Non-classical logics

Lecture 6: Many-valued logics (Part 2)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation Syntax Semantics

1 Syntax

- propositional variables Π
- logical operations ${\cal F}$

Propositional Formulas $F_{\Pi}^{\mathcal{F}}$ is the set of propositional formulas over Π defined as follows:

F, G, H::=c(c constant logical operator)| $P, P \in \Pi$ (atomic formula)| $f(F_1, \dots, F_n)$ $(f \in \mathcal{F} \text{ with arity } n)$

Semantics

We assume that a set $M = \{w_1, w_2, \ldots, w_m\}$ of truth values is given. We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators

 $f \in \mathcal{F}$ with arity $n \mapsto f_M : M^n \to M$ (truth tables for the operations in \mathcal{F})

2. The meaning of the propositional variables

A Π -valuation is a map $\mathcal{A} : \Pi \to M$.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols $(M, \{f_M\}_{f \in \mathcal{F}})$, any Π -valuation $\mathcal{A} : \Pi \to M$, can be extended to $\mathcal{A}^* : \Sigma$ -formulas $\to M$.

 $\mathcal{A}^*(c) = c_M$ (for every constant operator $c \in \mathcal{F}$) $\mathcal{A}^*(P) = \mathcal{A}(P)$ $\mathcal{A}^*(f(F_1, \dots, F_n)) = f_M(\mathcal{A}^*(F_1), \dots, \mathcal{A}^*(F_n))$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^* .

Models, Validity, and Satisfiability

 $M = \{w_1, \ldots, w_m\} \text{ set of truth values}$ $D \subseteq M \text{ set of designated truth values}$ $\mathcal{A} : \Pi \to M.$

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}(F) \in D$$

F is valid (or is a tautology):

 $\models F : \Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi\text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an A such that $A \models F$. Otherwise *F* is called unsatisfiable (or contradictory).

The logic \mathcal{L}_3

Set of truth values: $M = \{1, u, 0\}$.

Designated truth values: $D = \{1\}$.

Logical operators: $\mathcal{F} = \{ \lor, \land, \neg, \sim \}.$

Truth tables for the operators

\vee	0	u	1
0	0	u	1
u	u	u	1
1	1	1	1

\wedge	0	u	1
0	0	0	0
u	0	u	u
1	0	u	1

 $v(F \land G) = \min(v(F), v(G))$ $v(F \lor G) = \max(v(F), v(G))$

Under the assumption that 0 < u < 1.

Truth tables for negations

A	$\neg A$	\sim A	$\sim \neg A$	$\sim \sim A$	$\neg \neg A$	$\neg \sim A$
1	0	0	1	1	1	1
u	и	1	1	0	и	0
0	1	1	0	0	0	0

Translation in natural language:

v(A) = 1 gdw. A is true $v(\neg A) = 1$ gdw. A is false $v(\sim A) = 1$ gdw. A is not true $v(\sim \neg A) = 1$ gdw. A is not false

First-order many-valued logic

1. Syntax

- non-logical symbols (domain-specific)
 ⇒ terms, atomic formulas
- logical symbols \mathcal{F} , quantifiers \Rightarrow formulae

Signature; Variables; Terms/Atoms/Formulae

Signature: $\Sigma = (\Omega, \Pi)$, where

- Ω : set of function symbols f with arity $n \ge 0$, written f/n,
- Π : set of predicate symbols p with arity $m \ge 0$, written p/m.

Variables: Countably infinite set X.

Terms: As in classical logic

Atoms: (atomic formulas) over Σ are formed according to this syntax:

A, B ::=
$$p(s_1, ..., s_m)$$
 , $p/m \in \Pi$

Formulae:

 \mathcal{F} set of logical operations; $\mathcal{Q} = \{Q_1, \ldots, Q_k\}$ set of quantifiers

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

$$F, G, H$$
::= c $(c \in \mathcal{F}, \text{ constant})$ $|$ A (atomic formula) $|$ $f(F_1, \ldots, F_n)$ $(f \in \mathcal{F} \text{ with arity } n)$ $|$ $Q \times F$ $(Q \in \mathcal{Q} \text{ is a quantifier})$

Semantics

- Truth values; Interpretation of logical symbols $M = \{1, ..., m\}$ set of truth values; $D \subseteq M$ set of designated truth values.
 - Truth tables for the logical operations: $\{f_M : M^n \to M | f/n \in \mathcal{F}\}$
 - "Truth tables" for the quantifiers: $\{Q_M : \mathcal{P}(M) \to M | Q \in \mathcal{Q}\}$
- Interpretation of non-logical variables: *M*-valued Σ -structure $\mathcal{A} = (U, (f_{\mathcal{A}} : U^n \to U)_{f/n \in \Omega}, (p_{\mathcal{A}} : U^m \to M)_{p/m \in \Pi})$ where $U \neq \emptyset$ is a set, called the universe of \mathcal{A} .
- Variable assignments: β : X → A and extensions to terms A(β) : T_Σ → A as in classical logic.
- Truth value of a formula in A with respect to β A(β) : F_Σ(X) → M is defined inductively as follows:

$$egin{aligned} &\mathcal{A}(eta)(c)=c_{\mathcal{M}}\ &\mathcal{A}(eta)(p(s_{1},\ldots,s_{n}))=p_{\mathcal{A}}(\mathcal{A}(eta)(s_{1}),\ldots,\mathcal{A}(eta)(s_{n}))\in\mathcal{M}\ &\mathcal{A}(eta)(f(F_{1},\ldots,F_{n}))=f_{\mathcal{M}}(\mathcal{A}(eta)(F_{1}),\ldots,\mathcal{A}(eta)(F_{n}))\ &\mathcal{A}(eta)(QxF)=Q_{\mathcal{M}}(\{\mathcal{A}(eta[x\mapsto a])(F)\mid a\in U\}) \end{aligned}$$

First-order version of \mathcal{L}_3

 $M = \{0, u, 1\}, \quad D = \{1\}$ $\mathcal{F} = \{ \lor, \land, \neg, \sim \};$ truth values as the propositional version $\mathcal{Q} = \{ \forall, \exists \}$ $\forall_{M}(S) = \begin{cases} 1 & \text{if } S = \{1\} \\ 0 & \text{if } 0 \in S \\ \mu & \text{otherwise} \end{cases} \quad \exists_{M}(S) = \begin{cases} 1 & \text{if } 1 \in S \\ 0 & \text{if } S = \{0\} \\ \mu & \text{otherwise} \end{cases}$ $\mathcal{A}(\beta)(\forall x F(x)) = 1$ iff for all $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 1$ $\mathcal{A}(\beta)(\forall xF(x)) = 0$ iff for some $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 0$ $\mathcal{A}(\beta)(\forall xF(x)) = u$ otherwise $\mathcal{A}(\beta)(\exists x F(x)) = 1$ iff for some $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 1$ $\mathcal{A}(\beta)(\exists xF(x)) = 0$ iff for all $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 0$ $\mathcal{A}(\beta)(\forall x F(x)) = u$ otherwise

Models, Validity, and Satisfiability

F is valid in A under assignment β :

$$\mathcal{A}, \beta \models F : \Leftrightarrow \mathcal{A}(\beta)(F) \in D$$

F is valid in \mathcal{A} (\mathcal{A} is a model of F):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}, \beta \models F$$
, for all $\beta \in X \to U_{\mathcal{A}}$

F is valid:

$$\models$$
 F : \Leftrightarrow *A* \models *F*, for all *A* \in Σ -alg

F is called satisfiable iff there exist A and β such that $A, \beta \models F$. Otherwise *F* is called unsatisfiable.

$N \models F : \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}(\beta)(G) \in D$, for all $G \in N$, then $\mathcal{A}(\beta)(F) \in D$.

 $N \models F : \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}(\beta)(G) \in D$, for all $G \in N$, then $\mathcal{A}(\beta)(F) \in D$.

Goal: Define a version of implication ' \Rightarrow ' such that

 $F \models G \text{ iff } \models F \Rightarrow G$

Weak implication

The logical operations \supset and \equiv are introduced as defined operations:

Weak implication

$$F \supset G := \sim F \lor G$$

Weak equivalence

$$F \equiv G := (F \supset G) \land (G \supset F)$$

Strong implication

The logical operations \rightarrow and \leftrightarrow are introduced as defined operations:

Strong implication

$$F \rightarrow G := \neg F \lor G$$

Strong equivalence

$$F \leftrightarrow G := (F \rightarrow G) \land (G \rightarrow F)$$

$F \rightarrow G$	1	и	0	$F \leftrightarrow G$	1	и	0
1	1	u	0	1	1	u	0
и	1	u	u	и	u	u	и
0	1	1	1	0	0	u	1

Comparisons

Implications

$A \supset B$	1	и	0	
1	1	и	0	
u	1	1	1	
0	1	1	1	

$A \rightarrow B$	1	и	0
1	1	и	0
и	1	и	и
0	1	1	1

Equivalences

$A \equiv B$	1	и	0
1	1	и	0
u	u	1	1
0	0	1	1

$A \leftrightarrow B$	1	и	0
1	1	u	0
и	u	и	и
0	0	и	1

Equivalences

$A \supset B := \sim A \lor B$	$A \rightarrow B := \neg$	$A \lor B$
$A \equiv B := (A \supset B) \land (B)$	$B \supset A$)	$A \leftrightarrow B := (A ightarrow B) \wedge (B ightarrow A)$
$Approx B:=(A\equiv B)\wedge (-$	$\neg A \equiv \neg B)$	$A \Leftrightarrow B := (A \leftrightarrow B) \land (\neg A \leftrightarrow \neg B)$
A id $B:=~\sim\sim$ (A $pprox$ B	2)	

A	В	$A \equiv B$	$A \leftrightarrow B$	$A \approx B$	$A \Leftrightarrow B$	A id B
1	1	1	1	1	1	1
1	и	и	и	и	и	0
1	0	0	0	0	0	0
и	1	и	и	u	и	0
и	и	1	и	1	и	1
и	0	1	и	и	и	0
0	1	0	0	0	0	0
0	и	1	и	и	и	0
0	0	1	1	1	1	1

Some \mathcal{L}_3 tautologies

 $\neg \neg A \text{ id } A \qquad (A \land B) \lor C \text{ id } (A \lor C) \land (B \lor C)$ $\sim \sim A \equiv A \qquad (A \lor B) \land C \text{ id } (A \land C) \lor (B \land C)$ $\neg \sim A \equiv A \qquad (A \lor B) \text{ id } \sim A \land \sim B$ $\neg (A \lor B) \text{ id } \neg A \land \neg B \qquad \sim (A \lor B) \text{ id } \sim A \land \sim B$ $\neg (A \land B) \text{ id } \neg A \lor \neg B \qquad \sim (A \land B) \text{ id } \sim A \lor \sim B$ $\neg (\forall xA) \text{ id } \exists x \neg A \qquad \sim (\forall xA) \text{ id } \exists x \sim A$ $\neg (\exists xA) \text{ id } \forall x \neg A \qquad \sim (\exists xA) \text{ id } \forall x \sim A$

Lemma. Let *F* be a formula which does not contain the strong negation \neg . Then the following are equivalent:

(1) F is an \mathcal{L}_3 -tautology.

(2) F is a two-valued tautology (negation is identified with \sim)

Proof.

" \Rightarrow " Every \mathcal{L}_3 -tautology is a 2-valued tautology (the restriction of the operators \lor, \land, \sim to $\{0, 1\}$ coincides with the Boolean operations \lor, \land, \neg).

" \Leftarrow " Assume that *F* is a two-valued tautology. Let \mathcal{A} be an \mathcal{L}_3 -structure and $\beta : X \to \mathcal{A}$ be a valuation. We construct a two-valued structure \mathcal{A}' from \mathcal{A} , which agrees with \mathcal{A} except for the fact that whenever $p_{\mathcal{A}}(\overline{x}) = u$ we define $p_{\mathcal{A}'}(\overline{x}) = 0$. Then $\mathcal{A}'(\beta)(F) = 1$. It can be proved that $\mathcal{A}(\beta)(F) = 1 \Rightarrow \mathcal{A}'(\beta)(F) = 1$ $\mathcal{A}(\beta)(F) \in \{0, u\} \Rightarrow \mathcal{A}'(\beta)(F) = 0$. Hence, $\mathcal{A}(\beta)(F) = 1$.

1. Let *F* be a formula which does not contain \sim . Then *F* is not a tautology.

1. Let F be a formula which does not contain \sim . Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

1. Let F be a formula which does not contain \sim . Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

- 2. Prove that for every term t, $\forall xq(x) \supset q(x)[t/x]$ is an \mathcal{L}_3 -tautology.
- 3. Show that $\forall xq(x) \rightarrow q(x)[t/x]$ is not a tautology.

1. Let *F* be a formula which does not contain \sim . Then *F* is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

- 2. Prove that for every term t, $\forall xq(x) \supset q(x)[t/x]$ is an \mathcal{L}_3 -tautology.
- 3. Show that $\forall xq(x) \rightarrow q(x)[t/x]$ is not a tautology. Solution. $q \rightarrow q$ is not a tautology.

4. Which of the following statements are true? If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true? If $F \equiv G$ is a tautology and F is a tautology then G is a tautology. true

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

true

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

true

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued. false

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

Definition A family $(M, \{f_M : M^n \to M\}_{f \in \mathcal{F}})$ is called functionally complete if every function $g : M^m \to M$ can be expressed in terms of the functions $\{f_M : M^n \to M \mid f \in \mathcal{F}\}.$

Definition A many-valued logic with finite set of truth values M and logical operators \mathcal{F} is called functionally complete if for every function $g: M^m \to M$ there exists a propositional formula F of the logic such that for every $\mathcal{A}: \Pi \to M$

 $g(\mathcal{A}(x_1),\ldots,\mathcal{A}(x_m))=\mathcal{A}(F).$

Example: Propositional logic

F :	$(P \lor Q) \land ((\neg P \land Q) \lor R)$								
Ρ	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F		
0	0	0	0	1	0	0	0		
0	0	1	0	1	0	1	0		
0	1	0	1	1	1	1	1		
0	1	1	1	1	1	1	1		
1	0	0	1	0	0	0	0		
1	0	1	1	0	0	1	1		
1	1	0	1	0	0	0	0		
1	1	1	1	0	0	1	1		

Example: Propositional logic

F :	$(P \lor Q) \land ((\neg P \land Q) \lor R)$								
Ρ	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F		
0	0	0	0	1	0	0	0		
0	0	1	0	1	0	1	0		
0	1	0	1	1	1	1	1		
0	1	1	1	1	1	1	1		
1	0	0	1	0	0	0	0		
1	0	1	1	0	0	1	1		
1	1	0	1	0	0	0	0		
1	1	1	1	0	0	1	1		

Example: Propositional logic

$F: (P \lor Q) \land ((\neg P \land Q) \lor R)$							
P	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

DNF: $(\neg P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every
$$g : \{0,1\}^m \to \{0,1\}$$
 let:
 $F = \bigvee_{(a_1,\ldots,a_m)\in\{0,1\}} (c_g(a_1,\ldots,a_m) \wedge P_1^{a_1} \wedge \cdots \wedge P_m^{a_m})$
where $P^a = \begin{cases} P & \text{if } a = 1 \\ \neg P & \text{if } a = 0 \end{cases}$
(Then clearly $\mathcal{A}(P)^a = 1$ iff $\mathcal{A}(P) = a$, i.e. $1^1 = 0^0 = 1; 1^0 = 0^1 = 0$.)
It can be easily checked that for every $\mathcal{A} : \{P_1,\ldots,P_m\} \to \{0,1\}$ we have:
 $g(\mathcal{A}(P_1),\ldots,\mathcal{A}(P_m)) = \mathcal{A}(F)$.