Non-classical logics

Lecture 15: Modal logics (Part 5)

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Until now

Syntax

Semantics
Kripke models
global and local entailment; deduction theorem
Correspondence theory
First-order definability
Schemata non-definable in FOL
$W: \quad \square(\square A \rightarrow A) \rightarrow \square A$
$M: \quad \square \diamond A \rightarrow \diamond \square A$
Properties binary relations that do not correspond to any modal schema Irreflexivity, i.e. $\forall s \neg(s R s)$.

Until now

Theorem proving in modal logics

- Inference systems
- The modal system K : sound and complete
- Soundness and completeness results also for extensions of K with axioms characterized by certain conditions on frames.
- Tableau calculi
- Resolution

Today

Theorem proving in modal logics

- Inference systems
- The modal system K : sound and complete
- Soundness and completeness results also for extensions of K with axioms characterized by certain conditions on frames.
- Tableau calculi
- Resolution

Tableau calculus

We use labelled formulae
TG standing for "Formula G is true"
FG standing for "Formula G is false"

Tableau calculus

Formula classes

$$
\begin{array}{ll}
\alpha \text {-Formulae } & T(A \wedge B), F(A \vee B), F(A \rightarrow B), F(\neg A) \\
\beta \text {-Formulae } & T(A \vee B), F(A \wedge B), T(A \rightarrow B), T(\neg A) \\
\nu \text {-Formulae } & T \square A, F \diamond A \\
\pi \text {-Formulae } & T \diamond A, F \square A
\end{array}
$$

Tableau calculus

Successor formulae

α	α_{1}	α_{2}
$T(A \wedge B)$	$T A$	$T B$
$F(A \vee B)$	$F A$	$F B$
$F(A \rightarrow B)$	$T A$	$F B$
$F(\neg A)$	$T A$	$T A$

β	β_{1}	β_{2}
$T(A \vee B)$	$T A$	$T B$
$F(A \wedge B)$	$F A$	$F B$
$T(A \rightarrow B)$	$T B$	$F A$
$T(\neg A)$	$F A$	$F A$

ν	ν_{0}
$T \square A$	$T A$
$F \diamond A$	$F A$

π	π_{0}
$T \diamond A$	$T A$
$F \square A$	$F A$

Tableau calculus

Every combination of top-level operator and sign occurs in one of the above cases.

When constructing the tableau, we use signed formulae prefixed by states:

$$
\sigma Z A
$$

where $Z \in\{T, F\}, A$ is a formula, and σ is a finite sequence of natural numbers.

For the modal logic K, σ_{1} is accessible from σ iff

$$
\sigma_{1}=\sigma n \text { for some natural number } n .
$$

Tableau expansion rules are shown on the next slide.

Modal propositional expansion rules

α-Expansion (for formulas that are essentially conjunctions: append subformulas α_{1} and α_{2} one on top of the other)

$$
\begin{gathered}
\sigma \alpha \\
\hline \sigma \alpha_{1} \\
\sigma \alpha_{2}
\end{gathered}
$$

β-Expansion (for formulas that are essentially disjunctions:
append β_{1} and β_{2} horizontally, i.e., branch into β_{1} and β_{2})

$$
\frac{\sigma \beta}{\sigma \beta_{1} \mid \sigma \beta_{2}}
$$

Modal propositional expansion rules

ν-Expansion (for formulae which are essentially of the form $\sigma T \square A$:
append $\sigma^{\prime} \nu_{0}$, such that σ^{\prime} accessible from σ and occurs on the branch already)

$$
\frac{\sigma \nu}{\sigma^{\prime} \nu_{0}}
$$

π-Expansion (for formulae which are essentially of the form $\sigma T \diamond A$: append $\sigma^{\prime} \pi_{0}$, such that σ^{\prime} is a simple unrestricted extension of σ, i.e. σ^{\prime} is accessible from σ and no other prefix of the branch starts with σ^{\prime})

$$
\frac{\sigma \pi}{\sigma^{\prime} \pi_{0}}
$$

Tableau calculus

A tableau is closed if every branch contains some pair of formulas of the form $s T A$ and s FA.

A proof for modal logic formula consists of a closed tableau starting with the root 1 FA.

Example

These tableau rules can be used to analyze whether $\square A \rightarrow \diamond A$ is a theorem of K as follows:
$1 \quad F \square A \rightarrow \diamond A$
$1 T \square A$
(2) from 1
$1 \quad F \diamond A$
(3) from 1

No other proof rules can be used because the modal formulas are ν rules, which are only applicable for accessible prefixes that already occur on the branch.

Example

These tableau rules can be used to analyze whether $\square A \rightarrow \diamond A$ is a theorem of K as follows:
$1 \quad F \square A \rightarrow \diamond A$
$1 T \square A$
(2) from 1
$1 \quad F \diamond A$
(3) from 1

No other proof rules can be used because the modal formulas are ν rules, which are only applicable for accessible prefixes that already occur on the branch.

Intuition
The labels denote possible worlds. We can construct a Kripke model \mathcal{K} with one possible world only and the empty relation.

Then $\square A$ is true in \mathcal{K}, but $\diamond A$ is false, so $\square A \rightarrow \diamond A$ is false in \mathcal{K}.

Example

Without the restriction that the prefix should already appear on the path, we could have closed the tableau as follows:
$1 \quad F \square A \rightarrow \diamond A$
$1 T \square A$
(2) from 1
$1 \quad F \diamond A$
(3) from 1
11 TA
(4) from 2
$11 F A$
(5) from 3

But this would have been wrong, since $\square A \rightarrow \diamond A$ is not a theorem of K.

Tableau calculus

The rules above are sound and complete for the modal logic K.

For other logics it may be necessary to change

- accessibility relation on prefixes
- the two modal rules.

Tableau calculus

The rules above are sound and complete for the modal logic K.

For other logics it may be necessary to change

- accessibility relation on prefixes
- the two modal rules.

A tableau formed using the rules presented before is called a K-tableau.

Example

Prove that $\square A \wedge \square B \rightarrow \square(A \wedge B)$

$$
\begin{array}{rll}
1 & F(\square A \wedge \square B) \rightarrow \square(A \wedge B) & \text { (1) } \tag{1}\\
1 & T \square A \wedge \square B & \text { (2), } \alpha, 1_{1} \\
1 & F \square(A \wedge B) & \text { (3), } \alpha, 1_{2} \\
1 & T \square A & (4), \alpha, 2_{1} \\
1 & T \square B & \text { (5), } \alpha, 2_{1} \\
11 & F(A \wedge B) & \text { (6), } \pi, \text { from } 3
\end{array}
$$

11	$F A$	$(7), \beta, 6_{1}$	11	$F B$	$(8), \beta, 6_{2}$
11	$T A$	$(9), \nu$, from 4	11	$T B$	$(10) \nu$, from 5
	\perp	7 and 9		\perp	10 and 8

Soundness and Completeness

Definition. A tableau is satisfiable in K if it has a path P, for which there is a Kripke structure $K=(S, R, I)$ for the modal logic K and a mapping m from prefixes of P to S such that

1. $m(s) R m\left(s^{\prime}\right)$ iff prefix s^{\prime} is accessible from prefix s; and
2. $(K, m(s)) \models A$ for every formula $s T A$ on path P.
3. $(K, m(s)) \models \neg A$ for every formula $s F A$ on path P.

In the sequel we will just abbreviate the last two cases to: $(K, m(s)) \models A$ for every (signed) formula $s A$ on path P.

Soundness and Completeness

Soundness
If $F A$ is satisfiable then we cannot derive \perp on all branches
If we can construct a closed tableau with root $F A$, then there is no Kripke structure in which A evaluates to false.

Soundness and Completeness

Soundness
If $F A$ is satisfiable then we cannot derive \perp on all branches
If we can construct a closed tableau with root $F A$, then there is no Kripke structure in which A evaluates to false.

Theorem. If there is a closed K-tableau with root $1 F A$, then A is valid in all Kripke structures of K.

Soundness and Completeness

Soundness

If $F A$ is satisfiable then we cannot derive \perp on all branches
If we can construct a closed tableau with root $F A$, then there is no Kripke structure in which A evaluates to false.

Theorem. If there is a closed K-tableau with root $1 F A$, then A is valid in all Kripke structures of K.

In order to prove the theorem we will first prove the following lemma
Lemma. Let T_{0} is a K-satisfiable tableau, and let T be the extension of T_{0} with one of the extension rules. Then T is a K-satisfiable tableau as well.

Soundness and Completeness

Lemma. Let T_{0} is a K-satisfiable tableau, and let T be the extension of T_{0} with one of the extension rules. Then T is a K-satisfiable tableau as well.

Proof. We only consider the ν and π rules.
T_{0} is satisfiable in K if it has a path P, for which there is a Kripke structure $K=(S, R, I)$ for the modal logic K and a mapping m from prefixes of P to S such that

1. $m(\sigma) R m\left(\sigma^{\prime}\right)$ if prefix σ^{\prime} is accessible from prefix σ; and
2. $(K, m(\sigma)) \models A$ for every formula $s T A$ on path P.
3. $(K, m(\sigma)) \models \neg A$ for every formula $s F A$ on path P.

Assume first that formula $\sigma \nu$ occurs on path P and the path is extended by the ν rule to $P \cup\left\{\sigma^{\prime} \nu_{0}\right\}$, where σ^{\prime} occurs already in P and is accessible from σ.
Then $m(\sigma) R m\left(\sigma^{\prime}\right)$ and $(\mathcal{K}, m(\sigma)) \models \nu$.
From this it immediately follows that $\left(\mathcal{K}, m\left(\sigma^{\prime}\right)\right) \models \nu_{0}$.

Soundness and Completeness

Lemma. Let T_{0} is a K-satisfiable tableau, and let T be the extension of T_{0} with one of the extension rules. Then T is a K-satisfiable tableau as well.

Proof. (continued)
Assume now that formula $\sigma \pi$ occurs on path P and the path is extended by the π rule to $P \cup\left\{\sigma^{\prime} \pi_{0}\right\}$, where no other prefix of P starts with σ^{\prime} and σ^{\prime} is accessible from σ. Then $m(\sigma) R m\left(\sigma^{\prime}\right)$ and $(\mathcal{K}, m(\sigma)) \models \pi$.

From this it immediately follows that there exists $s \in S$ such that $(\mathcal{K}, s) \models \pi_{0}$.
We extend the map m by defining $m\left(\sigma^{\prime}\right)=s$.
(1) By the conditions on the π-rule, we know that σ^{\prime} is accessible from a prefix ρ on the path P iff $\rho=\sigma$.
(2) Moreover, for every prefix ρ on the path P, ρ is not accessible from σ^{\prime}.

These properties ensure that for every two prefixes on the path $P \cup\left\{\sigma^{\prime} \pi_{0}\right\}$ we have: $m\left(\rho_{1}\right) R m\left(\rho_{2}\right)$ if ρ_{2} is accessible from ρ_{1}. Thus, T is K-satisfiable.

Soundness and Completeness

Lemma. Let T_{0} is a K-satisfiable tableau, and let T be the extension of T_{0} with one of the extension rules. Then T is a K-satisfiable tableau as well.

Theorem. If there is a closed K-tableau with root $1 F A$, then A is valid in all Kripke structures of K.

Proof. Let T be the closed K-Tableau with root $1 F A$. Assume there exists a Kripke-Structure $\mathcal{K}=(S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models \neg A$.

Then the root of $T, 1 F A$, is a K-satisfiable tableau if we define $m(1)=s$. By the previous Lemma the extension of a K-satisfiable tableau with one of the extension rules is a K-satisfiable tableau as well.

It then follows that T is K-satisfiable, which contradicts the fact that T is closed.

Soundness and Completeness

Completeness
Weak form:
Show that if A is valid then there exists a closed tableau with root $1 F A$.

Soundness and Completeness

Completeness

Weak form:
Show that if A is valid then there exists a closed tableau with root $1 F A$.

Stronger form:
Would like to show that if $N \models A$ then, if we consider the formulae in N as "axioms" and assume that $F A$ then we can construct a closed tableau.

Soundness and Completeness

Completeness (weak form)
Theorem. If A is valid then there exists a closed tableau with root $1 F A$.

Proof. (Idea)
We prove the contrapositive. Assume that every tableau for $1 F A$ has an open saturated path P.

Let P_{0} the set of all signed formulae with prefixes occurring on P.
Then for every ν-formula $\sigma \nu$, the path contains also the consequence of the ν-rule, $\sigma^{\prime} \nu_{0}$, where σ^{\prime} occurs in P and is accessible from σ.

We construct a Kripke model $\mathcal{K}=(S, R, I)$ for P as follows:

- S is the set of all prefixes occurring on P;
- R is the accessibility relation on the set of prefixes;
- If A propositional variable: $I(A, \sigma)=1$ iff $\sigma T A$ occurs on P.

Soundness and Completeness

Completeness (weak form)
Theorem. If A is valid then there exists a closed tableau with root $1 F A$.

Proof. (Continued)
One can prove by induction on the structure of the signed formulae that for every formula σC on $P,(\mathcal{K}, \sigma) \models C$.

Soundness and Completeness

Completeness (weak form)
Theorem. If A is valid then there exists a closed tableau with root $1 F A$.

Proof. (Continued)
One can prove by induction on the structure of the signed formulae that for every formula σC on $P,(\mathcal{K}, \sigma) \models C$.

Example 1:
If $\sigma_{0} T \square B$ occurs in P, then for every prefix $\sigma \in S$ which is reachable from σ_{0} also $\sigma T B$ occurs in P.

Induction hypothesis: $(\mathcal{K}, \sigma) \models B$ (and this holds for all $\sigma \in S$ with $\sigma_{0} R \sigma$.
Thus, $\left(\mathcal{K}, \sigma_{0}\right) \models \square B$.

Soundness and Completeness

Completeness (weak form)
Theorem. If A is valid then there exists a closed tableau with root $1 F A$.

Proof. (Continued)
One can prove by induction on the structure of the signed formulae that for every formula σC on $P,(\mathcal{K}, \sigma) \models C$.

Example 2:
If $\sigma_{0} F \square B$ occurs in P, there exists a prefix σ accessible from σ_{0} such that $\sigma F B$ occurs in P.

By induction hypothesis, $(\mathcal{K}, \sigma) \models F B$ (i.e. $(\mathcal{K}, \sigma) \models \neg B$, hence $\left(\mathcal{K}, \sigma_{0}\right) \models F \square B$.

Completeness

Completeness (strong form)
Would like to show that if $N \models A$ then, if we consider the formulae in N as "axioms" and assume that $F A$ then we can construct a closed tableau.

We defined "local entailment" and "global entailment"
\mapsto We distinguish L-completeness and G-completeness

Entailment

Global entailment:
$N \neq{ }_{G} F$ iff for every Kripke structure $\mathcal{K}=(S, R, I)$:

$$
\text { If } \mathcal{K} \models G \text { for every } G \in N \text { then } \mathcal{K} \models F
$$

Local entailment:
$N \models_{L} F$ iff for every Kripke structure $\mathcal{K}=(S, R, I)$ and every $s \in S$:

$$
\text { If }(\mathcal{K}, s) \models G \text { for every } G \in N \text { then }(\mathcal{K}, s) \models F
$$

L-Completeness

Let N be a set of modal formulae.
Definition A K-tableau is an $K-L$-Tableau over N if for every formula $B \in N$ the following rule can be used:
$1 T B$

Theorem. Let N be a set of modal formulae and A a modal logic formula. Then $N \models_{L} A$ iff there exists a closed $K-L$-Tableau with root $1 F A$.

G-Completeness

Let N be a set of modal formulae.
Definition A K-tableau is an $K-G$-Tableau over N if for every formula $B \in N$ and for every prefix σ on the current path the following rule can be used:

$$
\sigma T B
$$

Theorem. Let N be a set of modal formulae and A a modal logic formula. Then $N \models_{G} A$ iff there exists a closed $K-G$-Tableau with root $1 F A$.

Tableau calculi

Sound and complete tableau calculi can be devised for a large class of systems of propositional modal logic.

Main challenge: Prove termination (can construct "saturated" or closed model in a finite number of steps)
"Blocking techniques"

Theorem proving in modal logics

- Inference system (soundness and completeness results)
- Tableau calculi (soundness and completeness results)
- Translation to first order logic (+ e.g. Resolution)

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rlll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & =0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(T)(s) & =1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & I(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \text { and } \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s
\end{array}
$$

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

val $_{\mathcal{K}}(\perp)(s)$	$=$	0	for all s
$\mathrm{val}_{\mathcal{K}}(\mathrm{T}$ ($)(s)$	=	1	for all s
val $_{\mathcal{K}}(P)(s)=1$	\leftrightarrow	$I(P)(s)=1$	for all s
$\mathrm{val}_{\mathcal{K}}(\neg F)(s)=1$	\leftrightarrow	val $_{\mathcal{K}}(F)(s)=0$	for all s
$\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1$	\leftrightarrow	val $_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1$	for all s
$\mathrm{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1$	\leftrightarrow	val $_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1$	for all s
$\mathrm{val}_{\mathcal{K}}(\square F)(s)=1$	\leftrightarrow	$\forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right.$	for all
$\mathrm{val}_{\mathcal{K}}(\diamond F)(s)=1$	\leftrightarrow	$\exists s^{\prime}\left(R\left(s, s^{\prime}\right)\right.$ and val $\mathcal{K}^{(}(F)\left(s^{\prime}\right)=1$	all

Translation : $\quad P \in \Pi \quad \mapsto \quad P / 1$ unary predicate

$$
\begin{array}{ll}
F \text { formula } & \mapsto
\end{array} P_{F} / 1 \text { unary predicate } ~=~ R / 2 \text { binary predicate }
$$

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$\operatorname{val}_{\mathcal{K}}(\perp)(s)$	$=$	0	for all s
$\operatorname{val}_{\mathcal{K}}(\top)(s)$	$=$	1	for all s
$\operatorname{val}_{\mathcal{K}}(P)(s)=1$	\leftrightarrow	$I(P)(s)=1$	for all s
$\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1$	\leftrightarrow	$\operatorname{val}_{\mathcal{K}}(F)(s)=0$	for all s
val $_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1$	\leftrightarrow	$\operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1$	for all s
val $_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1$	\leftrightarrow	$\operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1$	for all s
$\operatorname{val}_{\mathcal{K}}(\square F)(s)=1$	\leftrightarrow	$\forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{C}}(F)\left(s^{\prime}\right)=1\right.$	for all s
$\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1$	\leftrightarrow	$\exists s^{\prime}\left(R\left(s, s^{\prime}\right)\right.$ and val $\mathcal{V}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1$	for all s

Translation:

$$
\begin{array}{llrl}
P \in \Pi & \mapsto P / 1 \text { unary predicate } & \forall s\left(P_{\neg F}(s) \leftrightarrow \neg P_{F}(s)\right) \\
F \text { formula } & \mapsto P F / 1 \text { unary predicate } & \forall s\left(P_{F_{1} \wedge F_{2}}(s) \leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } & \forall s\left(P_{F_{1} \vee F_{2}(s)} \leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) & \forall s\left(P_{\square F}(s) \leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F}\left(s^{\prime}\right)\right)\right) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s) & \forall s\left(P_{\diamond F}(s) \leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F}\left(s^{\prime}\right)\right)\right)
\end{array}
$$

Translation for classical logic

$\mathcal{K}=(S, R, I)$ Kripke model

$$
\begin{array}{rlll}
\operatorname{val}_{\mathcal{K}}(\perp)(s) & =0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\top)(s) & = & 1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \leftrightarrow & \quad(P)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\neg F)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}(F)(s)=0 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \wedge F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \wedge \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}\left(F_{1} \vee F_{2}\right)(s)=1 & \leftrightarrow & \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s) \vee \operatorname{val}_{\mathcal{K}}\left(F_{1}\right)(s)=1 & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\square F)(s)=1 & \leftrightarrow & \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow \operatorname{val}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s \\
\operatorname{val}_{\mathcal{K}}(\diamond F)(s)=1 & \leftrightarrow & \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \text { and val } \mathcal{V}_{\mathcal{K}}(F)\left(s^{\prime}\right)=1\right. & \text { for all } s
\end{array}
$$

Translation: Given F modal formula:

$$
\begin{array}{ll}
P \in \Pi & \mapsto P / 1 \text { unary predicate } \\
F^{\prime} \text { subformula of } F & \mapsto P F / 1 \text { unary predicate } \\
R \text { acc.rel } & \mapsto R / 2 \text { binary predicate } \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s)
\end{array}
$$

$$
\begin{aligned}
\forall s\left(P_{\neg F^{\prime}}(s)\right. & \left.\leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s\left(P_{F_{1}} \wedge F_{2}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s\left(P_{F_{1} \vee F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s\left(P_{\square F^{\prime}}(s)\right. & \left.\leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s\left(P_{\diamond F^{\prime}}(s)\right. & \left.\leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{aligned}
$$

where the index formulae range over all subfromulae of F.

Translation to classical logic

Translation: Given F modal formula:

$$
\begin{array}{ll}
P \in \Pi & \mapsto P / 1 \text { unary predicate } \\
F^{\prime} \text { subformula of } \mathrm{F} & \mapsto P F^{\prime} / 1 \text { unary predicate } \\
R \text { acc. rel } & \mapsto R / 2 \text { binary predicate } \\
\operatorname{val}_{\mathcal{K}}(P)(s)=1 & \mapsto P(s) \\
\operatorname{val}_{\mathcal{K}}(P)(s)=0 & \mapsto \neg P(s)
\end{array}
$$

$$
\begin{aligned}
\forall s\left(P_{\neg F^{\prime}}(s)\right. & \left.\leftrightarrow \neg P_{F^{\prime}}(s)\right) \\
\forall s\left(P_{F_{1} \wedge F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \wedge P_{F_{2}}(s)\right) \\
\forall s\left(P_{F_{1} \vee F_{2}}(s)\right. & \left.\leftrightarrow P_{F_{1}}(s) \vee P_{F_{2}}(s)\right) \\
\forall s\left(P_{\square F^{\prime}}(s)\right. & \left.\leftrightarrow \forall s^{\prime}\left(R\left(s, s^{\prime}\right) \rightarrow P_{F^{\prime}}\left(s^{\prime}\right)\right)\right) \\
\forall s\left(P_{\diamond F^{\prime}}(s)\right. & \left.\leftrightarrow \exists s^{\prime}\left(R\left(s, s^{\prime}\right) \wedge P_{F^{\prime}}\left(s^{\prime}\right)\right)\right)
\end{aligned}
$$

where the index formulae range over all subformulae of F.

Rename (F)

Theorem.

F is K-satisfiable iff $\exists x P_{F}(x) \wedge$ Rename (F) is satisfiable in first-order logic.

Translation to classical logic

Example

To prove that $F:=\square(P \wedge Q) \rightarrow \square P \wedge \square Q$ is K-valid

The following are equivalent:
(1) F is valid
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge$ Rename $(\neg F)$ is unsatisfiable

$$
\begin{array}{ll}
\exists x & P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(x) \\
\forall x & \left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right) \\
\forall x & \left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square P \wedge \square Q}(x)\right) \\
\forall x & \left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right) \\
\forall x & \left(P_{\square P(x) \leftrightarrow \forall y(R(x, y) \rightarrow P(y)))}\right. \\
\forall x & \left(P_{\square Q}(x) \leftrightarrow \forall y(R(x, y) \rightarrow Q(y))\right) \\
\forall x & \left(P_{\square(P \wedge Q)}(x) \leftrightarrow \forall y\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right) \\
\forall x & \left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)
\end{array}
$$

Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Prenex normal form

```
\(\exists x \quad P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(x)\)
\(\forall x \quad\left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right)\)
\(\forall x \quad\left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square P \wedge \square Q}(x)\right)\)
\(\forall x \quad\left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} P(x) \rightarrow(R(x, y) \rightarrow P(y))\right)\)
\(\left.\forall x \exists y \quad(R(x, y) \rightarrow P(y)) \rightarrow P_{\square P}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square Q}(x) \rightarrow(R(x, y) \rightarrow Q(y))\right)\)
\(\left.\forall x \exists y \quad(R(x, y) \rightarrow Q(y)) \rightarrow P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square(P \wedge Q)}(x) \rightarrow\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right)\)
\(\forall x \exists y \quad\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right) \rightarrow P_{\square(P \wedge Q)}(x)\)
\(\forall x \quad\left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)\)
```


Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Skolemization

```
        \(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(c)\)
\(\forall x \quad\left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right)\)
\(\forall x \quad\left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square} P \wedge \square Q(x)\right)\)
\(\forall x \quad\left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} P(x) \rightarrow(R(x, y) \rightarrow P(y))\right)\)
\(\forall x \quad\left(R(x, f(x) \rightarrow P(f(x))) \rightarrow P_{\square P}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square Q}(x) \rightarrow(R(x, y) \rightarrow Q(y))\right)\)
\(\left.\forall x \quad(R(x, f(x)) \rightarrow Q(f(x))) \rightarrow P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square(P \wedge Q)}(x) \rightarrow\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right)\)
\(\forall x \quad\left(R(x, f(x)) \rightarrow P_{P} \wedge Q(f(x))\right) \rightarrow P_{\square(P \wedge Q)}(x)\)
\(\forall x \quad\left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)\)
```


Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Skolemization

```
    \(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(c)\)
\(\forall x \quad\left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right)\)
\(\forall x \quad\left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square} P \wedge \square Q(x)\right)\)
\(\forall x \quad\left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} P(x) \rightarrow(R(x, y) \rightarrow P(y))\right)\)
\(\forall x \quad\left(R(x, f(x) \rightarrow P(f(x))) \rightarrow P_{\square} P(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} Q^{(x)} \rightarrow(R(x, y) \rightarrow Q(y))\right)\)
\(\left.\forall x \quad(R(x, f(x)) \rightarrow Q(f(x))) \rightarrow P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square(P \wedge Q)}(x) \rightarrow\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right)\)
\(\forall x \quad\left(R(x, f(x)) \rightarrow P_{P \wedge Q}(f(x))\right) \rightarrow P_{\square(P \wedge Q)}(x)\)
\(\forall x \quad\left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)\)
```

CNF translation, Resolution

Translation to classical logic

Example

The following are equivalent:
(2) $\neg F:=\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))$ is unsatisfiable
(3) $\exists x P_{\neg F}(x) \wedge \operatorname{Rename}(\neg F)$ is unsatisfiable

Skolemization

```
    \(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q))}(c)\)
\(\forall x \quad\left(P_{\square(P \wedge Q) \wedge \neg(\square P \wedge \square Q)}(x) \leftrightarrow P_{\square(P \wedge Q)}(x) \wedge P_{\neg(\square P \wedge \square Q)}(x)\right)\)
\(\forall x \quad\left(P_{\neg(\square P \wedge \square Q)}(x) \leftrightarrow \neg P_{\square P \wedge \square Q}(x)\right)\)
\(\forall x \quad\left(P_{\square P \wedge \square Q}(x) \leftrightarrow P_{\square P}(x) \wedge P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square} P(x) \rightarrow(R(x, y) \rightarrow P(y))\right)\)
\(\forall x \quad\left(R(x, f(x) \rightarrow P(f(x))) \rightarrow P_{\square} P(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square Q}(x) \rightarrow(R(x, y) \rightarrow Q(y))\right)\)
\(\left.\forall x \quad(R(x, f(x)) \rightarrow Q(f(x))) \rightarrow P_{\square Q}(x)\right)\)
\(\forall x \forall y \quad\left(P_{\square(P \wedge Q)}(x) \rightarrow\left(R(x, y) \rightarrow P_{P \wedge Q}(y)\right)\right)\)
\(\forall x \quad\left(R(x, f(x)) \rightarrow P_{P \wedge Q}(f(x))\right) \rightarrow P_{\square(P \wedge Q)}(x)\)
\(\forall x \quad\left(P_{P \wedge Q}(x) \leftrightarrow P(x) \wedge Q(x)\right)\)
```

CNF translation, Resolution Exploit polarity!!!

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.

$$
\begin{aligned}
& P_{F}(c) \\
& \forall x\left(P_{F}(x) \leftrightarrow \exists y\left(R(x, y) \wedge P_{Q \rightarrow \diamond Q}(y)\right)\right) \\
& \forall x\left(P_{Q \rightarrow \diamond Q}(x) \leftrightarrow\left(Q(x) \rightarrow P_{\diamond Q}(x)\right)\right) \\
& \forall x\left(P_{\diamond Q}(x) \leftrightarrow \exists y(R(x, y) \wedge Q(y))\right)
\end{aligned}
$$

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.
$P_{F}, P_{Q \rightarrow \diamond Q}, P_{\diamond Q}$: positive polarity!

$$
\begin{aligned}
& P_{F}(c) \\
& \forall x\left(P_{F}(x) \rightarrow \exists y\left(R(x, y) \wedge P_{Q \rightarrow \diamond Q}(y)\right)\right) \\
& \forall x\left(\left(P_{Q \rightarrow \diamond Q}(x) \rightarrow\left(Q(x) \rightarrow P_{\diamond Q}(x)\right)\right)\right. \\
& \forall x\left(P_{\diamond Q}(x) \rightarrow \exists y(R(x, y) \wedge Q(y))\right)
\end{aligned}
$$

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.

Prenex, Skolemization

$$
\begin{aligned}
& P_{F}(c) \\
& \forall x\left(P_{F}(x) \rightarrow\left(R(x, f(x)) \wedge P_{Q \rightarrow \diamond Q}(f(x))\right)\right) \\
& \forall x\left(P_{Q \rightarrow \diamond Q}(x) \rightarrow\left(Q(x) \rightarrow P_{\diamond Q}(x)\right)\right. \\
& \forall x\left(P_{\diamond Q \rightarrow(R(x, g(x)) \wedge Q(g(x))))}\right.
\end{aligned}
$$

Another example

Task: Check if there exists a Kripke model such that $F=\diamond(Q \rightarrow \diamond Q)$ holds at some state in this Kripke model.

CNF
$P_{F}(c)$
$\neg P_{F}(x) \vee R(x, f(x))$
$\left.\neg P_{F}(x) \vee P_{Q \rightarrow \diamond Q}(f(x))\right)$
$\neg P_{Q \rightarrow \diamond Q}(x) \vee \neg Q(x) \vee P_{\diamond Q}(x)$
$\neg P_{\diamond Q} \vee R(x, g(x))$
$\left.\left.\neg P_{\diamond Q} \vee Q(g(x))\right)\right)$

Resolution

Resolution for General Clauses

General binary resolution Res:

$$
\begin{array}{cl}
\frac{C \vee A \vee D \vee \neg B}{(C \vee D) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad \text { [resolution] } \\
\frac{C \vee A \vee B}{(C \vee A) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) \quad[\text { factorization }]
\end{array}
$$

Resolution for General Clauses

For inferences with more than one premise, we assume that the variables in the premises are (bijectively) renamed such that they become different to any variable in the other premises.
We do not formalize this. Which names one uses for variables is otherwise irrelevant.

Ordered resolution with selection

A selection function is a mapping

$$
S: C \quad \mapsto \quad \text { set of occurrences of negative literals in } C
$$

Example of selection with selected literals indicated as x

$$
\neg A \vee \neg A \vee B \quad \quad \neg B_{0} \vee \neg B_{1} \vee A
$$

Let \succ be a total and well-founded ordering on ground atoms. Then \succ can be extended to a total and well-founded ordering on ground literals and clauses

A literal L (possibly with variables) is called [strictly] maximal in a clause C if and only if there exists a ground substitution σ such that for all L^{\prime} in C : $L \sigma \succeq L^{\prime} \sigma$ [$L \sigma \succ L^{\prime} \sigma$].

Resolution Calculus $\operatorname{Res}_{S}^{\succ}$

Let \succ be an atom ordering and S a selection function.

$$
\frac{C \vee A \quad \neg B \vee D}{(C \vee D) \sigma} \quad \text { [ordered resolution with selection] }
$$

if $\sigma=\operatorname{mgu}(A, B)$ and
(i) $A \sigma$ strictly maximal wrt. $C \sigma$;
(ii) nothing is selected in C by S;
(iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \vee D$ and $\neg B \sigma$ is maximal in $D \sigma$.

Resolution Calculus $\operatorname{Res}_{S}^{\succ}$

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma} \quad \text { [ordered factoring] }
$$

if $\sigma=\mathrm{mgu}(A, B)$ and $A \sigma$ is maximal in $C \sigma$ and nothing is selected in C.

Soundness and Refutational Completeness

Theorem:
Let \succ be an atom ordering and S a selection function such that $\operatorname{Res}_{S}^{\succ}(N) \subseteq N$. Then

$$
N \models \perp \Leftrightarrow \perp \in N
$$

Ordered resolution for modal logics

It has been proved that ordered resolution (possibly with selection) can be used as a decision procedure for the propositional modal logic K and also for many extensions of K.

Goal: Define ordering/selection function such that few inferences can take place, and such that the size of terms/length of clauses cannot grow in the resolvents.

Decidability of modal logics

Decidability of modal logics

- Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least $f(\operatorname{size}(F))$ elements, where f is a concrete function.

Generate all models with $1,2,3, \ldots, f(\operatorname{size}(F))$ elements.

Decidability of modal logics

- Direct approach: Prove finite model property

If a formula F is satisfiable then it has a model with at least $f(\operatorname{size}(F))$ elements, where f is a concrete function.

Generate all models with $1,2,3, \ldots, f(\operatorname{size}(F))$ elements.

- Alternative approaches:
- Show that terminating sound and complete tableau calculi exist
- Show that ordered resolution (+ additional refinements) terminates on the type of first-order formulae which are generated starting from a modal formula.

Decidability

Direct approach

Idea:
We show that if a formula A has n subformulae, then
$\vdash_{K} A$ iff, A is valid in all frames having at most 2^{n} elements.
or alternatively, that the following are equivalent:
(1) There exists a Kripke structure $\mathcal{K}=(S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models A$.
(2) There exists a Kripke structure $\mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right)$ and $s^{\prime} \in S^{\prime}$ s.t.:

- $\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A$
- S^{\prime} consists of at most 2^{n} states.

Decidability

Idea:

We show that if a formula A has n subformulae, then
$\vdash_{K} A$ iff A is valid in all frames having at most 2^{n} elements.
or alternatively, that the following are equivalent:
(1) There exists a Kripke structure $\mathcal{K}=(S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models A$.
(2) There exists a Kripke structure $\mathcal{K}^{\prime}=\left(S^{\prime}, R^{\prime}, I^{\prime}\right)$ and $s^{\prime} \in S^{\prime}$ such that:

- $\left(\mathcal{K}^{\prime}, s^{\prime}\right) \models A$
- S^{\prime} consists of at most 2^{n} states.

Goal: Construct the finite Kripke structure \mathcal{K}^{\prime} starting from \mathcal{K}.

Decidability

Filtrations

Fix a model $\mathcal{K}=(S, R, I)$ and a set $\Gamma \subseteq$ Fmas that is closed under subformulae, i.e. $B \in \Gamma$ implies Subformulae $(B) \subseteq \Gamma$.

For each $s \in S$, define

$$
\Gamma_{s}=\{B \in \Gamma \mid(\mathcal{K}, s) \models B\}
$$

and put $s \sim_{\Gamma} t$ iff $\Gamma_{s}=\Gamma_{t}$,

Decidability

Filtrations

Fix a model $\mathcal{K}=(S, R, I)$ and a set $\Gamma \subseteq$ Fmas that is closed under subformulae, i.e. $B \in \Gamma$ implies Subformulae $(B) \subseteq \Gamma$.

For each $s \in S$, define

$$
\Gamma_{s}=\{B \in \Gamma \mid(\mathcal{K}, s) \models B\}
$$

and put $s \sim_{\Gamma} t$ iff $\Gamma_{s}=\Gamma_{t}$,

Then $s \sim_{\Gamma} t \quad$ iff \quad for all $B \in \Gamma,(\mathcal{K}, s) \models B$ iff $(\mathcal{K}, t) \models B$.

Fact: \sim_{Γ} is an equivalence relation on S.

Decidability

Let $[s]=\left\{t \mid s \sim_{\Gamma} t\right\}$ be the \sim_{Γ}-equivalence class of s.
Let $S_{\Gamma}:=\{[s] \mid s \in S\}$ be the set of all such equivalence classes.

Lemma. If Γ is finite, then S_{Γ} is finite and has at most 2^{n} elements, where n is the number of elements of Γ.

Proof. Let $f: S_{\Gamma} \rightarrow \mathcal{P}(\Gamma)$ be defined by $f([s])=\Gamma_{s}=\{B \in \Gamma \mid(\mathcal{K}, s) \models B\}$.
Since $[s]=[t]$ iff $s \sim_{\Gamma} t$ iff $\Gamma_{s}=\Gamma_{t}, f$ is well-defined and one-to-one.
Hence S_{Γ} has no more elements than there are subsets of Γ.
But if Γ has n elements, then it has 2^{n} subsets, so S_{Γ} has at most 2^{n} elements.

