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Until now

Motivation

Models of time
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Temporal logic

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Finite-state systems.

Finite-state systems can only take finitely many states.

(Often, infinite-state systems can be abstracted into finite-state ones

by grouping the states into a finite number of partitions.)

3



Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Reactive Systems.

A reactive system interacts with the environment frequently and usually

does not terminate. Its correctness is defined via these interactions.

This is in contrast to a classical algorithm that takes an input initially

and then eventually terminates producing a result.
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Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

A state is a snapshot of the system capturing the values of the variables at

an instant of time.

• Concurrent Systems.

Systems consisting of multiple, interacting processes. One process

does not know about the internal state of the others. May be viewed

as a collection of reactive systems.
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Models of time

Which flow of time should we use?

This depends on the application!

The main application of TL in computer science is the verification of

finite-state reactive and concurrent systems.

Task: Verificaton.

Given the (formal) description of a system and of its intended behaviour,

check whether the system indeed complies with this behaviour.

6



Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ are formulae;

• each propositional letter P ∈ Π is a formula;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.
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Linear Time Logic

Semantics

We use an abstract model of reactive and concurrent systems.

Definition

Let Π be a finite set of propositional variables.

A Kripke structure (over Π) is a tuple K = (S , Si ,R, I ) with

• S a non-empty set of states;

• Si ⊆ S is a set of initial states;

• R ⊆ S × S is a transition relation that is total, i.e.

for each state s ∈ S , there is a state s′ ∈ S such that sRs′;

• I : Π× S → {0, 1} is a valuation function.
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Linear Time Logic

Semantics

We use an abstract model of reactive and concurrent systems.

Definition

Let Π be a finite set of propositional variables.

A Kripke structure (over Π) is a tuple K = (S , Si ,R, I ) with

• S a non-empty set of states;

• Si ⊆ S is a set of initial states; not very important

• R ⊆ S × S is a transition relation that is total, i.e.

for each state s ∈ S , there is a state s′ ∈ S such that sRs′;

• I : Π× S → {0, 1} is a valuation function.
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Linear Time Logic

Semantics

• Transition systems (S ,→, L)

(with the property that for every s ∈ S there exists s′ ∈ S with s → s′

i.e. no state of the system can “deadlock”a)

Transition systems are also simply called models in what follows.

• Computation (execution, path) in a model (S ,→, L)

infinite sequence of states π = s0, s1, s2, ... in S such that for each

i ≥ 0, si → si+1.

We write the path as s0 → s1 → s2 → . . . .
aThis is a technical convenience, and in fact it does not represent any

real restriction on the systems we can model. If a system did deadlock, we

could always add an extra state sd representing deadlock, together with new

transitions s → sd for each s which was a deadlock in the old system, as

well as sd → sd .
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Example

Consider the following simple mutual-exclusion protocol:

task body ProcA is

begin

loop

(0) Non_Critical_Section_A;

(1) loop [exit when Turn = 0] end loop;

(2) Critical_Section_A;

(3) Turn := 1;

end loop;

end ProcA;

task body ProcB is

begin

loop

(0) Non_Critical_Section_B;

(1) loop [exit when Turn = 1] end loop;

(2) Critical_Section_B;

(3) Turn := 0;

end loop;

end ProcA;

Assume that the processes run asynchronously, i.e., either Process A or B

makes a step, but not both. The order of executions is undetermined.
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Example

Π = {(T = i) | i ∈ {0, 1}} ∪ {(X = i) | X ∈ {A,B}, i ∈ {0, 1, 2, 3}}

(T = i) means that Turn is set to i , and

(X = i) means the process X is currently in Line i .
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Example

We define the following Kripke structure K = (S ,Si ,R,V ):

• S = {0, 1} × {0, 1, 2, 3} × {0, 1, 2, 3}

(t, i , j) ∈ S : state in which Turn = t, A is at line i , B is at line j

• Si = {(0, 0, 0), (1, 0, 0)}

• R = RA ∪ RB , where

RA = {((t, i , j), (t′, i ′, j) | i ∈ {0, 2, 3}| → i ′ = i + 1 (mod4), t′ = t

t = 0, i = 1 → i ′ = 2

t = 1, i = 1 → i ′ = 1

i = 3 → t′ = 1}

and RB is defined similarly

• I ((T = t′), (t, i , j)) = 1 iff t′ = t

I ((A = i ′), (t, i , j)) = 1 iff i ′ = i

I ((B = j′), (t, i , j)) = 1 iff j′ = j
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Computations

Let K = (S , Si ,R, I ) be a Kripke structure.

A computation of K is an infinite sequence s0s1 . . . of states such that

s0 ∈ Si and siRsi+1 for all i ≥ 0.

Example: computation of the Kripke structure from the previous example:

(0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), (0, 3, 1), (1, 0, 1), (1, 0, 2), . . .

Such a computation corresponds to an (asynchronous) execution of the

concurrent system with Processes A and B.

Note that our formalization allows computations that are unfair, e.g., in

which Process B is never executed. Such issues are not adressed on the

level of Kripke structures.
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Example

Interesting properties that can be verified in Example 2 include the following:

• Mutual exclusion: can A and B be at Line (2) at the same time?

(holds)

• Guaranteed accessibility: if process X ∈ {A,B} is at Line (2), is it

guaranteed that it will eventually reach Line (3)?

(holds, but only in computations that execute both Process A and

Process B infinitely often)

Later, we will express such properties as temporal logic formulas.
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Computation trees

Kripke structures can be non-deterministic, i.e., for an s ∈ S , the set

{s′|sRs′} can have arbitrary cardinality.

Thus, in general there is more than a single computation.

Instead of considering single computations in isolation, we can arrange all

of them in a computation tree.

Informally, for s ∈ Si , the (infinite) computation tree T (K, s) of K at s ∈ S

is inductively constructed as follows:

• use s as the root node;

• for each leaf s′ of the tree, add successors {t ∈ S |s′Rt}.
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Computation trees

The computation tree of the Kripke structure from the previous example

starting at state (0, 0, 0) is:

(0, 0, 0) 

    (0, 2, 0)               (0, 1, 1) 

       (0, 1, 0)                              (0, 0, 1)

(0, 3, 0)  (0, 2, 1)  (0, 2, 1)   (0, 1, 1)
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Linear Time Logic

Syntax

Π set of propositional variables.

The set of LTL (linear time logic) formulae is the smallest set such that:

• ⊥,⊤ are formulae;

• each propositional letter P ∈ Π is a formula;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are ©F and FUG

Remark: Instead of ©F in some books also XF is used.
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Linear Time Logic
Semantics

Let TS = (S ,→, L) be a model and π = s0 → ... be a path in TS (π

represents a possible future of our system)

Whether π satisfies an LTL formula is defined by the satisfaction relation

|= as follows:

• π |= ⊤

• π 6|=⊥

• π |= p iff p ∈ L(s0), if p ∈ Π

• π |= ¬F iff π 6|= F

• π |= F ∧ G iff π |= F and π |= G

• π |= F ∨ G iff π |= F or π |= G

• π |= ©F iff π1 |= F

• π |= FUG iff ∃m ≥ 0 s.t. πm |= G and ∀k ∈ {0, . . . ,m − 1} : πk |= F
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Linear Time Logic

Alternative way of defining the semantics:

An LTL structure M is an infinite sequence S0S1 . . . with Si ⊆ Π for all

i ≥ 0. We define satisfaction of LTL formulas in M at time points n ∈ N as

follows:

• M, n |= p iff p ∈ Sn, if p ∈ Π

• M, n |= F ∧ G iff M, n |= F and M, n |= G

• M, n |= F ∨ G iff M, n |= F or M, n |= G

• M, n |= ¬F iff M, n 6|= F

• M, n |= ©F iff M, n + 1 |= F

• M, n |= FUG iff ∃m ≥ n s.t. M,m |= G and

∀k ∈ {n, . . . ,m − 1} : M, k |= F

Note that the time flow (N,<) is implicit.
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Abbreviations

• The future diamond

3φ := ⊤Uφ Sometimes denoted also Fφ

π |= 3φ iff ∃m ≥ 0 : πm |= φ M, n |= 3φ iff ∃m ≥ n : M,m |= φ

• The future box

2φ := ¬3¬φ Sometimes also denoted Gφ

π |= 2φ iff ∀m≥0 : πm |= φ M, n |= 2φ iff ∀m≥n : M,m |= φ

• The infinitely often operator

3
∞φ := 23φ

π |= 3
∞φ iff {m ≥ 0 | πm |= φ} is infinite

M, n |= 3
∞φ iff {m ≥ n | M,m |= φ} is infinite

• The almost everywhere operator

2
∞φ := 32φ

π |= 2
∞φ iff {m ≥ 0 | πm 6|= φ} is finite.

M, n |= 2
∞φ iff {m ≥ n | M,m 6|= φ} is finite.
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Abbreviations

• The release operator

φRψ := ¬(¬φU¬ψ)

π |= φRψ iff (∃m ≥ 0 : πm |= φ and ∀k ≤ m: πk |= ψ) or

(∀k ≥ 0 : πk |= ψ)

M, n |= φRψ iff (∃m ≥ n : M,m |= φ and ∀k ≤ m : M,m |= ψ) or

(∀k ≥ m : M, k |= ψ)

Read as

“ψ always holds unless released by φ” i.e.,

“ψ holds permanently up to and including the first point where φ

holds (such an φ-point need not exist at all)”.
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Abbreviations

• The strict until operator:

FU<G := ©(FUG)

M, n |= FU<G iff ∃m > n : M,m |= G ∧ ∀k ∈ {n + 1, ...,m −

1},M, k |= F

The difference between standard and strict until is that strict until requires

G to happen in the strict future and that F needs not hold true of the

current point.
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Another equivalent satisfaction relation

Definition. Let T = (S ,→,L) and s ∈ S .

We say that T , s |= φ if for every computation π in T starting at s we have

π |= φ.
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Equivalence

We say that two LTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all transition systens T and paths π, we have π |= F iff π |= G .

Note that:

©F ≡⊥ U<F and

FUG ≡ G ∨ (F ∧©(FU<G))

Thus, an equally expressive version of LTL is obtained by using U< as the

only temporal operator.

This cannot be done with the standard until
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Equivalence

Some useful equivalences (exercise: prove them):

¬© F ≡ ©¬F (self-duality of next)

33F ≡ 3F (idempotency of diamond)

©3F ≡ 3© F (commutation of next with Diamond)

33
∞F ≡ 3

∞F ≡ 3
∞
3F (absorption of diamonds by ”infinitely often”)

FUG ≡ ¬(¬FR¬G) (until and release are duals)

FUG ≡ G ∨ (F ∧©(FUG)) (unfolding of until)

FRG ≡ (F ∧ G) ∨ (G ∧©(FRG)) (unfolding of release)
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Temporal Properties

A temporal property is a set of LTL structures

(those on which the property is true).

Thus, a temporal property P can be defined using an LTL formula F :

P = {M|M, 0 |= F}.

When given a Kripke structure K representing a reactive system and an

LTL formula F representing a temporal property,

K satisfies F if M, 0 |= F for all traces M of K.

In this case, we write K |= F .

Typical properties of reactive systems that need to be checked during

verification are safety properties, liveness properties, and fairness properties.
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Safety properties

Intuitively, a safety property asserts that “nothing bad happens”

general form: Condition → 2FSafe

Examples of safety properties:

• Mutual Exclusion. For the example:

2(¬((A = 2) ∧ (B = 2)))

• Freedom from Deadlocks: At any time, some process should be

enabled:

2(enabled1 ∨ · · · ∨ enabledk)

• Partial Correctness: If F is satisfied when the program starts, then G

will be satisfied if the program reaches a distinguished state:

F → 2(Dist → G)

where Dist ∈ Π marks the distinguished state.
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Liveness properties

Intuitively, a liveness property asserts that “something good will happen”

Examples of liveness properties:

• Guaranteed Accessibility. For the example:

2(A = 1 → 3(A = 2)) ∧ 2(B = 1 → 3(B = 2))

• Responsiveness: If a request is issued, it will eventually be granted:

2(req → 3grant)

• Total Correctness: If F is satisfied when the program starts, then the

program terminates in a distinguished state where G is satisfied:

φ→ 3(Dist ∧ G)

Note that, in contrast, partial correctness is a safety property.
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Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Unconditional Fairness: Every process is executed infinitely often:

∧

1≤i≤k

3
∞executedi

Unconditional fairness is appropriate when processes can (and should!)

be executed and any time. This is not always the case.
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Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Strong Fairness: Every process enabled infinitely often is executed

infinitely often:

∧

1≤i≤k

(3∞enabledi → 3
∞executedi )

Processes enabled only finitely often need not be guaranteed to be

executed: they eventually and forever retract being enabled.
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Fairness properties

When modelling concurrent systems, it is usually important to make some

fairness assumptions. Assume that there are k processes, that enabledi ∈ Π

is true in a state s if process #i is enabled in s for execution, and that

executedi is true in a state s if process #i has been executed to reach s.

Examples of fairness properties

• Weak Fairness: Every process enabled almost everywhere is executed

infinitely often.

∧

1≤i≤k

(2∞enabledi → 3
∞executedi )

This means that a process cannot be enabled constantly in an infinite

interval without being executed in this interval.
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Satisfiability

An LTL formula F is satisfiable if there exists an LTL structure M and

n ∈ N such that M, n |= F .

Such a structure is called a model of F .

In verification, satisfiability can be used to detect contradictory properties,

i.e., properties that are satisfied by no computation of any reactive system.

Example: The following property is contradictory (unsatisfiable):

p ∧ 2(p → ©p) ∧3¬p
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Satisfiability

When using LTL for verification, we are usually interested in whether a

formula holds at point 0 of an LTL structure.

Lemma. Every satisfiable LTL formula F has a model M with M, 0 |= F .

Proof (Sketch)

Let M, n |= F , and let M′ be the model obtained from M by dropping all

time points 0, ..., n − 1. Thus, time point n in M is time point 0 in M′.

It is easy to prove by induction on the structure of G that, for all LTL

formulas G and i ≥ 0, we have M′, i |= G iff M, n + i |= G .

It follows that M′, 0 |= F .
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Satisfiability

LTL satisfiability can be decided using automata on infinite words

(Büchi automata).
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Model checking

The LTL model checking problem is as follows: given a Kripke structure

K = (S ,Si ,R, I ) and an LTL formula F , check whether K |= F .

Recall: this is the case if all traces M of K satisfy M, 0 |= F .
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Model checking

The LTL model checking problem is as follows: given a Kripke structure

K = (S ,Si ,R, I ) and an LTL formula F , check whether K |= F .

Recall: this is the case if all traces M of K satisfy M, 0 |= F .

Example:

The following Kripke structure satisfies 2(q → ©©©p).

It does not satisfy 2(p → pUq).

q q
p

p

p
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Model checking

The LTL model checking problem is as follows: given a Kripke structure

K = (S ,Si ,R, I ) and an LTL formula F , check whether K |= F .

Recall: this is the case if all traces M of K satisfy M, 0 |= F .

One can use the automata on infinite words used for checking satisfiability

to obtain an elegant approach to model checking.

Lemma If K = (S , Si ,R, I ) is a Kripke structure then there exists an

automaton AK (of size linear in the size of K) such that L(AK) is the set

of traces of K.
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Model checking

This suggests an algorithm for checking whether K |= F :

• construct a Büchi automaton A such that L(A) = L(AK) ∩ L(A¬F )

• perform an emptyness test.
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Connection to First-Order Logic

Another characterization of temporal properties that can be expressed in

LTL is obtained by relating LTL to the monadic first-order theory of the

natural numbers.

Let FO< denote the following first-order language:

• no function symbols and constants;

• binary predicate symbols: “suc” for successor, an order predicate <,

and equality;

• countably infinite supply of unary predicates.

40



Connection to First-Order Logic

We may interpret formulas of FO< on LTL structures:

• quantification is over N,

• the binary predicates are interpreted in the obvious way, and

• the unary predicates are identified with propositional variables.
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Connection to First-Order Logic

We write φ(x1, ..., xn) to indicate that the variables in the FO< formula φ

are x1, ..., xn.

For an FO< formula φ(x1, ..., xn), an LTL structure M, and n1, ..., nk ∈ N,

we write M |= φ[n1, ..., nk ] if φ is true in M with variable xi bound to value

ni , for 1 ≤ i ≤ k.

Examples:

• For φ(x1, x2) = ¬p(x1) ∧ p(x2) ∧ ∀x3.(x1 < x3 → ¬q(x3)), we have

∅{p} . . . {p} . . . |= φ[0, 1].

• The following formula φ(x) expresses that there exists a future point that agrees

with the current point (identified by the free variable) on the unary predicates

p1, ..., pn:

φ(x) = ∃y(x < y ∧
∧

1≤i≤n

(pi (x) ↔ pi (y)))
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Connection to First-Order Logic

We say that an FO< formula φ(x) with exactly one free variable is equivalent to an

LTL formula F if for all LTL models M and n ∈ N we have

M, n |= F iff M |= φ[n].

Theorem: For every LTL formula F , there exists an equivalent FO< formula.

Proof The following translation µ : FLTL → FO< takes LTL formulas F to equivalent

FO< formulae:

µ(⊤) = ⊤;µ(⊥) = ⊥; µ(p)(x) = p(x) for every propositional variable p

µ(¬F )(x) = ¬µ(F )(x)

µ(F ∧ G)(x) = µ(F )(x) ∧ µ(G)(x)

µ(©F )(x) = ∃y(suc(x , y) ∧ µ(F )(y))

µ(FUG)(x) = ∃y(x < y ∧ µ(G)(y) ∧ ∀z(x ≤ z < y → µ(F )(z)))

In the last two cases, variables y and z are newly introduced for every translation step.
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Connection to First-Order Logic

What about the converse?

In general, are there FO< formulas φ(x) for which there is no equivalent

LTL formula?
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Connection to First-Order Logic

What about the converse?

In general, are there FO< formulas φ(x) for which there is no equivalent

LTL formula?

Obviously there are: the formula ∃y(y < x) states that there exists a

previous time point – which cannot be expressed using only the future

operators of LTL.

When we want to compare FO¡ with LTL, we should extend the latter with

past-time temporal operators ©− and S.

M, n |= ©−F iff n > 0 and M, n − 1 |= F

M, n |= FSG iff ∃m ≤ n : M,m |= G and M, k |= F for all

k ∈ {m + 1, ..., n}
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Connection to First-Order Logic

This variant of LTL is called LTL with past operators (LTLP).
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Connection to First-Order Logic

This variant of LTL is called LTL with past operators (LTLP).

Theorem (Kamp) For every FO< formula with one free variable, there

exists an equivalent LTLP formula.

Proof. Out of the scope of this lecture.
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Branching Time Logic: CTL

When doing model checking, we effectively use LTL in a branching time

environment:

Every state in a Kripke structure/transition system that has more

than a single successor gives rise to a “branching” in time.

This is reflected by the fact that usually, a Kripke structure/transition

system has more than a single computation.

Branching time logics allow us to explicitly talk about such branches in

time.
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CTL: Syntax

The class of computational tree logic (CTL) formulas is the smallest set

such that

• ⊤,⊥ and each propositional variable P ∈ Π are formulae;

• if F ,G are formulae, then so are F ∧ G ,F ∨ G ,¬F ;

• if F ,G are formulae, then so are

A© F and E © F ,

A(FUG) and E(FUG).

The symbols A and E are called path quantifiers.
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Abbreviations

Apart from the Boolean abbreviations, we use:

A3F for A(⊤UF )

E3F for E(⊤UF )

A2F for ¬E3¬F

E2F for ¬A3¬F

Note that formulas such as E(2q ∧3p) are not CTL formulas.

50



CTL: Semantics

In terms of Kripke structures K = (S, Si ,R, I )/transition systems T = (S,→, L).
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CTL: Semantics

Let T = (S,→, L) be a transition system. We define satisfaction of CTL formulas in

T at states s ∈ S as follows:

(T , s) |= p iff p ∈ L(s)

(T , s) |= ¬F iff (T , s) |= F is not the case

(T , s) |= F ∧ G iff (T , s) |= F and (T , s) |= G

(T , s) |= F ∨ G iff (T , s) |= F or (T , s) |= G

(T , s) |= E © F iff (T , t) |= F for some t ∈ S with s → t

(T , s) |= A © F iff (T , t) |= F for all t ∈ S with s → t

(T , s) |= A(FUG) iff for all computations π = s0s1 . . . of T with s0 = s,

there is an m ≥ 0 such that (T , sm) |= G and

(T , sk ) |= F for all k < m

(T , s) |= E(FUG) iff there exists a computation π = s0s1 . . . of T with s0 = s,

such that there is an m ≥ 0 such that (T , sm) |= G and

(T , sk ) |= F for all k < m
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Example of formulae in CTL

• E3((A = 2) ∧ (B = 2))

It is possible to reach a state where both processes are in the critical

section.

• A2(enabled1 ∧ . . . enabledk )

freedom from deadlocks (a safety property);

• A2(req → A3grant)

every request will eventually be acknowledged (a liveness property);

• A2(A3enabledi )

process i is enabled infinitely often on every computation path

(unconditional fairness)

• A2(E3Restart)

from every state it is possible to get to a restart state
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Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→, L) and s ∈ S , we have

T , s |= F iff T , s |= G .
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Equivalence

We say that two CTL formulas F and G are (globally) equivalent

(written F ≡ G)

if, for all CTL structures T = (S ,→, L) and s ∈ S , we have

T , s |= F iff T , s |= G .

Examples:

¬A3F ≡ E2¬F

¬E3F ≡ A2¬F

¬A© F ≡ E ©¬F

A3F ≡ A[⊤UF ]

E3F ≡ E [⊤UF ]
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CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but

not about joining path (which do not exist in a tree).
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CTL

Why is CTL called a tree logic?

Intuitively, it can talk about branching paths (which exists in a tree), but

not about joining path (which do not exist in a tree).

Let K = (S , Si ,R, I ) be a Kripke structure with Si = {s0}. We define a
tree-shaped Kripke structure T (K) = (S′, Si ,R

′, I ′) as follows:

• S′ is the set of all finite computations of K, i.e.,

S′ = {s0 . . . sk | siRsi+1 for all i < k};

• R′ = {(p, p′) ∈ S′ × S′ | p = qs, p′ = ps′ for some s, s′ ∈ S with sRs′};

• I (P, p) = I (s) if p = p′s for some p′ ∈ {ǫ} ∪ S′ and s ∈ S.

T (K) is called the unravelling of K.

Observe that T (K) has no leaves because K is total.
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CTL

CTL formulas cannot distinguish between a state in a Kripke structure and

the corresponding states in the tree-shaped unravelling.

Lemma Let K be a Kripke structure, s a state of K, p = s0 . . . sk a state of

T (K) such that sk = s, and F a CTL formula.

Then (K, s) |= F iff (T (K), p) |= F .

Proof. By induction on the structure of F .
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CTL vs LTL

We want to compare the expressive power of LTL and CTL.

To do this, we give a branching time reading to LTL formulas that is

inspired by our interpretation of LTL formulas in model checking:

we view LTL formulas as implicitly universally quantified.

Definition. We call two LTL or CTL formulas F and G equivalent if, for all

Kripke structures K and states s of K, we have

(K, s) |= F iff (K, s) |= G .
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CTL vs LTL

We want to compare the expressive power of LTL and CTL.

To do this, we give a branching time reading to LTL formulas that is

inspired by our interpretation of LTL formulas in model checking:

we view LTL formulas as implicitly universally quantified.

Definition. We call two LTL or CTL formulas F and G equivalent if, for all

Kripke structures K and states s of K, we have

(K, s) |= F iff (K, s) |= G .

Theorem.

• For the CTL formula E3p there is no equivalent LTL formula.

• For the LTL formula 32p there is no equivalent CTL formula.
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Model Checking

The CTL model checking problem is as follows:

Given a Kripke structure K = (S , Si ,R, I ) and a CTL formula F ,

check whether K satifies F , i.e., whether (K, s) |= F for all s ∈ Si .
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Model Checking

The CTL model checking problem is as follows:

Given a Kripke structure K = (S , Si ,R, I ) and a CTL formula F ,

check whether K satifies F , i.e., whether (K, s) |= F for all s ∈ Si .

Method (Idea)

(1) Arrange all subformulas Fi of F in a sequence F0, . . .Fk in ascending

order w.r.t. formula length: for 1 ≤ i < j ≤ k, Fi is not longer than

Fj ;

(2) For all subformulas Fi of F , compute the set

sat(Fi ) := {s ∈ S |(K, s) |= Fi}

in this order (from shorter to longer formulae);

(3) Check whether Si ⊆ sat(F ).
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Model Checking

How to compute sat(Fi )

• p ∈ Π 7→ sat(p) = {s | I (p, s) = 1}

• sat(Fi ∧ Fj ) = sat(Fi ) ∩ sat(Fj )

• sat(¬Fi ) = S\sat(Fi )

• sat(E © Fi ) = {s | ∃t ∈ S : sRt ∧ t ∈ sat(Fi )}

• sat(A© Fi ) = {s | ∀t ∈ S : sRt ∧ t ∈ sat(Fi )}

• sat(E(FiUFj )) and sat(A(FiUFj ) are computed with the following

procedures:
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Model Checking

F = E(FiUFj )

sat(F) := T := sat(F_j)

while T =\= {} do

choose s in T

T := T \ {s}

for all t in S with tRs do

if t in sat(F_i) and t not in sat(F) then

sat(F) := sat(F) U {t}

T := T U {t}

F = A(FiUFj )

sat(F) := T := sat(F_j)

while T =\= {} do

choose s in T

T := T \ {s}

for all t in S with tRs do

flag = 1

for all t’ in S with tRt’ do

if t’ not in sat(F) then flag := 0

if t in sat(F_i) and t not in sat(F) and flag = 1 then

sat(F) := sat(F) U {t}

T := T U {t}
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Model Checking

Theorem. (K, s) |= F iff s ∈ sat(F ).

Consequence. CTL model checking is decidable.

Concerning the complexity, we observe the following: if F is of length n, then at most

n sets sat(Fi ) need to be computed. How complex is it to compute each such set?

• F is a propositional letter or of the form F1 ∧ F2 or ¬F1: O(|S|) steps needed;

• F is of the form E © Fi or E(F1UF2): O(|S| + |R|) steps needed

the maximum cardinality of the initial set sat(Fj ) is |S|, and, in the forall loop, each edge from R

is “touched” at most once (in all iterations of the while);

• F is of the form A(F1UF2) : O(|S| + |R|2) steps needed

the maximum cardinality of the initial set sat(Fj ) is |S|, the outer forall loop touches each edge

from R at most once, and the inner forall loop touches each edge at most once for each step done

by the outer forall loop.

There exist more efficient algorithms (complexity |F | · O(|S| + |R|)).
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