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Until now

Syntax

Semantics

Kripke models

global and local entailment; deduction theorem

Correspondence theory

First-order definability

Schemata non-definable in FOL

W : 2(2A → A) → 2A

M : 23A → 32A

Properties binary relations that do not correspond to any modal schema

Irreflexivity, i.e. ∀s ¬(sRs).
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Until now

Theorem proving in modal logics

• Inference systems

• Tableau calculi

• Resolution

3



Reminder: The modal system K

Axioms:

• All axioms of propositional logic (e.g. p ∨ ¬p)

• 2(A → B) → (2A → 2B) (K)

Inference rules

A A → B

B
[Modus ponens]

A

2A
[G]
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Reminder: Some systems of modal logic

System Description

T K + 2A → A

D K + 2A → 3A

B T + ¬A → 2¬2A

S4 T + 2A → 22A

S5 T + ¬2A → 2¬2A

S4.2 S4 + ⋄2A → 23A

S4.3 S4 + 2(2(A → B)) ∨ 2(2(B → A))

C K + A→B
2(A→B)

instead of (G).
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Reminder: Soundness and Completeness

Question:

Is it true that a formula F is valid in all frames iff F is provable

in the inference system for the modal logic K?

• F provable ⇒ F valid in all frames: soundness

• F valid in all frames ⇒ F provable: completeness

Do similar results hold for other logics (taking into account

correspondence theory results we proved in the last lecture)?
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Reminder: Soundness

Theorem. If the formula F is provable in the inference system for the modal

logic K then F is valid in all frames.
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Reminder: Completeness

Theorem. If the formula F is is valid in all frames then F is provable in the

inference system for the modal logic K .

Proof

Idea:

Assume that F is not provable in the inference system for the modal logic

K .

We show that:

(1) ¬F is consistent with the set L of all theorems of K

(2) We can construct a “canonical” Kripke structure K and a world w

in this Kripke structure such that (K,w) |= ¬F .

Contradiction!
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Consistent sets of formulae

Let L be a set of modal formulae which:

(1) contains all propositional tautologies

(2) contains axiom K

(3) is closed under modus ponens and generalization

(4) is closed under instantiation

Definition. A subset F ⊆ L is called L-inconsistent iff there exist formulae

A1, . . . ,An ∈ F such that

(¬A1 ∨ · · · ∨ ¬An) ∈ L

F is called L-consistent iff it is not L-inconsistent.

Definition. A consistent set F of modal formulae is called maximal

L-consistent if for every modal formula A wither A ∈ F or ¬A ∈ F .
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Consistent sets of formulae

Let L be a set of modal formulae which:

(1) contains all propositional tautologies

(2) contains axiom K

(3) is closed under modus ponens and generalization

(4) is closed under instantiation

Typically: L : the set of all theorems of the modal logic K

Notation:

⊢L F iff F ∈ L

Γ⊢LF iff there exist formulae G1, . . .Gn∈Γ s.t. ⊢L (G1→(G2→ . . . (Gn→F ) . . . )

Remark: Assume L is the set of all theorems of the modal logic K .

Then F provable from Γ in modal system K iff Γ ⊢L F .

(Induction on the length of proof)
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Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Proof. (1) A ∈ F or ¬A ∈ F by definition.

Assume A ∈ F and ¬A ∈ F .

We know that ¬A∨¬¬A ∈ L (propositional tautology), so F is inconsistent.

Contradiction.
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Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Proof. (2) “⇒” Assume A ∨ B ∈ F , but A,B 6∈ F . Then ¬A,¬B ∈ F . As

¬¬A ∨ ¬¬B ∨ ¬(A ∨ B) ∈ L (classical tautology) it follows that F is inconsistent.

(2) “⇐” Assume A ∈ F and A ∨ B 6∈ F . Then ¬(A ∨ B) ∈ F . Then

¬A ∨ (A ∨ B) ∈ L, so F is inconsistent.
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Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Proof. (3) Analogous to (2)
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Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Proof. (4) If A ∈ L then ¬A is inconsistent. Hence, ¬A 6∈ F , so A ∈ F .

(5) Assume A ∈ F ,A → B ∈ F and B 6∈ F , i.e. ¬B ∈ F .

Then ¬A ∨ ¬(A → B) ∨ ¬¬B is a propositional tautology, hence in L.

Thus, F inconsistent.
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Consistent sets of formulae

Theorem. Every consistent set F of formulae is contained in a maximally

consistent set of formulae.

Proof. We enumerate all modal formulae: A0,A1, . . . and inductively define

an ascending chain of sets of formulae:

F0 := F

Fn+1 :=







Fn ∪ {An} if this set is consistent

Fn ∪ {¬An} otherwise

It can be proved by induction that Fn is consistent for all n.

Let Fmax =
⋃

n∈N
Fn.

Then Fmax is maximal consistent and contains F .
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Consistent sets of formulae

Theorem. {F | Γ ⊢L F} =
⋂

{∆ | Γ ⊆ ∆},

i.e. Γ ⊢L F iff F belongs to every maximal consistent set that includes Γ.

Proof. The direct implication is immediate.

We prove the converse. Instead of proving A ⇒ B we prove that ¬B ⇒ ¬A.

If Γ 6⊢L F then Γ ∪ ¬F is L-consistent, so it is included into some maximal

consistent set ∆. So there exists a maximal consistent set which contains Γ

but does not contain F .
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Canonical models

Goal: Assume F is not a theorem. Construct a Kripke structure K and a

possible world w of K such that (K,w) |= ¬F .

States: State of K: maximal consistent set of formulae.

Interpretation: I(P,W ) = 1 iff P ∈ W .

Intuition: (K,W ) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W ) |= 2F iff for all W ′, ((W ,W ′) ∈ R → (K,W ′) |= F
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Canonical models

Goal: Assume F is not a theorem. Construct a Kripke structure K and a

possible world w of K such that (K,w) |= ¬F .

States: State of K: maximal consistent set of formulae.

Interpretation: I(P,W ) = 1 iff P ∈ W .

Intuition: (K,W ) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W ) |= 2F iff for all W ′, ((W ,W ′) ∈ R → (K,W ′) |= F

2F ∈ W iff for all W ′, ((W ,W ′) ∈ R → F ∈ W ′
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Canonical models

Goal: Assume F is not a theorem. Construct a Kripke structure K and a

possible world w of K such that (K,w) |= ¬F .

States: State of K: maximal consistent set of formulae.

Interpretation: I(P,W ) = 1 iff P ∈ W .

Intuition: (K,W ) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W ) |= 2F iff for all W ′, ((W ,W ′) ∈ R → (K,W ′) |= F

2F ∈ W iff for all W ′, ((W ,W ′) ∈ R → F ∈ W ′

(W ,W ′) ∈ R iff W ′ ⊇ 2
−1(W ) = {F | 2F ∈ W }
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Canonical Kripke structure

Theorem. For every maximal consistent set W and every formula F :

2F ∈ W iff for all max. consistent sets W ′[(W ,W ′) ∈ R implies F ∈ W ′]

Proof. “⇒” follows from the definition of R.

“⇐” Assume that for all max. consistent sets W ′, (W ,W ′) ∈ R implies

F ∈ W ′, i.e.

{G | 2G ∈ W } ⊆ W ′ implies F ∈ W ′

Since W ′ is maximal consistent it then follows that

{G | 2G ∈ W } ⊢L F

hence {2G | 2G ∈ W } ⊢L 2F , so W ⊢L 2F .

Thus, as W is a maximal consistent set of formulae, 2F ∈ W .
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Canonical Kripke structure

Theorem. (K,W ) |= F iff F ∈ W .

Proof. Induction on the structure of the formula F .

The case F = P follows from the definition of I, while the cases F =⊥ and

⊥ are immediate.

The induction step for F = ¬F1 is immediate; the cases F = F1opF2,

op ∈ {∨,∧} follow from the properties of maximal consistent sets.

For the case F = 2F1, assume inductively that the result holds for F1.

(K,W ) |= 2F1 iff for all W ′ ((W ,W ′) ∈ R → (K,W ′) |= F1)

iff for all W ′ ((W ,W ′) ∈ R → F1 ∈ W ′)

iff 2F1 ∈ W (we used the previous theorem)
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Completeness

Theorem. If the formula F is is valid in all frames then F is provable in the

inference system for the modal logic K .

Proof. Assume F is not provable in the inference system for K . Then

L ∪ ¬F is consistent, hence it is included in a consistenly maximal set W .

Then ¬F ∈ W , so by the previous theorem, (K,W ) |= ¬F .

This contradicts the fact that we assumed that F is valid in all Kripke

structures.
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Other soundness and completeness results

T = K + 2A → A.

A formula F is provable in the inference system for the modal logic T iff F

is is valid in all frames (S ,R) with R reflexive.

S4 = T + 2A → 22A.

A formula F is provable in the inference system for the modal logic S4 iff

F is is valid in all frames (S ,R) with R transitive.

S5 = T + ¬2A → 2¬2A.

A formula F is provable in the inference system for the modal logic S5 iff

F is is valid in all frames (S ,R) with R is an equivalence relation.
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Soundness/completeness: characteriz. classes

Theorem. Let R be a class of frames characterizable through the modal formulae

C1, . . .Cn, and let K(R) be the class of all Kripke structures based on frames in R.

Let S be the inference system obtained from K by adding C1, . . . ,Cn as axioms.

A formula F is provable in the inference system for the modal logic S iff F is is valid

in all Kripke structures K ∈ K(R).

Proof (Idea) It can be shown that if S is obtained from K by adding axioms C1, . . . ,Cn,

then the canonical Kripke structure – constructed as in the case of the modal logic K

– is in K(R) (i.e. it is based on frames in R).

Example: Let C1 be the axiom schema 2A → 22A. Let L be the set of all theorems

of K + C1. Then all maximal L-consistent sets will contain all instances of this schema.

Let (W ,W ′) ∈ R and (W ′,W ′′) ∈ R.

Then 2F ∈ W implies 22F ∈ W , hence 2F ∈ W ′ (since (W ,W ′) ∈ R)

so F ∈ W ′′ (as (W ′,W ′′) ∈ R). Thus, (W ,W ′′) ∈ R, so R is transitive.

24



Modal logic

Theorem proving in modal logics

• Inference systems

• Tableau calculi

• Resolution
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Tableau calculus

We use labelled formulae

TG standing for “Formula G is true”

FG standing for “Formula G is false”
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Tableau calculus

Formula classes

α-Formulae T (A ∧ B), F (A ∨ B), F (A → B), F (¬A)

β-Formulae T (A ∨ B), F (A ∧ B),T (A → B),T (¬A)

ν-Formulae T 2A,F 3A

π-Formulae T 3A,F 2A
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Tableau calculus

Successor formulae

α α1 α2

T (A ∧ B) TA TB

F (A ∨ B) FA FB

F (A → B) TA FB

F (¬A) TA TA

β β1 β2

T (A ∨ B) TA TB

F (A ∧ B) FA FB

T (A → B) TB FA

T (¬A) FA FA

ν ν0

T2A TA

F3A FA

π π0

T3A TA

F2A FA
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Tableau calculus

Every combination of top-level operator and sign occurs in one of the above

cases.

When constructing the tableau, we use signed formulae prefixed by states:

σZA

where Z ∈ {T ,F}, A is a formula, and σ is a finite sequence of natural

numbers.

For the modal logic K , σ1 is accessible from σ iff

σ1 = σn for some natural number n.
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