
Non-classical logics

Lecture 9: Applications of many-valued logics

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

2

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

3

Independence proofs

Task: Check independence of axioms in axiom systems [Bernays 1926]

Here: Example: Axiom system for propositional logic K1

4

Axiom system: K1

Inference rule: Modus Ponens:
H H⇒G

G

5

Independence

Definition: An axiom system K is independent iff for every axiom A ∈ K ,

A is not provable from K\{A}.

We will show that Ax2 is independent

6

Independence

Definition: An axiom system K is independent iff for every axiom A ∈ K ,

A is not provable from K\{A}.

We will show that Ax2 is independent

Idea: We introduce a 3-valued logic LK1
with truth values {0, u, 1},

D = {1} and operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

7

Independence

From 1,2,3 it follows that every formula which can be proved from K1\Ax2

is a tautology.

Hence – since Ax2 is not a tautology – K1\{Ax2} 6|= Ax2.

8

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

1. Routine (check all axioms in K1\{Ax2}).

9

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

2. Analyze the truth table of ⇒.

Assume H is a tautology and H ⇒ G is a tautology.

Let A : Π → {0, u, 1}.

Then A(H) = 1 and A(H ⇒ G) = 1, so A(G) = 1.

10

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

3. Let A : Π → {0, u, 1} with A(p1) = u and A(p2) = 0.

Then

A(((p1 ⇒ p2) ⇒ p1) ⇒ p1) = ((u ⇒ 0) ⇒ u) ⇒ u

= (u ⇒ u) ⇒ u = u.

11

Shape analysis

Shape Analysis is an important and well covered part of static program

analysis.

The central role in shape analysis is played by the set U of abstract stores.

U is perceived as the abstraction of the locations program variables can

point to.

In an object-oriented context U can be viewed as an abstraction of the set

of all objects existing at a snapshot during program execution

12

Shape analysis

U set of abstract stores.

X set of program variables.

Abstract state of a program at a given snapshot:

• Structure S = (U, {x : U → {0, 1}}x∈X ∪ Additional predicates)

x(v) = 1 (also denoted S |= x[v]) iff variable x points to store v .

For any abstract state S and any program variable x we require that the

unary predicate x holds true of at most one store, i.e. we require

S |= ∀s1∀s2((x(s1) ∧ x(s2)) → s1 = s2).

It is possible that x does not point to any store, i.e. S |= ∀s(¬x(s)).

13

Shape analysis

Additional predicates on S depend on the specific program/task

Example: next : U2 → {0, 1}

Examples of properties:

∃s x(s) x does not point to null

∀s(¬(x(s) ∧ t(s))) x and t do not point to the same store

∃s is(s) the list defined by next contains a shared node

We have used the abbreviation

is(s) = ∃s1∃s2(next(s1, s) ∧ next(s2, s) ∧ s1 6= s2)

Goal: prove for a given program, or a given program part, that a certain

property holds at every program state, or every stable program state.

14

Example: List reversing

Goal: Cycle-freeness of a list pointer structure is preserved by the algorithm

reversing the list.

Describing cycle-freeness

1. ¬∃v(next(v , n) n is the store representing the head of the list

2. ∀v∀w(next(m, v) ∧ next(m, w) → v = w) for all stores m reachable

from n,

3. ¬is(m) for all stores m reachable from n.

Remark:

If conditions 1.–3. hold then the list with entry point n cannot be cyclic.

We concentrate here on showing the preservation of the formula is(s).

15

Example: List reversing

Algorithm for list reversing:

class ReverseList {

int value;

ReverseList next;

public ReverseList reverse() {

ReverseList t, y= null, x = this;

while (x != null) {

st1: t=y;

st2: y=x;

st3: x=x.next;

st4: y.next = t;}

return y;}}

16

Example: List reversing

Task:

Assume that at the beginning of the while loop S |= ¬is(n) is true for all

stores n in the list.

Show that in the state Se after execution of the while loop again

Se |= ¬is(n) holds true for all n.

Problem: Since we cannot make any assumptions on the set of stores U at

the start of the while-loop we need to investigate infinitely many structures,

which obviously is not possible.

17

Shape analysis

Idea [Mooly Sagiv, Thomas Reps and Reinhard Wilhelm]

Use of three-valued structures to approximate two-valued structures.

More precisely, we try to find finitely many three-valued structures S3
1 , ...,S3

k

such that for an arbitrary two-valued abstract state S that may be possible

before the while-loop starts there is a surjective mapping F from S onto

one of the S3
i for 1 ≤ i ≤ k with S ⊑F S3

i , i.e.

• for all n-ary predicate symbols p and all b1, . . . , bn ∈ US we have:

p
S3

i
(F (b1), . . . ,F (bn)) ≤i pS(b1, . . . , bn)

bb where a ≤i b iff a = b or a = 1
2

(every possible initial state has an abstraction among S3
1 , ...,S3

k
)

18

Shape analysis

Plan:

Step 1:

For every three-valued structure S3
i we will define an algorithm to compute

a three-valued structure S3
i ,e .

We think of S3
i ,e as the three-valued state reached after execution of αr

(the body of the while-loop) when started in S3
i .

If S is a two-valued state it is fairly straight forward to compute the

two-valued state Se that is reached after executing αr starting with S, since

the commands in αr are so simple.

The construction of S3
i ,e will be done such that S ⊑F S3

i implies Se ⊑F S3
i ,e .

19

Shape analysis

Plan:

Step 2:

Determine a set M0 of abstract three-valued states to start with.

20

Shape analysis

Plan:

Step 3:

At iteration k(k ≥ 1) we are dealing with a set Mk−1 of abstract

three-valued states.

We try to prove for every S3 ∈ Mk−1 that if S3 |= ∀s(¬is(s))) then

S3
e |= (∀s(¬is(s))).

It will then follow that for any two-valued state S that is reachable with

k − 1 iterations of αr :

S |= ∀¬is(s) ⇒ Se |= ∀s¬is(s)

If we succeed we set

Mk = {S3
e |S

3 ∈ Mk−1}

21

Shape analysis

Plan:

Step 3 (continued)

If Mk ⊆ Mk−1 we are finished and the claim is positively established.

Otherwise we repeat step 3 with Mk .

If for one S3 ∈ Mk−1, ∀s(¬is(s))) evaluated to 0 then our conjecture was

false.

If for one S3 ∈ Mk−1, ∀s(¬is(s))) evaluated to 1
2

then this result is

inconclusive. Should this happen we need to iterate the procedure with a

larger set M′

k−1.

There is, unfortunately, no guarantee that this iteration will come to a con-

clusive end in the general case.

22

Shape analysis

[Example on the blackboard]

cf. also P.H. Schmidt’s lecture notes, Section 2.4.4 (pages

91-100).

23

