Non-classical logics

Lecture 7: Many-valued logics (Part 3)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation

Syntax

Semantics

Functional completeness

Functional completeness

Definition A family $(M, \{f_M : M^n \to M\}_{f \in \mathcal{F}})$ is called functionally complete if every function $g : M^m \to M$ can be expressed in terms of the functions $\{f_M : M^n \to M \mid f \in \mathcal{F}\}$.

Definition A many-valued logic with finite set of truth values M and logical operators $\mathcal F$ is called functionally complete if for every function $g:M^m\to M$ there exists a propositional formula F of the logic such that for every $\mathcal A:\Pi\to M$

$$g(A(x_1), \ldots, A(x_m)) = A(F).$$

Example: Propositional logic

 $F: (P \vee Q) \wedge ((\neg P \wedge Q) \vee R)$

Р	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \land Q) \lor R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Propositional logic

 $F: (P \vee Q) \wedge ((\neg P \wedge Q) \vee R)$

Р	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \land Q) \lor R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Propositional logic

$$F: (P \vee Q) \wedge ((\neg P \wedge Q) \vee R)$$

Р	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \land Q) \lor R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

DNF:
$$(\neg P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$$

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every $g: \{0,1\}^m \rightarrow \{0,1\}$ let:

$$F = \bigvee_{(a_1,\ldots,a_m)\in\{0,1\}} (c_g(a_1,\ldots,a_m) \wedge P_1^{a_1} \wedge \cdots \wedge P_m^{a_m})$$

where
$$P^a = \begin{cases} P & \text{if } a = 1 \\ \neg P & \text{if } a = 0 \end{cases}$$

(Then clearly $\mathcal{A}(P)^a = 1$ iff $\mathcal{A}(P) = a$, i.e. $1^1 = 0^0 = 1$; $1^0 = 0^1 = 0$.)

It can be easily checked that for every $\mathcal{A}:\{P_1,\ldots,P_m\} \to \{0,1\}$ we have:

$$g(\mathcal{A}(P_1),\ldots,\mathcal{A}(P_m))=\mathcal{A}(F).$$

Functional completeness

Theorem. The logic \mathcal{L}_3 is not functionally complete.

Proof. If F is a formula with n propositional variables in the language of \mathcal{L}_3 with operators $\{\neg, \sim, \vee, \wedge\}$ then for the valuation $\mathcal{A} : \Pi = \{P_1, \ldots, P_n\} \rightarrow \{0, u, 1\}$ with $\mathcal{A}(P_i) = 1$ for all i we have: $\mathcal{A}(F) \neq u$.

Therefore: If g is a function which takes value u when the arguments are in $\{0,1\}$ then there is no formula F such that $g(\mathcal{A}(P_1),\ldots,\mathcal{A}(P_n))=\mathcal{A}(F)$ for all $\mathcal{A}:\Pi\to\{0,u,1\}$.

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

A simple criterion for functional completeness

Theorem. An m-valued logic with set of truth values $M = \{w_1, \ldots, w_m\}$ and logical operations \mathcal{F} with truth tables $\{f_M \mid f \in \mathcal{F}\}$ in which the functions:

- min(x, y), max(x, y),
- $J_k(x) = \begin{cases} 1 \text{ (maximal element)} & \text{if } k = x \\ 0 \text{ (minimal element)} & \text{otherwise} \end{cases}$
- all constant functions $c_k^n(x_1, \ldots, x_n) = k$ can be expressed in terms of the functions $\{f_M \mid f \in \mathcal{F}\}$ is functionally complete.

Proof. Let $g: M^n \to M$.

$$g(x_1, ..., x_n) = \max\{\min\{c_{g(a_1,...,a_n)}^n, J_{a_1}(x_1), ..., J_{a_n}(x_n)\} \mid (a_1,...a_n) \in M^n\}$$

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:

$$J_0(x) = \sim \sim \neg x$$

$$J_u(x) = \sim x \land \sim \neg x$$

$$J_1(x) = \sim \sim x$$

X	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:

$$J_0(x) = \sim \sim \neg x$$

$$J_u(x) = \sim x \land \sim \neg x$$

$$J_1(x) = \sim \sim x$$

X	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

min and max are ∧ resp. ∨.

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

ullet We define $J_1, J_u, J_0: \{0, u, 1\}
ightarrow \{0, u, 1\}$ as follows:

$J_0(x) = \sim \sim \neg x$
$J_u(x) = \sim x \land \sim \neg x$
$J_1(x) = \sim \sim x$

və.			
X	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

- min and max are ∧ resp. ∨.
- \bullet The constant operation u is in the language.
- The constant functions 0 and 1 are definable as follows:

$$1(x) = \sim x \lor \neg \sim x$$
$$0(x) = \sim (\sim x \lor \neg \sim x)$$

Example

Let g the following binary function:

g	0	и	1
0	0	и	0
и	и	и	и
1	0	и	0

$$g(x_{1}, x_{2}) = (u \wedge J_{0}(x_{1}) \wedge J_{u}(x_{2})) \vee (u \wedge J_{u}(x_{1}) \wedge J_{0}(x_{2})) \vee (u \wedge J_{u}(x_{1}) \wedge J_{u}(x_{2})) \vee (u \wedge J_{u}(x_{1}) \wedge J_{0}(x_{2})) \vee (u \wedge J_{1}(x_{1}) \wedge J_{u}(x_{2})) = (u \wedge \sim \sim \neg x_{1} \wedge \sim x_{2} \wedge \sim \neg x_{2}) \vee (u \wedge \sim x_{1} \wedge \sim \neg x_{1} \wedge \sim \sim \neg x_{2}) \vee (u \wedge \sim x_{1} \wedge \sim \neg x_{1} \wedge \sim x_{2} \wedge \sim \neg x_{2}) \vee$$

Post logics

$$P_m = \{0, 1, \dots, m-1\}$$

 $\mathcal{F} = \{\lor, s\}$
 $\lor_P(a, b) = \max(a, b)$

$$s_P(a) = a - 1 \pmod{m}$$

Post logics

Theorem. The Post logics are functionally complete.

Proof:

- 1. max is \vee_P
- 2. The functions $x k \pmod{m}$ and $x + k \pmod{m}$ are definable $x k = \underbrace{s(s(...s(x)))}_{k \text{ times}} \pmod{m}$ $x + k = x (m k) \pmod{m}$, 0 < k < m. x + 0 = x
- 3. $\min(x, y) = m 1 \max(m 1 x, m 1 y)$

Post logics

Theorem. The Post logics are functionally complete.

Proof:

4. All constants are definable

$$T(x) = max\{x, x - 1, ..., x - m + 1\}$$

 $T(x) = m - 1$ for all x .

The other constants are definable using s iterated $1, 2, \ldots, m-1$ times.

5.
$$T_k(x) = \max(\max[T(x) - 1, x] - m + 1, x + k) - m + 1$$
 has the property that $T_k(x) = \begin{cases} 0 & \text{if } x \neq m - 1 \\ k & \text{if } x = m - 1 \end{cases}$ Then $J_k(x) = \max(T_{J_k(0)}(x + m - 1), \dots, T_{J_k(m-2)}(x + 1), T_{J_k(m-1)}(x))$.

in general, if
$$g(i)=k_i$$
 then $g(x)=\max(T_{k_{m-1}}(x), T_{k_{m-2}}(x+1), \ldots, T_{k_0}(x+(m-1)))$

Other many-valued logics

Łukasiewicz logics \mathcal{L}_n

- Set of truth values $M = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, 1\}$
- Logical operations: \vee , \wedge , \neg , \Rightarrow
 - $\vee_{\mathbf{L}_n} = \max$
 - $\wedge_{\mathbf{L}_n} = \min$
 - $\neg \mathbf{L}_n x = 1 x$
 - $x \Rightarrow_{\mathbf{L}_n} y = \min(1, 1 x + y)$
- First-order version: $Q = \{ \forall, \exists \}$

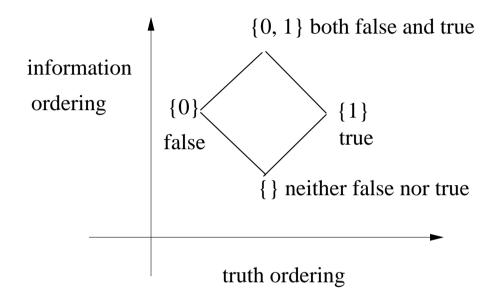
Łukasiewicz logics

Lukasiewicz implication $x \Rightarrow_{\mathbf{L}_n} y = \min(1, 1 - x + y)$

 \mathcal{L}_n

\Rightarrow	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$		$\frac{n-2}{n-1}$	1
0	1	1	1		1	1
$\frac{1}{n-1}$	$\frac{n-2}{n-1}$	1	1	• • •	1	1
$\frac{2}{n-1}$	$\frac{n-3}{n-1}$	$\frac{n-2}{n-1}$	1	• • •	1	1
1	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$		$\frac{n-2}{n-1}$	1

Belnap's 4-valued logic



 \land , \lor : sup/inf in the truth ordering

$$\sim \{\} = \{\}, \quad \sim \{0, 1\} = \{0, 1\}, \quad \sim \{0\} = \{1\}, \quad \sim \{1\} = \{0\}$$

Designated values:

Computer science: $D = \{\{1\}\}$

Other applications (e.g. information bases): $D = \{\{1\}, \{0, 1\}\}$

Proof Calculi and Automated reasoning

- Axiom systems \mapsto proofs
- Tableau calculi
- Resolution calculi

. . .

Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

$$(F_1,\ldots,F_n,F_{n+1}), n\geq 0,$$

called inferences or inference rules, and written

premises
$$\underbrace{F_1 \dots F_n}_{F_{n+1}}$$
conclusion

Inferences with 0 premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ :

 $N \vdash_{\Gamma} F :\Leftrightarrow$ there exists a proof Γ of F from N.

 Γ is called sound : \Leftrightarrow

$$\frac{F_1 \ldots F_n}{F} \in \Gamma \Rightarrow F_1, \ldots, F_n \models F$$

 Γ is called complete : \Leftrightarrow

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

 Γ is called refutationally complete : \Leftrightarrow

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

Axiom systems

For \mathcal{L}_3 : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):

$$A_1: (A \Rightarrow (B \Rightarrow A))$$

 $A_2: (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$
 $A_3: (\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$
 $A_4: ((A \Rightarrow \neg A) \Rightarrow A) \Rightarrow A$

Inference rules:

Moduls Ponens:
$$\frac{A \qquad A \Rightarrow B}{B}$$

Axiom systems

For \mathcal{L}_3 : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):

$$x \wedge y = x \cdot (x \Rightarrow y),$$
 where $x \cdot y = \neg(x \Rightarrow \neg y)$

Proof calculi

Main disadvantage:

New proof calculus for each many-valued logic.

Goal:

Uniform methods for checking validity/satisfiability of formulae.

Classical logic:

Task: prove that *F* is valid

Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Classical logic:

Task: prove that *F* is valid

Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Many-valued logic:

Task: prove that *F* is valid

(i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $A(\beta) \in M \setminus D$:

- assume $F \in M \setminus D$; derive a contradiction.

Classical logic:

Task: prove that *F* is valid

Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Many-valued logic:

Task: prove that *F* is valid

(i.e.
$$\mathcal{A}(\beta)(F) \in D$$
 for all \mathcal{A}, β)

Method: prove that it is not possible that $A(\beta) \in M \setminus D$:

- assume $F \in M \setminus D$; derive a contradiction.

Problem: How do we express the fact that $F \in M \setminus D$

1)
$$\bigvee_{v \in M \setminus D} (F = v)$$

2) more economical notation?

Idea: Use signed formulae

- F^{ν} , where F is a formula and $\nu \in M$ $\mathcal{A}, \beta \models F^{\nu}$ iff $\mathcal{A}(\beta)(F) = \nu$.
- S:F, where F is a formula and $\emptyset \neq S \subseteq M$ (set of truth values) $\mathcal{A}, \beta \models S:F$ iff $\mathcal{A}(\beta)(F) \in S$.

Semantic tableaux

For every $\emptyset \neq S \subseteq M$ and every logical operator f we have a tableau rule:

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(A_1, ..., A_n)$ is a finite extended tableau containing only formulae of the form S_i : F_i .

Informally: Exhaustive list of conditions which ensure that the value of $f(F_1, \ldots, F_n)$ is in S.

Example

Let L_5 be the 5-valued Łukasiewicz logic with $M = \{0, 1, 2, 3, 4\}$.

\Rightarrow	0	1	2	3	4
0	4	4	4	4	4
1	3	4	4	4	4
2	2	3	4	4	4
3	1	2	3	4	4
4	0	1	2	3	4

$$\{4\}(p \Rightarrow q)$$

$$\{0\}p \quad \{0,1\}p \quad \{0,1,2\}p \quad \{0,1,2,3\}p \quad \{1,2,3,4\}q \quad \{2,3,4\}q \quad \{3,4\}q \quad \{4\}q$$

Labelling sets

Let $V \subseteq \mathcal{P}(M)$ be the set of all sets of truth values which are used for labelling the formulae.

Remarks:

- 1. In general not all subsets of truth values are used, so $V \neq \mathcal{P}(M)$.
- 2. Proof by contradiction:

Goal: Prove that F is valid, i.e. $A(\beta)(F) \in D$. We start from $(M \setminus D)$:F and build the tableau

 \Rightarrow We assume that $(M \backslash D) \in V$.

3. Need to make sure that the new signs introduced by the tableau rules are in V.

Tableau rules: Soundness

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(F_1, ..., F_n)$ is a finite extended tableau containing only formulae of the form S_i : F_i .

$$S: f(F_1, ..., F_n)$$

$$S_{11}: C_{11} \qquad S_{21}: C_{21} \qquad ... \qquad S_{q1}: C_{q1}$$

$$... \qquad ... \qquad ...$$

$$S_{1k_1}: C_{1k_1} \qquad S_{2k_2}: C_{2k_2} \qquad S_{qk'}: C_{qk'}$$

where $C_{i,j} \in \{F_1, ..., F_n\}$

Tableau rules: Soundness

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(F_1, ..., F_n)$ is a finite extended tableau containing only formulae of the form S_i : F_i .

$$S: f(F_1, ..., F_n)$$

$$S_{11}: C_{11} \quad S_{21}: C_{21} \quad ... \quad S_{q1}: C_{q1}$$

$$... \quad ... \quad ...$$

$$S_{1k_1}: C_{1k_1} \quad S_{2k_2}: C_{2k_2} \quad S_{qk'}: C_{qk'}$$

where $C_{i,j} \in \{F_1, ..., F_n\}$

For every A, β : $A(\beta)(F) \in S$ then there exists i such that for all j: $A(\beta)(C_{ij}) \in S_{ij}$.

Tableau rules: Soundness

$$S: f(F_1, ..., F_n)$$
 $S_{11}: C_{11}$ $S_{21}: C_{21}$... $S_{q1}: C_{q1}$
 $...$... $...$ $S_{1k_1}: C_{1k_1}$ $S_{2k_2}: C_{2k_2}$ $S_{qk'}: C_{qk'}$

where $C_{i,j} \in \{F_1, ..., F_n\}$

Every model of $S: f(F_1, ..., F_n)$ is also a model of the formulae on one of the branches

If there is no expansion rule for a premise: premise is unsatisfiable $(\mathcal{A}(\beta)(F) \not\in S$ for all \mathcal{A}, β).

If $f(F_1, \ldots, F_n)$ satisfiable then there is an expansion rule.

\mathcal{L}_3 : Tableau rules for \wedge

$\{1\}A\wedge B$	$\{u\}A\wedge B$	$\{0\}A\wedge B$	$\{u,0\}A\wedge B$
$ \{1\}A$	$\{u\}A \mid \{u\}B \mid \{u\}A$	$\overline{\{0\}A \{0\}B}$	${u,0}A {u,0}B$
$\{1\}B$	$\{1\}B \mid \{1\}A \mid \{u\}B$		

\mathcal{L}_3 : Tableau rules for \vee

\mathcal{L}_3 : Tableau rules for \neg , \sim

\mathcal{L}_3 : Tableau rules for \supset

$\{1\}A\supset B$	$\{0\}A\supset B$	$\{u\}A\supset B$	$\{u,0\}A\supset B$
$\{u,0\}A \{1\}B$	{1} <i>A</i>	{1} <i>A</i>	$\{1\}A$
	$\{0\}B$	$\{u\}B$	$\{u, 0\}B$

\mathcal{L}_3 : Tableau rules for \exists

where

- z is a new free variable
- y_1, \ldots, y_k are the free variables in $\exists x A(x)$
- f is a new function symbol

\mathcal{L}_3 : Tableau rules for \forall

where

- z is a new free variable
- y_1, \ldots, y_k are the free variables in $\forall x A(x)$
- f is a new function symbol

Tableaux

A tableau for a finite set For of signed formulae is constructed as follows:

- A linear tree, in which each formula in For occurs once is a tableau.
- Let T be a tableau for For und P a path in T, which contains a signed formula S:F.

Assume that there exists a tableau rule with premise S:F. If $E_1, ..., E_n$ are the possible conclusions of the tableau rule (under the corresponding restrictions in case of quantified formulae) then T is exteded with n linear subtrees containing the signed formulae from E_i (respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

Closed Tableaux

A path P in a tableau T is closed if:

• P contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_1:F_1,\ldots,S_k:F_k$ occurring of the branch such that:

$$-F_1\sigma=\cdots=F_n\sigma$$

-
$$S_1 \cap \cdots \cap S_n = \emptyset$$
, or

• P contains a signed formula S:F for which no expansion rule can be applied and F is not atomic.

A path which is not closed is called open.

Closed Tableaux

A path P in a tableau T is closed if:

- P contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_1:F_1,\ldots,S_k:F_k$ occurring of the branch such that:
 - $-F_1\sigma=\cdots=F_n\sigma$
 - $-S_1 \cap \cdots \cap S_n = \emptyset$, or
- P contains a signed formula S:F for which no expansion rule can be applied and F is not atomic.

A path which is not closed is called open.

A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

Soundness and completeness

Given an signature Σ , by Σ^{sko} we denote the result of adding infinitely many new Skolem function symbols which we may use in the rules for quantifiers.

Let \mathcal{A} be a Σ^{sko} -interpretation, T a tableau, and β a variable assignment over \mathcal{A} .

T is called (A, β) -valid, if there is a path P_{β} in T such that $A, \beta \models F$, for each formula F on P_{β} .

T is called satisfiable if there exists a structure A such that for each assignment β the tableau T is (A, β) -valid.

(This implies that we may choose P_{β} depending on β .)

Soundness and completeness

Theorem (Soundness of the tableau calculus for \mathcal{L}_3) Let F be a \mathcal{L}_3 -formula without free variables. If there exists a closed tableau T for $\{U, F\}F$, then F is an \mathcal{L}_3 -tautology (it is valid).

Theorem (Refutational completeness)

Let F be a \mathcal{L}_3 -tautology. Then we can construct a closed tableau for $\{U, F\}F$. (The order in which we apply the expansion rules is not important).