Non-classical logics

Lecture 6: Many-valued logics (Part 2)

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Until now

- Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics

1 Syntax

- propositional variables Π
- logical operations \mathcal{F}

Propositional Formulas $F_{\Pi}^{\mathcal{F}}$ is the set of propositional formulas over Π defined as follows:

$$
\begin{array}{rlrl}
F, G, H & ::= & c & \text { (c constant logical operator) } \\
& \mid \quad P, \quad P \in \Pi & \text { (atomic formula) } \\
& \mid \quad f\left(F_{1}, \ldots, F_{n}\right) & (f \in \mathcal{F} \text { with arity } n \text {) }
\end{array}
$$

Semantics

We assume that a set $M=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators
$f \in \mathcal{F}$ with arity $n \quad \mapsto \quad f_{M}: M^{n} \rightarrow M$ (truth tables for the operations in \mathcal{F})
2. The meaning of the propositional variables

A Π-valuation is a $\operatorname{map} \mathcal{A}: \Pi \rightarrow M$.
3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols $\left(M,\left\{f_{M}\right\}_{f \in \mathcal{F}}\right)$, any Π-valuation $\mathcal{A}: \Pi \rightarrow M$, can be extended to $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow M$.

$$
\begin{aligned}
\mathcal{A}^{*}(c) & =c_{M}(\text { for every constant operator } c \in \mathcal{F}) \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}\left(f\left(F_{1}, \ldots, F_{n}\right)\right) & =f_{M}\left(\mathcal{A}^{*}\left(F_{1}\right), \ldots, \mathcal{A}^{*}\left(F_{n}\right)\right)
\end{aligned}
$$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^{*}.

Models, Validity, and Satisfiability

$M=\left\{w_{1}, \ldots, w_{m}\right\}$ set of truth values
$D \subseteq M$ set of designated truth values
$\mathcal{A}: \Pi \rightarrow M$.
F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ holds under $\mathcal{A})$:

$$
\mathcal{A} \models F: \Leftrightarrow \mathcal{A}(F) \in D
$$

F is valid (or is a tautology):

$$
\models F: \Leftrightarrow \mathcal{A} \models F \text { for all П-valuations } \mathcal{A}
$$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$.
Otherwise F is called unsatisfiable (or contradictory).

The logic \mathcal{L}_{3}

Set of truth values: $M=\{1, u, 0\}$.
Designated truth values: $D=\{1\}$.
Logical operators: $\mathcal{F}=\{\vee, \wedge, \neg, \sim\}$.
Truth tables for the operators

V	0	u	1
0	0	u	1
u	u	u	1
1	1	1	1

\wedge	0	u	1
0	0	0	0
u	0	u	u
1	0	u	1

$v(F \wedge G)=\min (v(F), v(G))$
$v(F \vee G)=\max (v(F), v(G))$
Under the assumption that $0<u<1$.

Truth tables for negations

A	$\neg A$	$\sim A$	$\sim \neg A$	$\sim \sim A$	$\neg \neg A$	$\neg \sim A$
1	0	0	1	1	1	1
u	u	1	1	0	u	0
0	1	1	0	0	0	0

Translation in natural language:
$v(A)=1 \mathrm{gdw} . A$ is true
$v(\neg A)=1 \mathrm{gdw} . A$ is false
$v(\sim A)=1 \mathrm{gdw} . A$ is not true
$v(\sim \neg A)=1 \mathrm{gdw} . A$ is not false

First-order many-valued logic

1. Syntax

- non-logical symbols (domain-specific)
\Rightarrow terms, atomic formulas
- logical symbols \mathcal{F}, quantifiers
\Rightarrow formulae

Signature;Variables; Terms/Atoms/Formulae

Signature: $\Sigma=(\Omega, \Pi)$, where

- Ω : set of function symbols f with arity $n \geq 0$, written f / n,
- Π : set of predicate symbols p with arity $m \geq 0$, written p / m.

Variables: Countably infinite set X.
Terms: As in classical logic
Atoms: (atomic formulas) over Σ are formed according to this syntax:
$A, B \quad::=$
$p\left(s_{1}, \ldots, s_{m}\right)$
,$p / m \in \Pi$

Formulae:

\mathcal{F} set of logical operations; $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k}\right\}$ set of quantifiers
$F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

F, G, H	$:=$	c	$(c \in \mathcal{F}$, constant $)$
	A	$f\left(F_{1}, \ldots, F_{n}\right)$	$(f \in \mathcal{F}$ with arity $n)$
	$Q \times F$	$(Q \in \mathcal{Q}$ is a quantifier $)$	

Semantics

- Truth values; Interpretation of logical symbols $M=\{1, \ldots, m\}$ set of truth values; $D \subseteq M$ set of designated truth values.
- Truth tables for the logical operations: $\left\{f_{M}: M^{n} \rightarrow M \mid f / n \in \mathcal{F}\right\}$
- "Truth tables" for the quantifiers: $\left\{Q_{M}: \mathcal{P}(M) \rightarrow M \mid Q \in \mathcal{Q}\right\}$
- Interpretation of non-logical variables: M-valued Σ-structure

$$
\mathcal{A}=\left(U,\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}}: U^{m} \rightarrow M\right)_{p / m \in \Pi}\right)
$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A}.

- Variable assignments: $\beta: X \rightarrow \mathcal{A}$ and extensions to terms $\mathcal{A}(\beta): T_{\Sigma} \rightarrow \mathcal{A}$ as in classical logic.
- Truth value of a formula in \mathcal{A} with respect to $\beta \mathcal{A}(\beta): \mathrm{F}_{\Sigma}(X) \rightarrow M$ is defined inductively as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(c) & =c_{M} \\
\mathcal{A}(\beta)\left(p\left(s_{1}, \ldots, s_{n}\right)\right) & =p_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right) \in M \\
\mathcal{A}(\beta)\left(f\left(F_{1}, \ldots, F_{n}\right)\right) & =f_{M}\left(\mathcal{A}(\beta)\left(F_{1}\right), \ldots, \mathcal{A}(\beta)\left(F_{n}\right)\right) \\
\mathcal{A}(\beta)(Q \times F) & =Q_{M}(\{\mathcal{A}(\beta[\times \mapsto a])(F) \mid a \in U\})
\end{aligned}
$$

First-order version of \mathcal{L}_{3}

$$
\begin{aligned}
& M=\{0, u, 1\}, \quad D=\{1\} \\
& \mathcal{F}=\{\vee, \wedge, \neg, \sim\} ; \quad \text { truth values as the propositional version } \\
& \mathcal{Q}=\{\forall, \exists\} \\
& \forall_{M}(S)=\left\{\begin{array}{ll}
1 & \text { if } S=\{1\} \\
0 & \text { if } 0 \in S \\
u & \text { otherwise }
\end{array} \quad \exists_{M}(S)= \begin{cases}1 & \text { if } 1 \in S \\
0 & \text { if } S=\{0\} \\
u & \text { otherwise }\end{cases} \right. \\
& \mathcal{A}(\beta)(\forall x F(x))=1 \quad \text { iff } \quad \text { for all } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=1 \\
& \mathcal{A}(\beta)(\forall x F(x))=0 \quad \text { iff } \quad \text { for some } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=0 \\
& \mathcal{A}(\beta)(\forall x F(x))=u \quad \text { otherwise } \\
& \mathcal{A}(\beta)(\exists x F(x))=1 \quad \text { iff } \quad \text { for some } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=1 \\
& \mathcal{A}(\beta)(\exists x F(x))=0 \quad \text { iff } \quad \text { for all } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=0 \\
& \mathcal{A}(\beta)(\forall x F(x))=u \quad \text { otherwise }
\end{aligned}
$$

Models, Validity, and Satisfiability

F is valid in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models F \quad: \Leftrightarrow \quad \mathcal{A}(\beta)(F) \in D
$$

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F)$:

$$
\mathcal{A} \models F \quad: \Leftrightarrow \quad \mathcal{A}, \beta \models F, \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

F is valid:

$$
\models F \quad: \Leftrightarrow \quad \mathcal{A} \models F, \text { for all } \mathcal{A} \in \Sigma \text {-alg }
$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$.
Otherwise F is called unsatisfiable.

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Goal: Define a version of implication ' \Rightarrow ' such that

$$
F \models G \text { iff } \models F \Rightarrow G
$$

Weak implication

The logical operations \supset and \equiv are introduced as defined operations:
Weak implication

$$
F \supset G:=\sim F \vee G
$$

Weak equivalence

$$
F \equiv G:=(F \supset G) \wedge(G \supset F)
$$

$F \supset G$	1	u	0
1	1	u	0
u	1	1	1
0	1	1	1

$F \equiv G$	1	u	0
1	1	u	0
u	u	1	1
0	0	1	1

Strong implication

The logical operations \rightarrow and \leftrightarrow are introduced as defined operations:
Strong implication

$$
F \rightarrow G:=\neg F \vee G
$$

Strong equivalence

$$
F \leftrightarrow G:=(F \rightarrow G) \wedge(G \rightarrow F)
$$

$F \rightarrow G$	1	u	0
1	1	u	0
u	1	u	u
0	1	1	1

$F \leftrightarrow G$	1	u	0
1	1	u	0
u	u	u	u
0	0	u	1

Comparisons

Implications

$A \supset B$	1	u	0
1	1	u	0
u	1	1	1
0	1	1	1

$A \rightarrow B$	1	u	0
1	1	u	0
u	1	u	u
0	1	1	1

Equivalences

$A \equiv B$	1	u	0
1	1	u	0
u	u	1	1
0	0	1	1

$A \leftrightarrow B$	1	u	0
1	1	u	0
u	u	u	u
0	0	u	1

Equivalences

$$
\begin{array}{rlrl}
A \supset B:=\sim A \vee B & A \rightarrow B:=\neg A \vee B \\
A \equiv B & :=(A \supset B) \wedge(B \supset A) & A \leftrightarrow B:=(A \rightarrow B) \wedge(B \rightarrow A) \\
A \approx B:=(A \equiv B) \wedge(\neg A \equiv \neg B) & A \Leftrightarrow B:=(A \leftrightarrow B) \wedge(\neg A \leftrightarrow \neg B) \\
A \text { id } B:=\sim \sim(A \approx B) & &
\end{array}
$$

A	B	$A \equiv B$	$A \leftrightarrow B$	$A \approx B$	$A \Leftrightarrow B$	A id B
1	1	1	1	1	1	1
1	u	u	u	u	u	0
1	0	0	0	0	0	0
u	1	u	u	u	u	0
u	u	1	u	1	u	1
u	0	1	u	u	u	0
0	1	0	0	0	0	0
0	u	1	u	u	u	0
0	0	1	1	1	1	1

Some \mathcal{L}_{3} tautologies

$\neg \neg A$ id A
$\sim \sim A \equiv A$
$\neg \sim A \equiv A$
$\neg(A \vee B)$ id $\neg A \wedge \neg B$
$\neg(A \wedge B)$ id $\neg A \vee \neg B$
$\neg(\forall x A)$ id $\exists x \neg A$
$\neg(\exists x A)$ id $\forall x \neg A$
$\sim(\forall x A)$ id $\exists x \sim A$
$(A \wedge B) \vee C$ id $(A \vee C) \wedge(B \vee C)$
$(A \vee B) \wedge C$ id $(A \wedge C) \vee(B \wedge C)$
$\sim(A \vee B)$ id $\sim A \wedge \sim B$
$\sim(A \wedge B)$ id $\sim A \vee \sim B$
$\sim(\exists x A)$ id $\forall x \sim A$

No occurrence of \neg

Lemma. Let F be a formula which does not contain the strong negation \neg. Then the following are equivalent:
(1) F is an \mathcal{L}_{3}-tautology.
(2) F is a two-valued tautology (negation is identified with \sim)

Proof.
" \Rightarrow " Every \mathcal{L}_{3}-tautology is a 2 -valued tautology (the restriction of the operators \vee, \wedge, \sim to $\{0,1\}$ coincides with the Boolean operations \vee, \wedge, \neg).
" \Leftarrow " Assume that F is a two-valued tautology. Let \mathcal{A} be an \mathcal{L}_{3}-structure and $\beta: X \rightarrow \mathcal{A}$ be a valuation. We construct a two-valued structure \mathcal{A}^{\prime} from \mathcal{A}, which agrees with \mathcal{A} except for the fact that whenever $p_{\mathcal{A}}(\bar{x})=u$ we define $p_{\mathcal{A}^{\prime}}(\bar{x})=0$. Then $\mathcal{A}^{\prime}(\beta)(F)=1$. It can be proved that

$$
\begin{aligned}
& \mathcal{A}(\beta)(F)=1 \Rightarrow \mathcal{A}^{\prime}(\beta)(F)=1 \\
& \mathcal{A}(\beta)(F) \in\{0, u\} \Rightarrow \mathcal{A}^{\prime}(\beta)(F)=0 \\
& \text { Hence, } \mathcal{A}(\beta)(F)=1
\end{aligned}
$$

Exercises

1. Let F be a formula which does not contain \sim. Then F is not a tautology.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.

Exercises

1. Let F be a formula which does not contain \sim. Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term $t, \forall x q(x) \supset q(x)[t / x]$ is an \mathcal{L}_{3}-tautology.
3. Show that $\forall x q(x) \rightarrow q(x)[t / x]$ is not a tautology.

Exercises

1. Let F be a formula which does not contain \sim. Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term $t, \forall x q(x) \supset q(x)[t / x]$ is an \mathcal{L}_{3}-tautology.
3. Show that $\forall x q(x) \rightarrow q(x)[t / x]$ is not a tautology.

Solution. $q \rightarrow q$ is not a tautology.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology. true

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable. true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable. true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.
true
If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.
true
If $F \equiv G$ is a tautology and F is a non-tautology then G is a
non-tautology.
true
If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
false
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Functional completeness

Definition A family ($M,\left\{f_{M}: M^{n} \rightarrow M\right\}_{f \in \mathcal{F}}$) is called functionally complete if every function $g: M^{m} \rightarrow M$ can be expressed in terms of the functions $\left\{f_{M}: M^{n} \rightarrow M \mid f \in \mathcal{F}\right\}$.

Definition A many-valued logic with finite set of truth values M and logical operators \mathcal{F} is called functionally complete if for every function $g: M^{m} \rightarrow M$ there exists a propositional formula F of the logic such that for every $\mathcal{A}: \Pi \rightarrow M$
$g\left(\mathcal{A}\left(x_{1}\right), \ldots, \mathcal{A}\left(x_{m}\right)\right)=\mathcal{A}(F)$.

Example: Propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$							
P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Propositional logic

$$
F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)
$$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

DNF: $\quad(\neg P \wedge Q \wedge \neg R) \vee(\neg P \wedge Q \wedge R) \vee(P \wedge \neg Q \wedge R) \vee(P \wedge Q \wedge R)$

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every $g:\{0,1\}^{m} \rightarrow\{0,1\}$ let:
$F=\bigvee_{\left(a_{1}, \ldots, a_{m}\right) \in\{0,1\}}\left(c_{g}\left(a_{1}, \ldots, a_{m}\right) \wedge P_{1}^{a_{1}} \wedge \cdots \wedge P_{m}^{a_{m}}\right)$
where $P^{a}= \begin{cases}P & \text { if } a=1 \\ \neg P & \text { if } a=0\end{cases}$
(Then clearly $\mathcal{A}(P)^{a}=1$ iff $\mathcal{A}(P)=$ a, i.e. $1^{1}=0^{0}=1 ; 1^{0}=0^{1}=0$.)
It can be easily checked that for every $\mathcal{A}:\left\{P_{1}, \ldots, P_{m}\right\} \rightarrow\{0,1\}$ we have:
$g\left(\mathcal{A}\left(P_{1}\right), \ldots, \mathcal{A}\left(P_{m}\right)\right)=\mathcal{A}(F)$.

