Non-classical logics

Lecture 7: Many-valued logics (Part 3)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

e Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics

Functional completeness

Functional completeness

Definition A family (M, {fyy : M" — M}fcr) is called functionally
complete if every function g : M™ — M can be expressed in terms of the

functions {fy; : M" — M | f € F}.

Definition A many-valued logic with finite set of truth values M and
logical operators F is called functionally complete if for every function
g : M™ — M there exists a propositional formula F of the logic such that

forevery A: 1 — M
g(A(x1), ..., A(xm)) = A(F).

Example: Propositional logic

F: (PVQ)AN((-PAQ)VR)
Pl Q|R|((PVQ) | -P|(—PAQ)| (m-PANQR)VR)|F
O] 0] O 0 1 0 0 0
0 0 1 0 1 0 1 0
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0[O0 1 0 0 0 0
1 0 1 1 0 0 1 1
1 1 0 1 0 0 0 0
1 1 1 1 0 0 1 1

Example: Propositional logic

F: (PVQ)AN((-PAQ)VR)
Pl Q|R|((PVQ) | -P|(—PAQ)| (m-PANQR)VR)|F
olo]o 0 1 0 0 0
0olo]|1 0 1 0 1 0
ol 1]o0 1 1 1 1 1
o 1]1 1 1 1 1 1
1] 0o 1 0 0 0 0
1101 1 0 0 1 1
1] 1] o0 1 0 0 0 0
1] 1] 1 1 0 0 1 1

Example: Propositional logic

F: (PVQA(-PAQ)VR)

P|Q|R|(PVQ)| -P|(PAQ)|(mPAQ)VR)|F
olo]o 0 1 0 0 0
0olo]|1 0 1 0 1 0
ol 1]o0 1 1 1 1 1
o 1]1 1 1 1 1 1
1] 0o 1 0 0 0 0
1101 1 0 0 1 1
1] 1] o0 1 0 0 0 0
1] 1] 1 1 0 0 1 1

DNF: (-PAQA-R)V(-PAQAR)V(PA-QAR)V(PAQAR)

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every g : {0,1}™ — {0, 1} let:

F=V@.. ameqorr(ce(a, ... am) A P A A PR
P ifa=1

where P? =
- P ifa=20

(Then clearly A(P)? =1 iff A(P)=a, ie 1! =0°=1;1°=0!=0)
It can be easily checked that for every A : {Pq,...,Pm} — {0,1} we have:
g(A(P1), ..., A(Pm)) = A(F).

Functional completeness

Theorem. The logic L3 is not functionally complete.

Proof. If F is a formula with n propositional variables in the language of L3
with operators {—, ~, V, A} then for the valuation A: M = {Py,..., Pp} —
{0, u, 1} with A(P;) =1 for all i we have: A(F) # u.

Therefore: If g is a function which takes value u when the arguments are in
{0, 1} then there is no formula F such that g(A(P1),..., A(Pn)) = A(F)
forall A: 1 — {0, u, 1}.

Theorem. /L;r, obtained from L3 by adding one more constant operation u
(which takes always value u) is functionally complete.

A simple criterion for functional completeness

Theorem. An m-valued logic with set of truth values M = {wy, ..., wn}
and logical operations F with truth tables {fy, | f € F} in which the
functions:

e min(x,y), max(x,y),

1 (maximal element) if k= x
o Ji(x) = . .

0 (minimal element) otherwise
e all constant functions ¢/(x1,...,xn) = k

can be expressed in terms of the functions {fy, | f € F}

is functionally complete.

Proof. Let g : M" — M.

g(x1,...,xn) =
max{min{cg(a

oy Ja (X)), oy (xn)} | (a1, ... an) € M"}

Functional completeness of £

Theorem. /L;r, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

e We define J1, Jy, Jo : {0,u,1} — {0, u, 1} as follows:

JO(X) = r~~vr~v X
Ju(x) =~ XA\ ~ —x

J1(x) =~~~ x

x | Jo(x) | Ju(x) | S(x)
0|1 0 0
ulO 1 0

0 0 1

10

Functional completeness of £

Theorem. /L;r, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

e We define J1, Jy, Jo : {0,u,1} — {0, u, 1} as follows:

JO (X) = r~~vr~v X

Ju(x) =~ XA\ ~ —x

J1(x) =~~~ x

x | Jo(x) | Ju(x) | S(x)
0|1 0 0
ulO 1 0

0 0 1

e min and max are A resp. V.

11

Functional completeness of £

Theorem. LZ;F, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.
Proof
e We define Ji, J,, Jo : {0,u,1} — {0, u, 1} as follo

[~
)]

x | Jo(x) | Ju(x) | J1(x)
Jolx) = e = 0|1 0 0
Ju(x) =~ X\ ~ =x u |0 1 0
J1(x) =~ x 1|0 0 1

e min and max are A resp. V.
e The constant operation u is in the language.
e The constant functions O and 1 are definable as follows:

1(x) =~ xV -~ x
O(x) =~ (~ xV = ~ x)

12

Example

Let g the following binary function:

gl 0|ul|l
O[O0 |u|O
u|uluj|u
1 10|wu|0

g(x1,x2) = (uNJo(x1) AJu(x2)) V (uAN Ju(x1) A Jo(x2))V
(u YA\ Ju(Xl) YA\ JU(XQ)) V (u A\ Ju(Xl) VAN Jo(XQ)) V (u YA\ J1(X1) YA\ JU(XQ))
= (UA ~~ XA ~ oA~ x0) V(UA ~ XA ~ XA o xo)V

(UN ~ X1\ ~ X1 A ~ X0\ ~ =x2) V ...

13

Post logics

Pmn=14{0,1,..., m—1}
F ={V,s}
Vp(a, b) = max(a, b)

sp(a) =a—1 (mod m)

14

Post logics

Theorem. The Post logics are functionally complete.

Proof:

1. maxis Vp

2. The functions x — k (mod m) and x 4+ k (mod m) are definable
x —k = s(s(...s(x))) (mod m)

N —’

k times
x+k=x—(m—k) (mod m), 0< k< m.
x+0=x

3. min(x,y)=m—1—max(m—1—x,m—1—y)

15

Post logics

Theorem. The Post logics are functionally complete.
Proof:

4. All constants are definable

T(x) =max{x,x—1,...,.x—m+1}
T(x) = m —1 for all x.
The other constants are definable using s iterated 1,2,..., m — 1 times.
5. Ti(x) = max(max[T(x) —1,x] —m+1,x+ k) — m+ 1 has the
0 ifx#m-1
k ifx=m-1
Then Jk(X) = max(TJk(O)(X +m — 1), ey TJk(m—2)(X —+ 1), TJk(m—l)(X))-

property that T (x) =

in general, if g(i)=k; then g(x)=max(Tx__,(x), T _,(x+1),..., Tky (x+(m—1)))

16

Other many-valued logics

tukasiewicz logics L,

o Set of truth values M = {0, 2=, -2

'"pn—1" p—11""°°°

e lLogical operations: V, A, =, =

° \/Ln — max

* Ny = min

® T} X= 1 —x

e x=4 y=min(l,1-x+y)
e First-order version: Q = {V, 3}

17

tukasiewicz logics

t ukasiewicz implication x =} y = min(1,1 — x + y)
Ln

1 2 n—2
~ 0 n—1 n—1 n—1 1
0 1 1 1 1 1
1 n—2
n—1 n—1 1 1 1 1
2 n—3 n—?2
n—1 n—1 n—1 1 1 1
1 2 n—2
1 O n—1 n—1 n—1 1

Belnap’s 4-valued logic

A {0, 1} both false and true

information / \
ordering { o} (0
true

{} neither false nor true

[
Ll

truth ordering

A, V: sup/inf in the truth ordering
~{r=1) ~{0,1} ={0,1}, ~{0} ={1}, ~ {1} ={0}

Designated values:
Computer science: D = {{1}}
Other applications (e.g. information bases): D = {{1}, {0,1}}

19

Proof Calculi and Automated reasoning

e Axiom systems — proofs
e Tableau calculi

e Resolution calculi

20

Proof Calculi/Inference systems and proofs

Inference systems ' (proof calculi) are sets of tuples
(Flw--;Fn,Fn—l—l), nZO;

called inferences or inference rules, and written

premises

_/N

Fi ... Fj

Fn—l—l
——

conclusion

Inferences with O premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One
also considers inference systems over other data structures.

Proofs

A proof in I of a formula F from a a set of formulas N (called

assumptions) is a sequence Fi, ..., Fx of formulas where
(i) Fo=F,

(i) for all 1 < i < k: F; € N, or else there exists an inference
(Fiy, ..., Fi,. Fi) in I, such that 0 < j; < i, for 1 < j < n;.

22

Soundness and Completeness

Provability Fr of F from N in I:
N Hr F < there exists a proof [of F from N.

[is called sound &

Fi ... F,
F

[is called complete &

N=EF = NbirF

[is called refutationally complete &

N|=J_ = Nk L

el = F,....,F,EF

23

Axiom systems

For £3: Wajsberg proposed an axiom system
(based on connectors — and =):

(A= (B = A))

A :(A=B)=((B=C(C)= (A= ())
(A= -B)= (B=A)

Ay (A= -A) = A)= A

Inference rules:

A A= B
Moduls Ponens:

24

Axiom systems

For £3: Wajsberg proposed an axiom system
(based on connectors — and =):

XAy =x-(x=y),

where x - y = =(x = —y)

25

Proof calculi

Main disadvantage:
New proof calculus for each many-valued logic.

Goal:
Uniform methods for checking validity /satisfiability of formulae.

26

Automated reasoning

Classical logic:
Task: prove that F is valid

Method: prove that —F is unsatisfiable:

— assume —F: derive a contradiction.

27

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that —F is unsatisfiable:
— assume —F: derive a contradiction.

Many-valued logic:
Task: prove that F is valid
(i.e. A(B)(F) € D for all A,)
Method: prove that it is not possible that A(B) € M\D:

— assume F € M\ D; derive a contradiction.

28

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that —F is unsatisfiable:
— assume —F: derive a contradiction.

Many-valued logic:
Task: prove that F is valid
(i.e. A(B)(F) € D for all A,)

Method: prove that it is not possible that A(B) € M\D:

— assume F € M\ D; derive a contradiction.

Problem: How do we express the fact that F € M\D

1) VVE/\/I\D(F — V)

2) more economical notation?

29

Automated reasoning

Idea: Use signed formulae

e [V, where F is a formulaandve M
A, 6= FYiff A(B)(F)=v.

e S:F, where F is a formula and
0D #S C M (set of truth values)
A, B = S:Fiff A(B)(F)e€S.

30

Semantic tableaux

For every) # S C M and every logical operator f we have a
tableau rule:

S:f(Fy,..., F.)
T(F, ..., F.)
where T(Aq, ..., A,) is a finite extended tableau containing only

formulae of the form S;:F;.

Informally: Exhaustive list of conditions which ensure that the
value of f(Fy,..., F,)isin S.

31

Example

Let t5 be the 5-valued tukasiewicz logic with M = {0,1,2,3,4}.

= O|1 12|34
0 414|444
1 314|444
2 213|444
3 123|444
4 0|1(2]|3]4
{4}(p = q)
{0}p | {0,1}p {0,1,2}p | {0,1,2,3}p
{1,2,3,4}q | {2,3,4}q | {3,4}q {4}q

Labelling sets

Let V C P(M) be the set of all sets of truth values which are used for
labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so V # P(M).

2. Proof by contradiction:
Goal: Prove that F is valid, i.e. A(B)(F) € D.
We start from (M\D):F and build the tableau
= We assume that (M\D) € V.

3. Need to make sure that the new signs introduced by the tableau rules

are in V.

33

Tableau rules: Soundness

S:f(Fq,..., Fnr)
T(F,..., Fr)
where T(F1, ..., Fr) is a finite extended tableau containing only formulae
of the form S;:F;.
S:f(Fq,..., Fnr)
S11:C11 So1:Cr1 . Sq1:Ca1
Slkl :Clkl S2k2:C2k2 qu/:qu/

where C;; € {Fq, ..., Fn}

Tableau rules: Soundness

S:f(Fq,..., Fnr)
T(F]_ Fn)
where T(F1, ..., Fr) is a finite extended tableau containing only formulae
of the form S;:F;.
S:f(Fq,..., Fnr)
S11:Cq1 S>1:Cr1 - 5q1:Cq1
Slkl :Clkl 52k23C2k2 qu/:qu/

where C;; € {F1,..., Fn}

For every A, 3: A(B)(F) € S then there exists i such that for all j:

35

Tableau rules: Soundness

S:f(F1,...,Fpn)
S11:Cq1 S51:Co1 . Sq1:Ca1
Slkl :Clkl 52k2 . C2k2 qu/ : qu/
where C;; € {F1,..., Fn}
Every model of S:f(F1,..., Fn) is also a model of the formulae on one of

the branches

If there is no expansion rule for a premise: premise is unsatisfiable

(A(B)(F) € S for all A, p).

If £(Fy,.

.., Fp) satisfiable then there is an expansion rule.

36

L3: Tableau rules for A

{1}AANB {u}AANB

{0}AAB

{u,0}ANB

{1}A {u}A | {u}B ‘ {u}A
{1}B {1}B [{1}JA[{u}B

{0}A|{0}B

{u,0}A|{u,0}B

37

L3: Tableau rules for Vv

{1}AV B {u}AV B {0}AV B
{1}A{1}B {u,0}A {u}A {0} A
{u}B {u,0}B {0}B
{u,0}AV B
{u,0}A

{u,0}B

38

L3: Tableau rules for —, ~

{1}~ A 10} ~ A {uf ~ A {u,0} ~ A
{u,0}A {11A 114
{1}-A 10}-A {u}-A {u,0}-A

10JA {1}A Lu}tA {1} A|{u}A

L3: Tableau rules for D

{1}AD B {0JA>B {u}A>B {u0}ADB
{u, 0}A|{1}B {1}1A {1}1A {1}1A
{0}B (u)}B {u,0}B

40

L3: Tableau rules for -

{1}3xA(x) {0}3xA(x) {u}3xA(x)

{u, 0}3xA(x)

where

,,,,, Yk)) {0}A(z) {ubA(F(ye, - - yi))
{u, 0}A(2)

® ~ is a new free variable

® yi,...,

yk are the free variables in IxA(x)

e f is a new function symbol

{u, 0}A(2)

41

L3: Tableau rules for V

{1}VxA(x) {0}VxA(x) {u}VxA(x) {u, 0}VxA(x)

{1}A(z) {0JA(F(y1 - oy AudA(F(y - i) {u 0FA(F (v, - -0 yi)
{u, 1}A(z)

where

® z is a new free variable
® Vi,..., yk are the free variables in VxA(x)

e f is a new function symbol

42

Tableaux

A tableau for a finite set For of sighed formulae is constructed as follows:
e A linear tree, in which each formula in For occurs once is a tableau.
e Let T be a tableau for For und P a path in T, which contains a signed
formula S:F.

Assume that there exists a tableau rule with premise S:F. If

Ei, ..., E, are the possible conclusions of the tableau rule (under the
corresponding restrictions in case of quantified formulae) then T is
exteded with n linear subtrees containing the signed formulae from E;
(respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

43

Closed Tableaux

A path P in a tableau T is closed if:

e P contains complementary formulae, i.e. there exists a substitution
o and there exists signed formulae S1:Fq, ..., Sk:Fx occurring of the
branch such that:

- FLo=---=Fho

- S N---NS,=0, or

e P contains a signed formula S:F for which no expansion rule can be
applied and F is not atomic.

A path which is not closed is called open.

44

Closed Tableaux

A path P in a tableau T is closed if:

e P contains complementary formulae, i.e. there exists a substitution
o and there exists signed formulae S1:Fq, ..., Sk:Fx occurring of the
branch such that:

- FLo=---=Fho

- S N---NS,=0, or

e P contains a signed formula S:F for which no expansion rule can be
applied and F is not atomic.

A path which is not closed is called open.
A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

45

Soundness and completeness

Given an signature ¥, by ¥5%° we denote the result of adding infinitely many
new Skolem function symbols which we may use in the rules for quantifiers.

Let A be a ZSko—interpretation, T a tableau, and (3 a variable assignment

over A.

T is called (A, B)-valid, if there is a path Pz in T such that A, 3 = F, for
each formula F on Pg.

T is called satisfiable if there exists a structure A such that for each
assighment (the tableau T is (A, §)-valid.
(This implies that we may choose P3 depending on (3.)

46

Soundness and completeness

Theorem (Soundness of the tableau calculus for £3)

Let F be a £3-formula without free variables. If there exists a closed tableau
T for {U, F}F, then F is an L3-tautology (it is valid).

Theorem (Refutational completeness)

Let F be a L3-tautology. Then we can construct a closed tableau for

{U, F}F. (The order in which we apply the expansion rules is not
important).

47

