
Non-classical logics

Lecture 8: Many-valued logics (Part 4)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation

Syntax

Semantics

Functional completeness

Automated reasoning: Tableaux

2

Automated reasoning

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

Many-valued logic:

Task: prove that F is valid

(i.e. A(β)(F) ∈ D for all A, β)

Method: prove that it is not possible that A(β) ∈ M\D:

− assume F ∈ M\D; derive a contradiction.

Problem: How do we express the fact that F ∈ M\D

1)
W

v∈M\D(F = v)

2) more economical notation?

3

Automated reasoning

Idea: Use signed formulae

• F v , where F is a formula and v ∈ M

A,β |= F v iff A(β)(F) = v .

• S :F , where F is a formula and

∅ 6= S ⊆ M (set of truth values)

A,β |= S :F iff A(β)(F) ∈ S .

4

Semantic tableaux

For every ∅ 6= S ⊆ M and every logical operator f we have a

tableau rule:

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (A1, . . . ,An) is a finite extended tableau containing only

formulae of the form Si :Fi .

Informally: Exhaustive list of conditions which ensure that the

value of f (F1, . . . ,Fn) is in S .

5

Example

Let L5 be the 5-valued Lukasiewicz logic with M = {0, 1, 2, 3, 4}.

⇒ 0 1 2 3 4

0 4 4 4 4 4

1 3 4 4 4 4

2 2 3 4 4 4

3 1 2 3 4 4

4 0 1 2 3 4

{4}(p ⇒ q)

{0}p {0, 1}p {0, 1, 2}p {0, 1, 2, 3}p

{1, 2, 3, 4}q {2, 3, 4}q {3, 4}q {4}q

6

Labelling sets

Let V ⊆ P(M) be the set of all sets of truth values which are used for

labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so V 6= P(M).

2. Proof by contradiction:

Goal: Prove that F is valid, i.e. A(β)(F) ∈ D.

We start from (M\D):F and build the tableau

⇒ We assume that (M\D) ∈ V .

3. Need to make sure that the new signs introduced by the tableau rules

are in V .

7

Tableau rules: Soundness

S :f (F1, . . . , Fn)

T (F1, . . . , Fn)

where T (F1, . . . , Fn) is a finite extended tableau containing only formulae

of the form Si :Fi .

S :f (F1, . . . , Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . , Fn}

8

Tableau rules: Soundness

S :f (F1, . . . , Fn)

T (F1, . . . , Fn)

where T (F1, . . . , Fn) is a finite extended tableau containing only formulae

of the form Si :Fi .

S :f (F1, . . . , Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . , Fn}

For every A, β: A(β)(F) ∈ S then there exists i such that for all j :

A(β)(Cij) ∈ Sij .

9

Tableau rules: Soundness

S :f (F1, . . . , Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . , Fn}

Every model of S :f (F1, . . . , Fn) is also a model of the formulae on one of

the branches

If there is no expansion rule for a premise: premise is unsatisfiable

(A(β)(F) 6∈ S for all A, β).

If f (F1, . . . , Fn) satisfiable then there is an expansion rule.

10

L3: Tableau rules for ∧

{1}A ∧ B

{1}A

{1}B

{u}A ∧ B

{u}A | {u}B | {u}A
| |

{1}B | {1}A | {u}B

{0}A ∧ B

{0}A|{0}B

{u, 0}A ∧ B

{u, 0}A|{u, 0}B

11

L3: Tableau rules for ∨

{1}A ∨ B

{1}A|{1}B

{u}A ∨ B

{u, 0}A | {u}A
|

{u}B | {u, 0}B

{0}A ∨ B

{0}A

{0}B

{u, 0}A ∨ B

{u, 0}A

{u, 0}B

12

L3: Tableau rules for ¬,∼

{1} ∼ A

{u, 0}A

{0} ∼ A

{1}A

{u} ∼ A {u, 0} ∼ A

{1}A

{1}¬A

{0}A

{0}¬A

{1}A

{u}¬A

{u}A

{u, 0}¬A

{1}A|{u}A

13

L3: Tableau rules for ⊃

{1}A ⊃ B

{u, 0}A|{1}B

{0}A ⊃ B

{1}A

{0}B

{u}A ⊃ B

{1}A

{u}B

{u, 0}A ⊃ B

{1}A

{u, 0}B

14

L3: Tableau rules for ∃

{1}∃xA(x)

{1}A(f (y1, . . . , yk))

{0}∃xA(x)

{0}A(z)

{u}∃xA(x)

{u}A(f (y1, . . . yk))

{u, 0}A(z)

{u, 0}∃xA(x)

{u, 0}A(z)

where

• z is a new free variable

• y1, . . . , yk are the free variables in ∃xA(x)

• f is a new function symbol

15

L3: Tableau rules for ∀

{1}∀xA(x)

{1}A(z)

{0}∀xA(x)

{0}A(f (y1, . . . , yk)

{u}∀xA(x)

{u}A(f (y1, . . . yk))

{u, 1}A(z)

{u, 0}∀xA(x)

{u, 0}A(f (y1, . . . , yk))

where

• z is a new free variable

• y1, . . . , yk are the free variables in ∀xA(x)

• f is a new function symbol

16

Tableaux

A tableau for a finite set For of signed formulae is constructed as follows:

• A linear tree, in which each formula in For occurs once is a tableau.

• Let T be a tableau for For und P a path in T , which contains a signed

formula S :F .

Assume that there exists a tableau rule with premise S :F . If

E1, ..., En are the possible conclusions of the tableau rule (under the

corresponding restrictions in case of quantified formulae) then T is

exteded with n linear subtrees containing the signed formulae from Ei

(respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

17

Closed Tableaux

A path P in a tableau T is closed if:

• P contains complementary formulae, i.e. there exists a substitution

σ and there exists signed formulae S1:F1, . . . , Sk :Fk occurring of the

branch such that:

– F1σ = · · · = Fnσ

– S1 ∩ · · · ∩ Sn = ∅, or

• P contains a signed formula S :F for which no expansion rule can be

applied and F is not atomic.

A path which is not closed is called open.

18

Closed Tableaux

A path P in a tableau T is closed if:

• P contains complementary formulae, i.e. there exists a substitution

σ and there exists signed formulae S1:F1, . . . , Sk :Fk occurring of the

branch such that:

– F1σ = · · · = Fnσ

– S1 ∩ · · · ∩ Sn = ∅, or

• P contains a signed formula S :F for which no expansion rule can be

applied and F is not atomic.

A path which is not closed is called open.

A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

19

Soundness and completeness

Given an signature Σ, by Σsko we denote the result of adding infinitely many

new Skolem function symbols which we may use in the rules for quantifiers.

Let A be a Σsko-interpretation, T a tableau, and β a variable assignment

over A.

T is called (A, β)-valid, if there is a path Pβ in T such that A, β |= F , for

each formula F on Pβ .

T is called satisfiable if there exists a structure A such that for each

assignment β the tableau T is (A, β)-valid.

(This implies that we may choose Pβ depending on β.)

20

Soundness

Theorem (Soundness of the tableau calculus for L3)

Let F be a L3-formula without free variables. If there exists a closed tableau

T for {u, 0}F , then F is an L3-tautology (it is valid).

Proof: Let T be a tableau for F . The following are equivalent:

(1) F is satisfiable

(2) T is satisfiable (i.e. there exists a Σ-structure A such that for each

assignment β there is a path Pβ in T such that A, β |= F , for each

formula F on Pβ .

(2) ⇒ (1) is obvious.

(1) ⇒ (2) can be proved by induction on the structure of the tableau T .

21

Refutational completeness

Theorem (Refutational completeness)

Let F be a L3-tautology. Then we can construct a closed tableau for

{u, 0}F . (The order in which we apply the expansion rules is not important).

Proof (Idea): Assume that we cannot construct a closed tableau. If we can construct

a finite tableau which is not closed, from the previous result we know that F is clearly

satisfiable.

Otherwise, as in the proof for classical logic, we define a fair tableau expansion process

which “converges” towards an infinite tableau T . We analyze all non-closed paths of

T (on which the “γ”-rules are applied an infinite number of times); we show that for

every such path we can order the formula on such path according to a certain ordering

and incrementally construct a model for the formulae on that path. This model will

then be a model of the formula F .

(The argument can be used for every non-classical logic.)

22

Resolution

Goal:

Extend the resolution rule such that it takes into account sets of truth

values.

23

Resolution

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

Many-valued logic:

Task: prove that F is valid

(i.e. A(β)(F) ∈ D for all A, β)

Method: prove that it is not possible that A(β) ∈ M\D:

− assume F ∈ M\D; derive a contradiction.

F v : abbreviation for {v}:F .

S :F =
W

v∈S F v .

24

Resolution

Natural generalization of the resolution rule:

Signed resolution

L
v1
1 ∨ C L

v2
2 ∨ D

(C ∨ D)σ

if v1 6= v2, and σ = mgu(L1, L2)

Signed factoring

C ∨ Lv
1 ∨ Lv

2

(C ∨ Lv
1)σ

if σ = mgu(L1, L2)

25

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

26

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

27

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

DNF: (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ R)

28

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F ¬F

0 0 0 0 1 0 0 0 1

0 0 1 0 1 0 1 0 1

0 1 0 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0

1 0 0 1 0 0 0 0 1

1 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 0 1

1 1 1 1 0 0 1 1 0

CNF: (1) DNF of ¬F :

(¬P ∧ ¬Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R) ∨ (P ∧ Q ∧ ¬R)

(2) negate:

(P ∨ Q ∨ R) ∧ (P ∨ Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬P ∨ ¬Q ∨ R)

29

Signed resolution: Propositional logic

Translation to signed clause form.

Ψ = S :f (F1, . . . ,Fn)

DNF (Ψ) :=
∨

v1,...,vn∈M

fM (v1,...,vn)∈S

F
v1
1 ∧ · · · ∧ F

vn
n

CNF (Ψ) :=
∧

v1,...,vn∈M

fM (v1,...,vn) 6∈S

(M\{v1}):F1 ∨ · · · ∨ (M\{vn}):Fn

(negate DNF (M\S :f (F1, . . . ,Fn)))

30

Example

⇒ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Compute CNF for {0}:(F1 → F2):

DNF for { 1
2

, 1}:(F1 → F2) :
_

v1,v2∈{0, 1
2

,1}

v1⇒v2 6=0

{v1}:F1 ∧ {v2}:F2

(F 0
1 ∧ F 0

2) ∨ (F 0
1 ∧ F

1
2

2) ∨ (F 0
1 ∧ F 1

2)

(F
1
2

1 ∧ F 0
2) ∨ (F

1
2

1 ∧ F
1
2

2) ∨ (F
1
2

1 ∧ F 1
2)

(F 1
1 ∧ F

1
2

2) ∨ (F 1
1 ∧ F 1

2)

CNF for {0}:(F1 → F2):

({ 1
2

, 1}:F1 ∨ { 1
2

, 1}:F2) ∧ ({ 1
2

, 1}:F1 ∨ {0, 1}:F2) ∧ ({ 1
2

, 1}:F1 ∨ {0, 1
2
}:F2)

({0, 1}:F1 ∨ { 1
2

, 1}:F2) ∧ ({0, 1}:F1 ∨ {0, 1}:F2) ∧ ({0, 1}:F1 ∨ {0, 1
2
}:F2)

({0, 1
2
}:F1 ∨ {0, 1}:F2) ∧ ({0, 1

2
}:F 1

1 ∨ {0, 1
2
}:F 1

2)

31

Example

⇒ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Compute CNF for {0}:(F1 → F2):

DNF for { 1
2

, 1}:(F1 → F2) :
_

v1,v2∈{0, 1
2

,1}

v1⇒v2 6=0

{v1}:F1 ∧ {v2}:F2

= (F 0
1 ∧ F

{0, 1
2

,1}

2) ∨ (F
1
2

1 ∧ F
{0, 1

2
,1}

2) ∨ (F 1
1 ∧ F

{ 1
2

,1}

2)

= F 0
1 ∨ F

1
2

1 ∨ (F 1
1 ∧ F

{ 1
2

,1}

2)

CNF for {0}:(F1 → F2):

{ 1
2

, 1}:F1 ∧ {0, 1}:F1 ∧ ({0, 1
2
}:F1 ∨ {0}:F2)

32

Optimization

Ψ = S :f (F1, . . . , Fn)

DNF (Ψ) :=
_

v1,...,vn−1∈M

{v1}:F1 ∧ · · · ∧ {vn−1}:Fn−1 ∧ {vn | fM(v1, . . . , vn) ∈ S}:Fn

CNF (Ψ) :=
^

v1,...,vn−1∈M

(M\{v1}):F1 ∨ · · · ∨ (M\{vn−1}):Fn−1 ∨ {vn | fM(v1, . . . , vn)∈S}:Fn

(negate DNF (M\S :f (F1, . . . , Fn)))

33

Soundness

Signed resolution (propositional form)

Pv1 ∨ C Pv2 ∨ D

C ∨ D

if v1 6= v2

Signed factoring (propositional form)

C ∨ Pv ∨ Pv

C ∨ Pv

34

Soundness

Theorem. The signed resolution inference rule is sound.

Proof (propositional case)

Let A be a valuation such that A |= Pv1 ∨ C and A |= Pv2 ∨ D.

Case 1: A |= Pv1 . Then A(P) = v1, hence A(P) 6= v2. Therefore, A |= D.

Hence, A |= C ∨ D.

Case 2: A 6|= Pv1 . Then A |= C .

Hence also in this case A |= C ∨ D.

Soundness of signed factoring is obvious.

35

Completeness: Propositional Logic

Encoding into first-order logic with equality

Signed resolution

P ≈ v1 ∨ C P ≈ v2 ∨ D

(C ∨ D)
if v1 6= v2

Signed factoring

C ∨ P ≈ v ∨ P ≈ v

C

Idea: Signed resolution can be simulated by a version of resolution which

handles equality efficiently (superposition). Completeness then follows from

the completeness of this refinement of resolution.

This also guarantees completeness of refinements of signed resolution with

ordering and selection functions

36

