Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
October 24, 2013

Exercises for "Non-Classical Logics"
 Exercise sheet 1

Exercise 1.1: (2 P)

Determine which of the following formulas are valid/satisfiable/unsatisfiable:
(1) $(P \wedge Q) \rightarrow P$
(2) $Q \wedge \neg Q$
(3) $\neg(\neg P \vee \neg \neg P)$
(4) $((Q \rightarrow P) \wedge(R \rightarrow \neg P)) \rightarrow(\neg Q \vee \neg R)$

Exercise 1.2: (2 P)

Prove Prop. 1.3 (2): If N is a set of propositional formulas, then $N \models F$ if and only if $N \cup\{\neg F\}$ is unsatisfiable.

Definition: A set of propositional formulas is unsatisfiable, if and only if for every valuation \mathcal{A} there is a formula G in the set such that $\mathcal{A} \not \vDash G$ (i.e. if and only if there is no valuation \mathcal{A} such that $\mathcal{A} \models G$ for all formulae G in the set).

Exercise 1.3: (3 P)
Let F be the following formula:

$$
\neg[((Q \wedge \neg P) \wedge \neg(Q \wedge R)) \rightarrow(Q \wedge \neg P)] \wedge(P \vee R)
$$

(1) Compute the negation normal form (NNF) F^{\prime} of F.
(2) Convert F^{\prime} to CNF using:
(a) distributivity of disjunctions over conjunctions?
(b) the satisfiability-preserving transformation described in the lecture.

Exercise 1.4: (2 P)
Consider the formulae $F_{n}=\bigvee_{i=1}^{n}\left(Q_{i} \wedge R_{i}\right)$ for $n \in \mathbb{N}$.
As a function of n, how many clauses are in:
(1) the CNF formula F^{\prime} constructed using the distributivity of disjunctions over conjunctions?
(2) the CNF formula $F^{\prime \prime}$ obtained using the satisfiability-preserving translation to clause form?
(3) For which n is the first approach better?

Exercise 1.5: (2 P)
Use the resolution calculus to prove that the following set of clauses is unsatisfiable:

(1)	$\neg P \vee \neg Q \vee R$
(2)	$\neg P \vee \neg Q \vee S$
(3)	P
(4)	$\neg S \vee \neg R$
(5)	Q

Exercise 1.6: (2 P)
Assume $S \succ P \succ Q \succ R$. Let N be the following set of clauses:
(1) $\quad \neg Q \vee \neg P$
(2) $\quad R \vee P$
(3) $Q \vee S$
(4) $\quad \neg Q \vee \neg S$

How are the clauses in N ordered w.r.t. the multiset extension of \succ ?

Please submit your solution until Wednesday, October 30, 2013, at 10:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name(s) on your solution.
Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.
- Put it in the box in front of Room B 222.

