Non-classical logics

Lecture 6: Many-valued logics (Part 2)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

e Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics

1 Syntax

e propositional variables Il

e logical operations F

Propositional Formulas F7 is the set of propositional formulas over
[1 defined as follows:

F.GGH = ¢ (c constant logical operator)
| P, Pecll (atomic formula)
| f(Fi,...,Fn) (f € F with arity n)

Semantics

We assume that a set M = {wy, wp, ..., wp} of truth values is given.
We assume that a subset D C M of designated truth values is given.

1. Meaning of the logical operators
f € F witharityn +— fyy: M" — M (truth tables for the operations in F)

2. The meaning of the propositional variables
A [l-valuationisa map A : [1 — M.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fy }rc), any [-valuation
A : 1 — M, can be extended to A" : X-formulas — M.

A™(c) = cp(for every constant operator ¢ € F)
A"(P) = A(P)
A" (F(Fy, ..., F)) = fu(A*(F), ..., A" (F,))

For simplicity, we write A instead of A*.

Models, Validity, and Satisfiability

M = {wi, ..., wn} set of truth values
D C M set of designated truth values
A: M — M.

F is valid in A (A is a model of F; F holds under A):

AE=F e AF)eD

F is valid (or is a tautology):
= F : < A = F for all MN-valuations A

F is called satisfiable iff there exists an A such that A = F.

Otherwise F is called unsatisfiable (or contradictory).

The logic L3

Set of truth values: M = {1, u, 0}.
Designated truth values: D = {1}.
Logical operators: F = {V, A, =, ~}.

Truth tables for the operators

v |10 uvu 1 AlO u 1
O[O0 u 1 OO0 O O
u u u 1 u | 0 u u
1 1 1 1 1 10 u 1

v(F A G) = min(v(F), v(G))
v(F vV G) = max(v(F), v(G))

Under the assumption that 0 < v < 1.

Truth tables for negations

Al Al ~A | ~—A|~~A| —A| ~A
1 (0 0 1 1 1 1
u | u 1 1 0 u 0
0|1 1 0 0 0 0

Translation in natural language:
v(A) =1 gdw. A is true

v(—A) =1 gdw. A is false

v(~ A) =1 gdw. A is not true

v(~ —A) =1 gdw. A is not false

First-order many-valued logic

1. Syntax

e non-logical symbols (domain-specific)

= terms, atomic formulas

e logical symbols F, quantifiers

= formulae

Signature;Variables; Terms/Atoms/Formulae

Signature: ¥ = (2,), where
e (2: set of function symbols f with arity n > 0, written f/n,
e [1: set of predicate symbols p with arity m > 0, written p/m.

Variables: Countably infinite set X.
Terms: As in classical logic

Atoms: (atomic formulas) over ¥ are formed according to this syntax:

A, B = p(si, .., Sm) , p/m €T
Formulae:
F set of logical operations; Q@ = {Q1, ..., Q«} set of quantifiers

Fs(X) is the set of first-order formulas over X defined as follows:

F,G, H = c (c € F, constant)
| A (atomic formula)
| f(Fi,.... Fn) (f € F with arity n)
|

QxF (Q € Q is a quantifier)

Semantics

e Truth values; Interpretation of logical symbols M = {1,..., m} set of truth
values; D C M set of designated truth values.
— Truth tables for the logical operations: {fy; : M" — M|f/n € F}
— “Truth tables” for the quantifiers: {Qy : P(M) — M|Q € Q}

e Interpretation of non-logical variables: M-valued 2 -structure

A= (U, (fa : U" — U)t/nca, (pa:U" — M)p/men)
where U # (is a set, called the universe of A.

e Variable assignments: 5 : X — A and extensions to terms A(B) : Ty — A as
in classical logic.

e Truth value of a formula in A with respect to 8 A((3) : Fx(X) — M is defined
inductively as follows:

A(B)(c) = cm
A(B)(p(s1, - ... sn)) = palA(B)(s1), ..., A(B)(sn)) € M
AB)(F(F1, - ... Fa)) = fu(A(B)(F). - ... A(B)(Fn))
A(B)QxF) = Qu({A(B[x — a])(F) | a € U})

10

First-order version of L3

M={0,u1l}, D={1}

F = {\/, N\, —, N};
Q = {V, 3}

p

1
Vm(S)=< 0

u

A(B)(VxF(x)) = 1
A(B)(VxF(x)) = 0
A(B)(VxF(x)) = u

A(B)(3xF(x)) = 1
A(B)(3xF(x)) = 0
A(B)(xF(x)) = u

truth values as the propositional version

if S = {1}

if0eS

otherwise

iff for all a € U4,

iff for some a € Uy4,
otherwise

iff for some a € Uy4,

iff for all a € U4,

otherwise

(1 if1es

Iu(S) =< 0 ifS={0}

| v otherwise

A(B[x — a])(F(x)) = 1
A(B[x — a])(F(x)) =0

A(B[x — a])(F(x)) = 1
A(B[x — a])(F(x)) = 0

11

Models, Validity, and Satisfiability

F is valid in A under assignment (:

ABEF = APB)F)eD

F is valid in A (A is a model of F):
A=F & ABEF, forall Be X — Ug

F is valid:
=F & AEF, forall Ac x-alg

F is called satisfiable iff there exist A and (8 such that A, = F.

Otherwise F is called unsatisfiable.

12

Entailment

NE=F &

forall A € X-algand 8 € X — Ux:
if A(B)(G) € D, for all G € N, then A(B)(F) € D.

13

Entailment

NE=F: & forall Ac X-algand B € X — Uax:
if A(8)(G) € D, forall G € N, then A(8)(F) € D.

Goal: Define a version of implication '=" such that

FEGIff=EF=G

14

Weak implication

The logical operations D and = are introduced as defined operations:
Weak implication

FO>OG:=~FVG
Weak equivalence

F=G:=(FD>G)A(GDF)

FOG|1|u|O F=G||1|u|O
1 1 u]|0 1 1|{u]|0
u 11111 u ul|l]1l
0 11171 0 011

Strong implication

The logical operations — and < are introduced as defined operations:
Strong implication

F—G:==-FVG
Strong equivalence

F—G:=(F—G)AN(G—F)

F—-G|1|u|O F—G|1|u|O0
1 1| u |0 1 1 |u]|0
u 1| u|u u uluiu
0 1111 0 0 |uw|l

Comparisons

Implications

ADB

= = O | O

Equivalences

= = O |l O

A— B 0
1 0
u u
0 1
A— B 0
1 0
u u
0 1

17

Equivalences

A—B:=(A— B)AN(B— A)
As B:= (A« B)N(—A < —B)

ADB:= ~AVB A— B:= -AVB
A=B:=(ADB)A(BDA)

Ax B :=(A=B)A(-A=-B)

Aid B:= ~~ (A= B)

A| B A=B | A~ B | AxxB | A< B | AidB
1 1 1 1 1 1 1
1 u u u u u 0
1 0 0 0 0 0 0
u 1 u u u u 0
u u 1 u 1 u 1
u | 0 1 u u u 0
0 1 0 0 0 0 0
0 u 1 u u u 0
0 0 1 1 1 1 1

18

Some L3 tautologies

——Aid A
~~ A=A
-—~A=A

—-(AV B) id —AA—-B
-(AAB)id -AV —-B

—(VxA) id Ix-A
—(3dxA) id Vx-A

(AANB)VCid(Av C)A(BV ()
(AVB)ACid(AANC)V(BAC)

~(AvB)id ~AAN~ B
~(AAB)id ~AV ~ B

~ (VxA) id Ix ~ A
~ (3xA) id Vx ~ A

19

No occurrence of —

Lemma. Let F be a formula which does not contain the strong negation —.
Then the following are equivalent:

(1) F is an L3-tautology.
(2) F is a two-valued tautology (negation is identified with ~)

Proof.

“=" Every L3-tautology is a 2-valued tautology (the restriction of the
operators V, A, ~ to {0, 1} coincides with the Boolean operations V, A, —).

“<" Assume that F is a two-valued tautology. Let A be an L3-structure
and 8 : X — A be a valuation. We construct a two-valued structure A’
from A, which agrees with A except for the fact that whenever p4(X) = u
we define p 4/(X) = 0. Then A’(B)(F) = 1. It can be proved that
A(B)(F) = 1 = A/(B)(F) = 1
A(B)(F) € {0, u} = A’(B)(F) = 0.
Hence, A(B)(F) = 1.

20

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

21

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

22

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term t, Vxq(x) D q(x)[t/x] is an L3-tautology.

3. Show that Vxq(x) — g(x)[t/x] is not a tautology.

23

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term t, Vxq(x) D q(x)[t/x] is an L3-tautology.

3. Show that Vxq(x) — g(x)[t/x] is not a tautology.

Solution. g — g is not a tautology.

24

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

If F = G is a tautology and F is satisfiable then G is satisfiable.

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €
{0,1}.

25

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €
{0,1}.

26

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 3, A(B)(F) €
{0,1}.

27

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

true

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €
{0,1}.

28

Exercises

4. Which of the following statements are true?
If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

true

If F = G is a tautology and F is two-valued then G is two-valued.

false

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 3, A(B)(F) €
{0,1}.

29

Functional completeness

Definition A family (M, {fyy : M" — M}fcr) is called functionally
complete if every function g : M™ — M can be expressed in terms of the

functions {fy; : M" — M | f € F}.

Definition A many-valued logic with finite set of truth values M and
logical operators F is called functionally complete if for every function
g : M™ — M there exists a propositional formula F of the logic such that

forevery A: 1 — M
g(A(x1), ..., A(xm)) = A(F).

30

Example: Propositional logic

F: (PVQ)AN((-PAQ)VR)
Pl Q|R|((PVQ) | -P|(—PAQ)| (m-PANQR)VR)|F
O] 0] O 0 1 0 0 0
0 0 1 0 1 0 1 0
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0[O0 1 0 0 0 0
1 0 1 1 0 0 1 1
1 1 0 1 0 0 0 0
1 1 1 1 0 0 1 1

31

Example: Propositional logic

F: (PVQ)AN((-PAQ)VR)
Pl Q|R|((PVQ) | -P|(—PAQ)| (m-PANQR)VR)|F
olo]o 0 1 0 0 0
0olo]|1 0 1 0 1 0
ol 1]o0 1 1 1 1 1
o 1]1 1 1 1 1 1
1] 0o 1 0 0 0 0
1101 1 0 0 1 1
1] 1] o0 1 0 0 0 0
1] 1] 1 1 0 0 1 1

32

Example: Propositional logic

F: (PVQA(-PAQ)VR)

Pl Q|R|((PVQ) | -P|(—PAQ)| (m-PANQR)VR)|F
olo]o 0 1 0 0 0
0olo]|1 0 1 0 1 0
ol 1]o0 1 1 1 1 1
o 1]1 1 1 1 1 1
1] 0o 1 0 0 0 0
1101 1 0 0 1 1
1] 1] o0 1 0 0 0 0
1] 1] 1 1 0 0 1 1
DNF: (=PAQA-R)V(=PAQAR)V(PA-QAR)V(PAQAR)

33

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every g : {0,1}™ — {0, 1} let:

F=V@.. ameqorr(ce(a, ... am) A P A A PR
P ifa=1

where P? =
- P ifa=20

(Then clearly A(P)? =1 iff A(P)=a, ie 1! =0°=1;1°=0!=0)

It can be easily checked that for every A : {P;,.

g(A(P1), ..., A(Pm)) = A(F).

.. Pm} — {0, 1} we have:

34

