Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

November 8, 2013

Exercises for "Non-Classical Logics" Exercise sheet 3

Exercise 3.1: (3 P) Let $\Sigma = \{\Omega, \Pi\}$ where $\Omega = \{0, s, +\}$ and $\Pi = \{\approx\}$. Consider the following formulae in the signature Σ :

- 1. $F_1 = \forall x \ (x+0 \approx x)$
- 2. $F_2 = \forall x, y \ (x + s(y) \approx s(x + y))$
- 3. $F_3 = \forall x, y \ (x + y \approx y + x).$

Find a Σ -structure in which F_1 and F_2 are valid but F_3 is not.

(*Definitions:* A formula F is valid in a Σ -structure \mathcal{A} under assignment β if $\mathcal{A}(\beta)(F) = 1$. F is valid in a Σ -structure \mathcal{A} iff $\mathcal{A}, \beta \models F$, for all $\beta \in X \to U_{\mathcal{A}}$.)

Exercise 3.2: (2 P) What is the clausal normal form of

$$\exists x \left((\forall y \left(\forall z \left(p(y, z) \lor \neg \left(x \approx y \right) \right) \right) \rightarrow \left(\forall z q(y, z) \land \neg r(x, y) \right) \right)$$

Exercise 3.3: (1 P) Compute a most general unifier of

- (1) $\{ f(x, g(x)) \doteq y, h(y) \doteq h(v), v \doteq f(g(z), w) \}$
- (2) { $f(x,g(x)) \doteq y, h(y) \doteq h(v), v \doteq f(g(x),w)$ }

Exercise 3.4: (2 P)

Use resolution to show that the following set of clauses is unsatisfiable:

$$p(a, z) \
eg p(f(f(a)), a) \
eg p(x, g(y)) \lor p(f(x), y)$$

Exercise 3.5: (2 P)

Let \succ be a total and well-founded ordering on ground atoms such that, if the atom A contains more symbols than B, then $A \succ B$. Let N be the following set of clauses:

 $\begin{array}{c} \neg q(z,z) \\ \neg q(f(x),y) \lor q(f(f(x)),y) \lor p(x) \\ \neg p(a) \lor \neg p(f(a)) \lor q(f(a),f(f(a))) \\ p(f(x)) \lor p(g(y)) \\ \neg p(g(a)) \lor p(f(f(a))) \end{array}$

(a) Which literals are maximal in the clauses of N?

(b) Define a selection function S such that N is saturated under Res_S^{\succ} .

Exercise 3.6: (2 P)

Prove that the following set of formulae is unsafisfiable by using first-order semantic tableaux:

$$\{p(a), \forall x(p(x) \to p(f(x))), \neg p(f(f(a)))\}$$

Please submit your solution until Tuesday, November 12, 2013, at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name(s) on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.
- Put it in the box in front of Room B 222.