
Non-classical logics

Lecture 6: Many-valued logics (Part 2)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation

Syntax

Semantics

2

1 Syntax

• propositional variables Π

• logical operations F

Propositional Formulas F
F
Π is the set of propositional formulas over

Π defined as follows:

F , G , H ::= c (c constant logical operator)

| P, P ∈ Π (atomic formula)

| f (F1, . . . , Fn) (f ∈ F with arity n)

3

Semantics

We assume that a set M = {w1, w2, . . . , wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M (truth tables for the operations in F)

2. The meaning of the propositional variables

A Π-valuation is a map A : Π → M.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fM}f ∈F), any Π-valuation

A : Π → M, can be extended to A∗ : Σ-formulas → M.

A∗
(c) = cM (for every constant operator c ∈ F)

A∗
(P) = A(P)

A∗(f (F1, . . . , Fn)) = fM (A∗(F1), . . . ,A∗(Fn))

For simplicity, we write A instead of A∗.

4

Models, Validity, and Satisfiability

M = {w1, . . . ,wm} set of truth values

D ⊆ M set of designated truth values

A : Π → M.

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) ∈ D

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

5

The logic L3

Set of truth values: M = {1, u, 0}.

Designated truth values: D = {1}.

Logical operators: F = {∨,∧,¬,∼}.

Truth tables for the operators

∨ 0 u 1

0 0 u 1

u u u 1

1 1 1 1

∧ 0 u 1

0 0 0 0

u 0 u u

1 0 u 1

v(F ∧ G) = min(v(F), v(G))

v(F ∨ G) = max(v(F), v(G))

Under the assumption that 0 < u < 1.

6

Truth tables for negations

A ¬A ∼ A ∼ ¬A ∼∼ A ¬¬A ¬ ∼ A

1 0 0 1 1 1 1

u u 1 1 0 u 0

0 1 1 0 0 0 0

Translation in natural language:

v(A) = 1 gdw. A is true

v(¬A) = 1 gdw. A is false

v(∼ A) = 1 gdw. A is not true

v(∼ ¬A) = 1 gdw. A is not false

7

First-order many-valued logic

1. Syntax

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols F , quantifiers

⇒ formulae

8

Signature;Variables; Terms/Atoms/Formulae

Signature: Σ = (Ω, Π), where
• Ω: set of function symbols f with arity n ≥ 0, written f /n,
• Π: set of predicate symbols p with arity m ≥ 0, written p/m.

Variables: Countably infinite set X .

Terms: As in classical logic

Atoms: (atomic formulas) over Σ are formed according to this syntax:

A, B ::= p(s1, ..., sm) , p/m ∈ Π

Formulae:

F set of logical operations; Q = {Q1, . . . , Qk} set of quantifiers

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F , G , H ::= c (c ∈ F , constant)

| A (atomic formula)

| f (F1, . . . , Fn) (f ∈ F with arity n)

| QxF (Q ∈ Q is a quantifier)

9

Semantics

• Truth values; Interpretation of logical symbols M = {1, . . . , m} set of truth

values; D ⊆ M set of designated truth values.

– Truth tables for the logical operations: {fM : Mn → M|f /n ∈ F}

– “Truth tables” for the quantifiers: {QM : P(M) → M|Q ∈ Q}

• Interpretation of non-logical variables: M-valued Σ-structure

A = (U, (fA : Un → U)f /n∈Ω, (pA : Um → M)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

• Variable assignments: β : X → A and extensions to terms A(β) : TΣ → A as

in classical logic.

• Truth value of a formula in A with respect to β A(β) : FΣ(X) → M is defined

inductively as follows:

A(β)(c) = cM

A(β)(p(s1, . . . , sn)) = pA(A(β)(s1), . . . ,A(β)(sn)) ∈ M

A(β)(f (F1, . . . , Fn)) = fM (A(β)(F1), . . . ,A(β)(Fn))

A(β)(QxF) = QM ({A(β[x 7→ a])(F) | a ∈ U})

10

First-order version of L3

M = {0, u, 1}, D = {1}

F = {∨,∧,¬,∼}; truth values as the propositional version

Q = {∀,∃}

∀M (S) =

8

>

>

<

>

>

:

1 if S = {1}

0 if 0 ∈ S

u otherwise

∃M (S) =

8

>

>

<

>

>

:

1 if 1 ∈ S

0 if S = {0}

u otherwise

A(β)(∀xF (x)) = 1 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∀xF (x)) = 0 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise

A(β)(∃xF (x)) = 1 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∃xF (x)) = 0 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise

11

Models, Validity, and Satisfiability

F is valid in A under assignment β:

A, β |= F :⇔ A(β)(F) ∈ D

F is valid in A (A is a model of F):

A |= F :⇔ A, β |= F , for all β ∈ X → UA

F is valid:

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A, β |= F .

Otherwise F is called unsatisfiable.

12

Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F) ∈ D.

13

Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F) ∈ D.

Goal: Define a version of implication ’⇒’ such that

F |= G iff |= F ⇒ G

14

Weak implication

The logical operations ⊃ and ≡ are introduced as defined operations:

Weak implication

F ⊃ G :=∼ F ∨ G

Weak equivalence

F ≡ G := (F ⊃ G) ∧ (G ⊃ F)

F ⊃ G 1 u 0

1 1 u 0

u 1 1 1

0 1 1 1

F ≡ G 1 u 0

1 1 u 0

u u 1 1

0 0 1 1

15

Strong implication

The logical operations → and ↔ are introduced as defined operations:

Strong implication

F → G := ¬F ∨ G

Strong equivalence

F ↔ G := (F → G) ∧ (G → F)

F → G 1 u 0

1 1 u 0

u 1 u u

0 1 1 1

F ↔ G 1 u 0

1 1 u 0

u u u u

0 0 u 1

16

Comparisons

Implications

A ⊃ B 1 u 0

1 1 u 0

u 1 1 1

0 1 1 1

A → B 1 u 0

1 1 u 0

u 1 u u

0 1 1 1

Equivalences

A ≡ B 1 u 0

1 1 u 0

u u 1 1

0 0 1 1

A ↔ B 1 u 0

1 1 u 0

u u u u

0 0 u 1

17

Equivalences

A ⊃ B := ∼ A ∨ B A → B := ¬A ∨ B

A ≡ B := (A ⊃ B) ∧ (B ⊃ A) A ↔ B := (A → B) ∧ (B → A)

A ≈ B := (A ≡ B) ∧ (¬A ≡ ¬B) A ⇔ B := (A ↔ B) ∧ (¬A ↔ ¬B)

A id B := ∼∼ (A ≈ B)

A B A ≡ B A ↔ B A ≈ B A ⇔ B A id B

1 1 1 1 1 1 1

1 u u u u u 0

1 0 0 0 0 0 0

u 1 u u u u 0

u u 1 u 1 u 1

u 0 1 u u u 0

0 1 0 0 0 0 0

0 u 1 u u u 0

0 0 1 1 1 1 1

18

Some L3 tautologies

¬¬A id A (A ∧ B) ∨ C id (A ∨ C) ∧ (B ∨ C)

∼∼ A ≡ A (A ∨ B) ∧ C id (A ∧ C) ∨ (B ∧ C)

¬ ∼ A ≡ A

¬(A ∨ B) id ¬A ∧ ¬B ∼ (A ∨ B) id ∼ A∧ ∼ B

¬(A ∧ B) id ¬A ∨ ¬B ∼ (A ∧ B) id ∼ A∨ ∼ B

¬(∀xA) id ∃x¬A ∼ (∀xA) id ∃x ∼ A

¬(∃xA) id ∀x¬A ∼ (∃xA) id ∀x ∼ A

19

No occurrence of ¬

Lemma. Let F be a formula which does not contain the strong negation ¬.

Then the following are equivalent:

(1) F is an L3-tautology.

(2) F is a two-valued tautology (negation is identified with ∼)

Proof.

“⇒” Every L3-tautology is a 2-valued tautology (the restriction of the

operators ∨,∧,∼ to {0, 1} coincides with the Boolean operations ∨,∧,¬).

“⇐” Assume that F is a two-valued tautology. Let A be an L3-structure

and β : X → A be a valuation. We construct a two-valued structure A′

from A, which agrees with A except for the fact that whenever pA(x) = u

we define pA′(x) = 0. Then A′(β)(F) = 1. It can be proved that

A(β)(F) = 1 ⇒ A′(β)(F) = 1

A(β)(F) ∈ {0, u} ⇒ A′(β)(F) = 0.

Hence, A(β)(F) = 1.

20

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

21

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

22

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

2. Prove that for every term t, ∀xq(x) ⊃ q(x)[t/x] is an L3-tautology.

3. Show that ∀xq(x) → q(x)[t/x] is not a tautology.

23

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

2. Prove that for every term t, ∀xq(x) ⊃ q(x)[t/x] is an L3-tautology.

3. Show that ∀xq(x) → q(x)[t/x] is not a tautology.

Solution. q → q is not a tautology.

24

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F) ∈

{0, 1}.

25

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F) ∈

{0, 1}.

26

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F) ∈

{0, 1}.

27

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

true

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F) ∈

{0, 1}.

28

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

true

If F ≡ G is a tautology and F is two-valued then G is two-valued.

false

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F) ∈

{0, 1}.

29

Functional completeness

Definition A family (M, {fM : Mn → M}f ∈F) is called functionally

complete if every function g : Mm → M can be expressed in terms of the

functions {fM : Mn → M | f ∈ F}.

Definition A many-valued logic with finite set of truth values M and

logical operators F is called functionally complete if for every function

g : Mm → M there exists a propositional formula F of the logic such that

for every A : Π → M

g(A(x1), . . . ,A(xm)) = A(F).

30

Example: Propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

31

Example: Propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

32

Example: Propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

DNF: (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ R)

33

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every g : {0, 1}m → {0, 1} let:

F =
W

(a1 ,...,am)∈{0,1}(cg (a1, . . . , am) ∧ P
a1
1 ∧ · · · ∧ P

am
m)

where Pa =

8

<

:

P if a = 1

¬P if a = 0

(Then clearly A(P)a = 1 iff A(P) = a, i.e. 11 = 00 = 1; 10 = 01 = 0.)

It can be easily checked that for every A : {P1, . . . ,Pm} → {0, 1} we have:

g(A(P1), . . . ,A(Pm)) = A(F).

34

