Non-classical logics

Lecture 14: Modal logics (Part 4)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory

First-order definability

Schemata non-definable in FOL

$$W: \Box(\Box A o A) o \Box A$$

 $M: \Box \Diamond A \to \Diamond \Box A$

Properties binary relations that do not correspond to any modal schema Irreflexivity, i.e. $\forall s \neg (sRs)$.

Until now

Theorem proving in modal logics

- Inference systems
- Tableau calculi
- Resolution

Reminder: The modal system *K*

Axioms:

- All axioms of propositional logic (e.g. $p \lor \neg p$)
- $\Box(A \to B) \to (\Box A \to \Box B)$ (K)

Inference rules

Reminder: Some systems of modal logic

System	Description
Т	$K + \Box A \rightarrow A$
D	$K + \Box A \rightarrow \Diamond A$
В	$T + \neg A ightarrow \Box \neg \Box A$
<i>S</i> 4	$T + \Box A ightarrow \Box \Box A$
<i>S</i> 5	$T + \neg \Box A ightarrow \Box \neg \Box A$
<i>S</i> 4.2	$S4 + \diamond \Box A \rightarrow \Box \diamond A$
<i>S</i> 4.3	$S4 + \Box(\Box(A o B)) \lor \Box(\Box(B o A))$
С	$K + \frac{A \rightarrow B}{\Box(A \rightarrow B)}$ instead of (G).

Reminder: Soundness and Completeness

Question:

Is it true that a formula F is valid in all frames iff F is provable in the inference system for the modal logic K?

- F provable \Rightarrow F valid in all frames: soundness
- F valid in all frames \Rightarrow F provable: completeness

Do similar results hold for other logics (taking into account correspondence theory results we proved in the last lecture)?

Theorem. If the formula F is provable in the inference system for the modal logic K then F is valid in all frames.

Theorem. If the formula F is is valid in all frames then F is provable in the inference system for the modal logic K.

Proof

Idea:

Assume that F is not provable in the inference system for the modal logic K.

We show that:

- (1) $\neg F$ is consistent with the set L of all theorems of K
- (2) We can construct a "canonical" Kripke structure \mathcal{K} and a world w in this Kripke structure such that $(\mathcal{K}, w) \models \neg F$.

Contradiction!

Consistent sets of formulae

Let *L* be a set of modal formulae which:

- (1) contains all propositional tautologies
- (2) contains axiom K
- (3) is closed under modus ponens and generalization
- (4) is closed under instantiation

Definition. A subset $F \subseteq L$ is called *L*-inconsistent iff there exist formulae $A_1, \ldots, A_n \in F$ such that

$$(\neg A_1 \lor \cdots \lor \neg A_n) \in L$$

F is called *L*-consistent iff it is not *L*-inconsistent.

Definition. A consistent set *F* of modal formulae is called maximal *L*-consistent if for every modal formula *A* wither $A \in F$ or $\neg A \in F$.

Consistent sets of formulae

Let *L* be a set of modal formulae which:

- (1) contains all propositional tautologies
- (2) contains axiom K
- (3) is closed under modus ponens and generalization
- (4) is closed under instantiation

Typically: L: the set of all theorems of the modal logic K

Notation:

 $\vdash_L F$ iff $F \in L$

 $\Gamma \vdash_L F$ iff there exist formulae $G_1, \ldots, G_n \in \Gamma$ s.t. $\vdash_L (G_1 \rightarrow (G_2 \rightarrow \ldots, (G_n \rightarrow F) \ldots))$

Remark: Assume *L* is the set of all theorems of the modal logic *K*. Then *F* provable from Γ in modal system *K* iff $\Gamma \vdash_L F$.

(Induction on the length of proof)

Let *L* be as before. In what follows we assume that *L* is consistent. **Theorem.** Let *F* be a maximal *L*-consistent set of formulae. Then: (1) For every formula *A*, either $A \in F$ or $\neg A \in F$, but not both. (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$ (3) $A \land B \in F$ iff $A \in F$ and $B \in F$ (4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (1) $A \in F$ or $\neg A \in F$ by definition.

Assume $A \in F$ and $\neg A \in F$. We know that $\neg A \lor \neg \neg A \in L$ (propositional tautology), so F is inconsistent. Contradiction. Let L be as before. In what follows we assume that L is consistent.

Theorem. Let *F* be a maximal *L*-consistent set of formulae. Then:

- (1) For every formula A, either $A \in F$ or $\neg A \in F$, but not both.
- (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$
- (3) $A \land B \in F$ iff $A \in F$ and $B \in F$

(4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (2) " \Rightarrow " Assume $A \lor B \in F$, but $A, B \notin F$. Then $\neg A, \neg B \in F$. As $\neg \neg A \lor \neg \neg B \lor \neg (A \lor B) \in L$ (classical tautology) it follows that F is inconsistent.

(2) " \Leftarrow " Assume $A \in F$ and $A \lor B \notin F$. Then $\neg (A \lor B) \in F$. Then $\neg A \lor (A \lor B) \in L$, so F is inconsistent.

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let *F* be a maximal *L*-consistent set of formulae. Then:

- (1) For every formula A, either $A \in F$ or $\neg A \in F$, but not both.
- (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$
- (3) $A \land B \in F$ iff $A \in F$ and $B \in F$

(4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (3) Analogous to (2)

Let *L* be as before. In what follows we assume that *L* is consistent. **Theorem.** Let *F* be a maximal *L*-consistent set of formulae. Then: (1) For every formula *A*, either $A \in F$ or $\neg A \in F$, but not both. (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$ (3) $A \land B \in F$ iff $A \in F$ and $B \in F$ (4) $L \subseteq F$

(5) *F* is closed under Modus Ponens

Proof. (4) If $A \in L$ then $\neg A$ is inconsistent. Hence, $\neg A \notin F$, so $A \in F$.

(5) Assume $A \in F, A \to B \in F$ and $B \notin F$, i.e. $\neg B \in F$. Then $\neg A \lor \neg (A \to B) \lor \neg \neg B$ is a propositional tautology, hence in *L*. Thus, *F* inconsistent. **Theorem.** Every consistent set F of formulae is contained in a maximally consistent set of formulae.

Proof. We enumerate all modal formulae: A_0, A_1, \ldots and inductively define an ascending chain of sets of formulae:

$$F_0 := F$$

$$F_{n+1} := \begin{cases} F_n \cup \{A_n\} & \text{ if this set is consistent} \\ F_n \cup \{\neg A_n\} & \text{ otherwise} \end{cases}$$

It can be proved by induction that F_n is consistent for all n.

Let $F_{\max} = \bigcup_{n \in \mathbb{N}} F_n$. Then F_{\max} is maximal consistent and contains F. **Theorem.** $\{F \mid \Gamma \vdash_{\mathcal{L}} F\} = \bigcap \{\Delta \mid \Gamma \subseteq \Delta\},\$

i.e. $\Gamma \vdash_{\mathcal{L}} F$ iff F belongs to every maximal consistent set that includes Γ .

Proof. The direct implication is immediate.

We prove the converse. Instead of proving $A \Rightarrow B$ we prove that $\neg B \Rightarrow \neg A$.

If $\Gamma \not\vdash_{\mathcal{L}} F$ then $\Gamma \cup \neg F$ is \mathcal{L} -consistent, so it is included into some maximal consistent set Δ . So there exists a maximal consistent set which contains Γ but does not contain F.

Goal: Assume *F* is not a theorem. Construct a Kripke structure \mathcal{K} and a possible world *w* of \mathcal{K} such that $(\mathcal{K}, w) \models \neg F$.

States: State of \mathcal{K} : maximal consistent set of formulae.

Interpretation: $\mathcal{I}(P, W) = 1$ iff $P \in W$.

```
Intuition: (\mathcal{K}, W) \models F iff F \in W.
```

Accessibility relation:

Intuition: $(\mathcal{K}, W) \models \Box F$ iff for all W', $((W, W') \in R \rightarrow (\mathcal{K}, W') \models F$ **Goal:** Assume *F* is not a theorem. Construct a Kripke structure \mathcal{K} and a possible world *w* of \mathcal{K} such that $(\mathcal{K}, w) \models \neg F$.

States: State of \mathcal{K} : maximal consistent set of formulae.

Interpretation: $\mathcal{I}(P, W) = 1$ iff $P \in W$.

```
Intuition: (\mathcal{K}, W) \models F iff F \in W.
```

Accessibility relation:

Intuition: $(\mathcal{K}, W) \models \Box F$ iff for all W', $((W, W') \in R \to (\mathcal{K}, W') \models F$ $\Box F \in W$ iff for all W', $((W, W') \in R \to F \in W'$ **Goal:** Assume *F* is not a theorem. Construct a Kripke structure \mathcal{K} and a possible world *w* of \mathcal{K} such that $(\mathcal{K}, w) \models \neg F$.

States: State of \mathcal{K} : maximal consistent set of formulae.

Interpretation: $\mathcal{I}(P, W) = 1$ iff $P \in W$.

```
Intuition: (\mathcal{K}, W) \models F iff F \in W.
```

Accessibility relation:

Intuition: $(\mathcal{K}, W) \models \Box F$ iff for all W', $((W, W') \in R \to (\mathcal{K}, W') \models F$ $\Box F \in W$ iff for all W', $((W, W') \in R \to F \in W'$

 $(W, W') \in R \text{ iff } W' \supseteq \Box^{-1}(W) = \{F \mid \Box F \in W\}$

Theorem. For every maximal consistent set W and every formula F:

 $\Box F \in W$ iff for all max. consistent sets $W'[(W, W') \in R$ implies $F \in W']$

Proof. " \Rightarrow " follows from the definition of *R*.

"
(W', W') $\in R$ implies $F \in W'$, i.e.

 $\{G \mid \Box G \in W\} \subseteq W' \text{ implies } F \in W'$

Since W' is maximal consistent it then follows that

 $\{G \mid \Box G \in W\} \vdash_{\mathcal{L}} F$

hence $\{\Box G \mid \Box G \in W\} \vdash_{\mathcal{L}} \Box F$, so $W \vdash_{\mathcal{L}} \Box F$.

Thus, as W is a maximal consistent set of formulae, $\Box F \in W$.

Theorem. $(\mathcal{K}, W) \models F$ iff $F \in W$.

Proof. Induction on the structure of the formula F.

The case F = P follows from the definition of \mathcal{I} , while the cases $F = \perp$ and \perp are immediate.

The induction step for $F = \neg F_1$ is immediate; the cases $F = F_1 \text{op} F_2$, op $\in \{\lor, \land\}$ follow from the properties of maximal consistent sets.

For the case $F = \Box F_1$, assume inductively that the result holds for F_1 .

$$(\mathcal{K}, W) \models \Box F_1$$
 iff for all W' $((W, W') \in R \to (\mathcal{K}, W') \models F_1)$
iff for all W' $((W, W') \in R \to F_1 \in W')$
iff $\Box F_1 \in W$ (we used the previous theorem)

Theorem. If the formula F is is valid in all frames then F is provable in the inference system for the modal logic K.

Proof. Assume *F* is not provable in the inference system for *K*. Then $L \cup \neg F$ is consistent, hence it is included in a consistenly maximal set *W*.

Then $\neg F \in W$, so by the previous theorem, $(\mathcal{K}, W) \models \neg F$.

This contradicts the fact that we assumed that F is valid in all Kripke structures.

Other soundness and completeness results

$T = K + \Box A \to A.$

A formula F is provable in the inference system for the modal logic T iff F is is valid in all frames (S, R) with R reflexive.

$S4 = T + \Box A \rightarrow \Box \Box A.$

A formula F is provable in the inference system for the modal logic S4 iff F is is valid in all frames (S, R) with R transitive.

$S5 = T + \neg \Box A \rightarrow \Box \neg \Box A.$

A formula F is provable in the inference system for the modal logic S5 iff F is is valid in all frames (S, R) with R is an equivalence relation.

Soundness/completeness: characteriz. classes

Theorem. Let \mathcal{R} be a class of frames characterizable through the modal formulae C_1, \ldots, C_n , and let $K(\mathcal{R})$ be the class of all Kripke structures based on frames in \mathcal{R} .

Let S be the inference system obtained from K by adding C_1, \ldots, C_n as axioms.

A formula F is provable in the inference system for the modal logic S iff F is valid in all Kripke structures $\mathcal{K} \in K(\mathcal{R})$.

Proof (Idea) It can be shown that if S is obtained from K by adding axioms C_1, \ldots, C_n , then the canonical Kripke structure – constructed as in the case of the modal logic K – is in $K(\mathcal{R})$ (i.e. it is based on frames in \mathcal{R}).

Example: Let C_1 be the axiom schema $\Box A \rightarrow \Box \Box A$. Let L be the set of all theorems of $K + C_1$. Then all maximal L-consistent sets will contain all instances of this schema.

Let $(W, W') \in R$ and $(W', W'') \in R$. Then $\Box F \in W$ implies $\Box \Box F \in W$, hence $\Box F \in W'$ (since $(W, W') \in R$) so $F \in W''$ (as $(W', W'') \in R$). Thus, $(W, W'') \in R$, so R is transitive.

Modal logic

Theorem proving in modal logics

- Inference systems
- Tableau calculi
- Resolution

Tableau calculus

We use labelled formulae

- TG standing for "Formula G is true"
- FG standing for "Formula G is false"

Tableau calculus

Formula classes

$lpha extsf{-}Formulae$	$T(A \wedge B)$, $F(A \lor B)$, $F(A o B)$, $F(eg A)$
eta-Formulae	$T(A \lor B)$, $F(A \land B)$, $T(A o B)$, $T(eg A)$
u-Formulae	$T \Box A, F \diamond A$
$\pi ext{-}Formulae$	$T \diamond A, F \Box A$

Tableau calculus

Successor formulae

α	α_1	$lpha_2$	eta	eta_1
$T(A \wedge B)$	TA	ТВ		TA
$F(A \lor B)$	FA	FB	$F(A \wedge B)$	FA
F(A ightarrow B)	TA	FB	T(A ightarrow B)	ТВ
$F(\neg A)$	TA	TA	$T(\neg A)$	FA

u	$ u_0$	π	π_0
$T\Box A$	TA	T令A	TA
F◇A	FA	$F\Box A$	FA

 β_2

TΒ

FΒ

FA

FA

Every combination of top-level operator and sign occurs in one of the above cases.

When constructing the tableau, we use signed formulae prefixed by states:

σZA

where $Z \in \{T, F\}$, A is a formula, and σ is a finite sequence of natural numbers.

For the modal logic K, σ_1 is accessible from σ iff

 $\sigma_1 = \sigma n$ for some natural number n.