Universität Koblenz-Landau FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans

December 18, 2013

Exercises for "Non-Classical Logics" Exercise sheet 9

Exercise 9.1: (2 P)

- (1) Give a property of R that is necessary and sufficient for $\mathcal{F} = (S, R)$ to validate the schema $A \to \Box A$.
- (2) Give a property of R that is necessary and sufficient for $\mathcal{F} = (S, R)$ to validate the schema $\langle {}^{3}A \rightarrow \Box^{2} \langle A.$
- (3) Can you find an axiom schema which characterized the following property of the relation in a frame: $\forall s_1 \forall s_2 (R^5(s_1, s_2) \rightarrow R^4(s_2, s_1))$

Exercise 9.2: (4 P)

Prove that the following formulae are valid (i.e. true in all frames):

(1) $\Diamond (P \lor Q) \leftrightarrow (\Diamond P \lor \Diamond Q)$ (2) $\Diamond (P \land Q) \rightarrow (\Diamond P \land \Diamond Q)$

Exercise 9.3: (3 P)

Prove that in any Kripke structure $\mathcal{K} = (S, R, I)$ and for every $s \in S$ the following hold:

- (1) $(\mathcal{K}, s) \models \Diamond^n F$ if and only if there exists $t \in S$ such that $R^n(s, t)$ and $(\mathcal{K}, t) \models F$.
- (2) $(\mathcal{K}, s) \models \Box^n F$ if and only if for all $t \in S$ with $R^n(s, t)$ we have $(\mathcal{K}, t) \models F$.

Exercise 9.4: (2 P)

Prove that in any Kripke structure \mathcal{K} the following hold:

- (1) If A is a propositional tautology then $\mathcal{K} \models A$.
- (2) If $\mathcal{K} \models A$ and $\mathcal{K} \models A \to B$, then $\mathcal{K} \models B$.
- (3) If $\mathcal{K} \models A$ then $\mathcal{K} \models \Box A$.

Please submit your solution until Tuesday, January 7, 2014, at 16:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name(s) on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.
- Put it in the box in front of Room B 222.