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Modal logic

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory
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Correspondence Theory

Main questions:

Assume that we consider a set of frames for which the accessibility relation

has certain properties. Is it the case that in all frames in this class a certain

modal formula holds?

Given a modal formula. Can we describe the frames in which the formula

holds, e.g. by specifying certain properties of the accessibility relation?
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Correspondence theorems

Properties of R Axioms

1. Reflexive: ∀s (sRs) 2A → A

2. Symmetric: ∀s∀t (sRt → tRs) A → 23A

3. Serial: ∀s∃t (sRt) 2A → 3A

4. Transitive: ∀s∀t∀u (sRt ∧ tRu → sRu) 2A → 22A

5. Euclidean: ∀s∀t∀u (sRt ∧ sRu → tRu) 3A → 23A

6. Partially functional: ∀s∀t∀u (sRt ∧ sRu → t = u) 3A → 2A

7. Functional: ∀s∃t(sRt) 3A ↔ 2A

8. Weakly dense: ∀s∀t(sRt → ∃u (sRu ∧ uRt)) 22A → 2A

9. Weakly connected: ∀s∀t∀u (sRt ∧ sRu → tRu ∨ t = u ∨ uRt) 2(A ∧ 2A → B) ∨ 2(B ∧ 2B → A)

10. Weakly directed: ∀s∀t∀u (sRt ∧ sRu → ∃v(tRv ∧ uRv)) 32A → 23A

Theorem. Let F = (S ,R) be a frame.

Then for each of the properties 1-10, if R satisfies the property, then the

corresponding schema is valid in F .

Theorem. If a frame F = (S ,R) validates any one of the schemata 1-10,

then R satisfies the corresponding property.
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A general result

Property of R:

C(m, n, j , k) : ∀s1∀s2∀s3((Rm(s1, s2) ∧ R j (s1, s3) → ∃s4(Rn(s2, s4) ∧ Rk (s3, s4)))
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A general result

Property of R:

C(m, n, j , k) : ∀s1∀s2∀s3((Rm(s1, s2) ∧ R j (s1, s3) → ∃s4(Rn(s2, s4) ∧ Rk (s3, s4)))

where R0(x , y) := x = y

R1(x , y) := R(x , y)

R2(x , y) = ∃u(R(x , u) ∧ R(u, y))

Rm(x , y) = ∃u1 . . . um−1(R(x , u1) ∧ · · · ∧ R(um−1, y))
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom

3
m

2
nP → 2

j
3

kP

characterizes the class of all frames in which

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

is true.

We use the abbreviations

2
nP = 2 . . . 2

| {z }

n times

P

3
nP = 3 . . . 3

| {z }

n times

P
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom

3
m

2
nP → 2

j
3

kP

characterizes the class of all frames in which

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

is true.

We use the abbreviations

2
nP = 2 . . . 2

| {z }

n times

P

3
nP = 3 . . . 3

| {z }

n times

P

In particular, 2
0P and 3

0P stand for P
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom 3
m

2
nP → 2

j
3

kP

characterizes the class of all frames in which C(m, n, j , k) is true, where:

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

Proof “⇒” Let (S, R) be s.t. for every I (S, R, I ) |= 3
m

2
nP → 2

j
3

kP. We show

that R has property C(m, n, j , k).

Let s1, s2, s3 ∈ S be such that Rm(s1, s2) ∧ R j (s1, s3).

Let I with I (w , P) = 1 if Rn(s2, w) and I (w , P) = 0 otherwise.

Then, for K = (S, R, I ) we have (K, s2) |= 2
nP, hence (K, s1) |= 3

m
2

nP.

Then, by assumption, (K, s1) |= 2
j
3

kP.

Since R j (s1, s3), it follows that there exists s ∈ S such that Rk (s3, s) and I (s, P) = 1,

hence by the definition of I , Rn(s2, s).
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom 3
m

2
nP → 2

j
3

kP

characterizes the class of all frames in which C(m, n, j , k) is true, where:

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

Proof “⇐” Assume R ⊆ S × S has the property C(m, n, j , k).

Let K = (S, R, I ) and s1 ∈ S. We show that (K, s1) |= 3
m

2
nP → 2

j
3

kP.

Assume that (K, s1) |= 3
m

2
nP.

Then there exists s2 ∈ S such that Rm(s1, s2) and (K, s2) |= 2
nP.

We want to show that (K, s1) |= 2
j
3

kP. Let s3 ∈ S be such that R j (s1, s3).

Since we assumed that R has property C(m, n, j , k), there exists s4 ∈ S such that

Rn(s2, s4) ∧ Rk (s3, s4).

From Rn(s2, s4) and (K, s2) |= 2
nP we infer that I (P, s4) = 1.

From this and the fact that Rk (s3, s4) it follows that (K, s3) |= 3
kP.

It follows therefore that (K, s1) |= 2
j
3

kP. QED
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Exercise

(1) Complete the proofs of the correspondence theorems.

(2) Give a property of R that is necessary and sufficient for F to validate

the schema A → 2A. Do the same for 2 ⊥.
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First-order definability

The correspondence theorems go a long way toward explaining the great

success that the relational semantics enjoyed upon its introduction by

Kripke.

Frames are much easier to deal with than modal algebras, and many

modal schemata were shown to have their frames characterised by simple

first-order properties of R.

For a time it seemed that propositional modal logic corresponded in strength

to first-order logic, but that proved not to be so. Here are a couple of

illustrations.
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Examples of schemata non-definable in FOL

Example 1. The schema

W : 2(2A → A) → 2A

is valid in frame (S ,R) iff:

(i) R is transitive, and

(ii) there is no sequence s0, ..., sn, ... in S with s0Rs1Rs2 . . . snRsn+1 . . . for

all n ≥ 0

i.e. iff R−1 is well-founded.

(for a proof cf. [Boolos, 1979, p.82])

It can be shown by the Compactness Theorem of first-order logic that

there exists a frame satisfying (i) and (ii) that satisfies the same first-order

sentences as a frame in which (ii) fails.

Hence there can be no set of first-order sentences that defines the class of

frames of this schema.
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Examples of schemata non-definable in FOL

Example 2. The class of frames of the so-called McKinsey schema

M : 23A → 32A

is not defined by any set of first-order sentences

[Goldblatt, 1975; van Benthem, 1975]
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Second order definability

Propositional modal logic corresponds to a fragment of

second-order logic [Thomason, 1975].
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Properties not corresp. to schemata validity

There are some naturally occurring properties of a binary relation R that do

not correspond to the validity of any modal schema.

One such properties is irreflexivity, i.e. ∀s ¬(sRs).

Proof (Idea)

Assume there exists a formula F which characterizes irreflexivity.

Consider the frame (S ,R) with S = {s0} and R(s0, s0).

For every frame F = (S ,R), a frame F∗ = (S∗,R∗) can be constructed

which satisfies the same modal formulae as F , but is irreflexive.

It would then follow that F∗ |= F , but – since in F∗ the same formulae are

true as in F – (S ,R) |= F although R is not reflexive. Contradiction.
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Properties not corresp. to schemata validity

In the proof we used the following result:

Lemma. For every Kripke structure K = (S ,R, I ), a structure K∗ =

(S∗,R∗, I∗) can be constructed which satisfies the same modal formulae as

K, but R is irreflexive.

Proof: For every s ∈ S let s1, s2 6∈ S (different). We define:

S∗ = {s i | s ∈ S, i = 1, 2}; I∗(s i , P) = I (s, P) for i = 1, 2.

R∗(s i , uj ) iff R(s, u) for all i , j if s 6= u.

R∗(s i , uj ) iff R(s, s) and i 6= j .

For every formula F and every s ∈ S the following are equivalent:

(1) (K, s) |= F

(2) (K∗, s1) |= F

(3) (K∗, s2) |= F

[Proof by simultaneous structural induction]

Thus, K |= F iff K∗ |= F .
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Theorem proving in modal logics

• Inference system

• Tableau calculi

• Resolution
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Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
z }| {

F1 . . . Fn

Fn+1
|{z}

conclusion

.

Inferences with 0 premises are also called axioms.
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Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi ) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .
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Provability

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.
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The modal system K

Axioms:

• All axioms of propositional logic (e.g. p ∨ ¬p)

• 2(A → B) → (2A → 2B) (K)

Inference rules

A A → B

B
[Modus ponens]

A

2A
[G]
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Some systems of modal logic

System Description

T K + 2A → A

D K + 2A → 3A

B T + ¬A → 2¬2A

S4 T + 2A → 22A

S5 T + ¬2A → 2¬2A

S4.2 S4 + ⋄2A → 23A

S4.3 S4 + 2(2(A → B)) ∨ 2(2(B → A))

C K + A→B
2(A→B)

instead of (G).
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Soundness and Completeness

Question:

Is it true that a formula F is valid in all frames iff F is provable

in the inference system for the modal logic K?
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Soundness and Completeness

Question:

Is it true that a formula F is valid in all frames iff F is provable

in the inference system for the modal logic K?

• F provable ⇒ F valid in all frames: soundness

• F valid in all frames ⇒ F provable: completeness
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Soundness and Completeness

Question:

Is it true that a formula F is valid in all frames iff F is provable

in the inference system for the modal logic K?

• F provable ⇒ F valid in all frames: soundness

• F valid in all frames ⇒ F provable: completeness

Do similar results hold for other logics (taking into account

correspondence theory results we proved in the last lecture)?
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Soundness

Theorem. If the formula F is provable in the inference system for the modal

logic K then F is valid in all frames.

Proof:

(1) All axioms of the modal logic K are valid in all frames

(2) If (K, x) |= A and (K, x) |= A → B then (K, x) |= B

If K |= A and K |= A → B then K |= B

If F |= A and F |= A → B then F |= B

(3) If K |= A then K |= 2A

If F |= A then F |= 2A
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Completeness

Theorem. If the formula F is is valid in all frames then F is provable in the

inference system for the modal logic K .

Proof

Idea:

Assume that F is not provable in the inference system for the modal logic

K .

We show that:

(1) ¬F is consistent with the set L of all theorems of K

(2) We can construct a “canonical” Kripke structure KL and a world w

in this Kripke structure such that (K, w) |= ¬F .

Contradiction!
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