. Every consistent set F of formulae is contained in a maximally

consistent set of formulae.

Proofs: As for modal logic.

27

Canonical models

Goal: Assume F is not a theorem. Construct a PDL structure K and a

state w of K such that (K,w) |= ¬F .

States:

State of K: maximal consistent set of formulae.

Intuition: (K,W) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W) |= [α]F iff for all W ′, ((W ,W ′) ∈ R(α) → (K,W ′) |= F)

28

Canonical models

Goal: Assume F is not a PDL theorem. Construct a PDL structure K and

a state w of K such that (K,w) |= ¬F .

States:

State of K: maximal consistent set of formulae.

Intuition: (K,W) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W) |= [α]F iff for all W ′, ((W ,W ′) ∈ R(α) → (K,W ′) |= F

[α]F ∈ W iff for all W ′, ((W ,W ′) ∈ R(α) → F ∈ W ′)

(W ,W ′) ∈ R(α) iff W ′ ⊇ {F | [α]F ∈ W }

29

Canonical models

Theorem. K satisfies all PDL structure conditions except R(α∗) ⊆ (R(α))∗.

Proof: By direct checking.

Example: R(α; β) ⊆ R(α) ◦ R(β)

Assume (W ,W ′) ∈ R(α; β). Then W ′ ⊆ {F | [α; β]F ∈ W}.

We want to show that there exists W0 with (W ,W0) ∈ R(α) and (W0,W
′) ∈ R(β).

It to show that W0 = {B | [α]B ∈ W} ∪ {¬[β]D | D 6∈ W ′} is PDL-consistent. For

this, the PDL-theorem [α][β]A → [α][β]A is used.

30

Canonical models

Theorem. Assume F is not a PDL theorem. We can construct a PDL

structure K′ and a state w of K′ such that (K′,w) |= ¬F .

Proof. To obtain a PDL structure that falsifies F we will collapse K by a

suitable Γ that contains F . The closure rules for Γ that will be needed are:

• Γ is closed under subformulae;

• [B?]D ∈ Γ implies B ∈ Γ;

• [α;β]B ∈ Γ implies [α][β]B ∈ Γ;

• [α ∪ β]B ∈ Γ implies [α]B, [β]B ∈ Γ;

• [α∗]B ∈ Γ implies [α][α∗]B ∈ Γ

A set Γ satisfying these conditions will be called closed.

31

Completeness/Decidability of PDL

Theorem. If Γ is the smallest closed set containing a given formula F , then

Γ is finite.

Proof. The point is to show that closing Subformulae(F) under the above

rules produces only finitely many new formulae.

Define a formula to be boxed if it is prefixed by a modal connective, i.e. is

of the form [α]B for some α and B. Each time we apply a closure rule, new

boxed formulae appear on the right side of the rule, and further rules may

apply to these new formulae.

But observe that the programs α indexing prefixes [α] on the right side are

in all cases shorter in length than those indexing the prefix on the left of

the rule in question. Hence we will eventually produce only atomic prefixes

on the right, and run out of rules to apply.

32

Completeness/Decidability of PDL

Having determined that Γ, the smallest closed set containing F , is finite,

we perform a Γ- filtration of K.

33

Completeness/Decidability of PDL

Reminder (modal logic K):

Fix a model K = (S,R, I) and a set Γ ⊆ FmaΣ that is closed under subformulae, i.e.

B ∈ Γ implies Subformulae(B) ⊆ Γ.

For each s ∈ S, define

Γs = {B ∈ Γ | (K, s) |= B}

and put s ∼Γ t iff Γs = Γt ,

Then s ∼Γ t iff for all B ∈ Γ, (K, s) |= B iff (K, t) |= B.

Fact: ∼Γ is an equivalence relation on S.

Let [s] = {t | s ∼Γ t} be the ∼Γ-equivalence class of s.

Let SΓ := {[s] | s ∈ S} be the set of all such equivalence classes.

34

Decidability/Completeness

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′).

Step 1: S′ := SΓ, where Γ = Subformulae(S)

Step 2: I ′ : (Π ∩ Γ) × S′ → {0, 1} def. by I ′(P, [s]) = I (P, s)

Step 3: R′ def. e.g. by: ([s], [t]) ∈ R′ iff ∃s′ ∈ [s],∃t′ ∈ [t]: (s′, t′) ∈ R

Same construction for PDL (only we need to define a relation for each program).

Theorem: K′ is a PDL structure (and a filtration of K.

If (K, s) 6|= F then (K′, [s]) |= ¬F .

7→ completeness.

Lemma. If Γ is finite, then SΓ is finite and has at most 2n elements, where n is the

number of elements of Γ.

7→ decidability

35

Conclusions

Although PDL appears to be more expressive than modal logic, it is still

decidable (it has the finite model propety).

Proof calculi for PDL exist.

For really reasoning about programs, often first order dynamic logic is

needed (undecidable)

36

