
Non-classical logics

Lecture 2: Classical logic, Part 2

30.10.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Winter Semester 2013/2014

1

Last time

• Propositional logic (Syntax, Semantics)

• Problems: Checking unsatisfiability

NP complete

PTIME for certain fragments of propositional logic

• Normal forms (CNF/DNF)

• Translations to CNF/DNF

• Methods for checking satisfiability

The Resolution Procedure

Semantic Tableaux

2

The Propositional Resolution Calculus

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

These are schematic inference rules; for each substitution of the schematic variables

C , D, and A, respectively, by propositional clauses and atoms we obtain an inference

rule.

As “∨” is considered associative and commutative, we assume that A and ¬A can

occur anywhere in their respective clauses.

3

Soundness and Completeness

Theorem 1.6. Propositional resolution is sound.

for both the resolution rule and the positive factorization rule

the conclusion of the inference is entailed by the premises.

If N is satisfiable, we cannot deduce ⊥ from N using the

inference rules of the propositional resolution calculus.

If we can deduce ⊥ from N using the inference rules of the

propositional resolution calculus then N is unsatisfiable

Theorem 1.7. Propositional resolution is refutationally complete.

If N |=⊥ we can deduce ⊥ starting from N and using the

inference rules of the propositional resolution calculus.

4

Notation

N ⊢Res ⊥: we can deduce ⊥ starting from N and using the inference

rules of the propositional resolution calculus.

5

Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and construct a

series of valuations.

• The limit valuation can be shown to be a model of N.

6

Clause Orderings

1. We assume that ≻ is any fixed ordering on propositional

variables that is total and well-founded.

2. Extend ≻ to an ordering ≻L on literals:

[¬]P ≻L [¬]Q , if P ≻ Q

¬P ≻L P

3. Extend ≻L to an ordering ≻C on clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

(well-founded)

7

Multi-Set Orderings

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to

multi-sets over M is defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m′ ∈ M : (m′ ≻ m and S1(m
′) > S2(m

′))]

Theorem 1.11:

a) ≻mul is a partial ordering.

b) ≻ well-founded ⇒ ≻mul well-founded

c) ≻ total ⇒ ≻mul total

Proof:

see Baader and Nipkow, page 22–24.

8

Example

Suppose P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0. Then:

P0 ∨ P1

≺ P1 ∨ P2

≺ ¬P1 ∨ P2

≺ ¬P1 ∨ P4 ∨ P3

≺ ¬P1 ∨ ¬P4 ∨ P3

≺ ¬P5 ∨ P5

9

Stratified Structure of Clause Sets

Let A ≻ B . Clause sets are then stratified in this form:

{

{
.
..

..

.
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A

10

Stratified Structure of Clause Sets

Let A ≻ B . Clause sets are then stratified in this form:

{

{
.
..

..

.
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D where max(D) = B

all C where max(C) = A

11

Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0 Res
n(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N.

Proposition 1.12

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ ⇔ ⊥ ∈ Res
∗(N)

12

Construction of Interpretations

Given: set N of clauses, atom ordering ≻.

Wanted: Valuation A such that

• “many” clauses from N are valid in A;

• A |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.

13

Main Ideas of the Construction

• Clauses are considered in the order given by ≺. We construct a

model for N incrementally.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

In what follows, instead of referring to partial valuations

AC we will refer to partial interpretations IC (the set of

atoms which are true in the valuation AC).

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.

14

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5

15

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5

16

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5

17

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5

18

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5

19

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3

7 ¬P1 ∨ P5

20

Example

Let P5 ≻ P4 ≻ P3 ≻ P2 ≻ P1 ≻ P0 (max. literals in red)

clauses C IC = A−1
C (1) ∆C Remarks

1 ¬P0 ∅ ∅ true in AC

2 P0 ∨ P1 ∅ {P1} P1 maximal

3 P1 ∨ P2 {P1} ∅ true in AC

4 ¬P1 ∨ P2 {P1} {P2} P2 maximal

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4} P4 maximal

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ P3 not maximal;

min. counter-ex.

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

I = {P1,P2,P4,P5} = A−1(1): A is not a model of the clause set

⇒ there exists a counterexample.

21

Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.

22

Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

anything from IC and the truth value of clauses smaller than C

should be maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC , if

A occurs positively in C (adding A will make C become true)

and if this occurrence in C is strictly maximal in the ordering on

literals (changing the truth value of A has no effect on smaller

clauses).

23

Resolution Reduces Counterexamples

¬P1 ∨ P4 ∨ P3 ∨ P0 ¬P1 ∨ ¬P4 ∨ P3

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2} ∅ P3 occurs twice

minimal counter-ex.

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2} {P4}

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P4} ∅ counterexample

7 ¬P1 ∨ P5 {P1,P2,P4} {P5}

The same I , but smaller counterexample, hence some progress was made.

24

Factorization Reduces Counterexamples

¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0

¬P1 ∨ ¬P1 ∨ P3 ∨ P0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

1 ¬P0 ∅ ∅

2 P0 ∨ P1 ∅ {P1}

3 P1 ∨ P2 {P1} ∅

4 ¬P1 ∨ P2 {P1} {P2}

9 ¬P1 ∨ ¬P1 ∨ P3 ∨ P0 {P1,P2} {P3}

8 ¬P1 ∨ ¬P1 ∨ P3 ∨ P3 ∨ P0 {P1,P2,P3} ∅ true in AC

5 ¬P1 ∨ P4 ∨ P3 ∨ P0 {P1,P2,P3} ∅

6 ¬P1 ∨ ¬P4 ∨ P3 {P1,P2,P3} ∅ true in AC

7 ¬P3 ∨ P5 {P1,P2,P3} {P5}

The resulting I = {P1,P2,P3,P5} is a model of the clause set.

25

Construction of Candidate Models Formally

Let N,≻ be given. We define sets IC and ∆C for all ground clauses

C over the given signature inductively over ≻:

IC :=
⋃

C≻D
∆D

∆C :=

{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
⋃

C
∆C .

We also simply write IN , or I , for I
≻
N if ≻ is either irrelevant or known

from the context.

26

Structure of N ,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
.
.
.

.

..
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .

. . .

all D with max(D) = B

all C with max(C) = A

27

Model Existence Theorem

Theorem 1.14 (Bachmair & Ganzinger):

Let ≻ be a clause ordering, let N be saturated wrt. Res, and suppose

that ⊥ 6∈ N. Then I≻N |= N.

Corollary 1.15:

Let N be saturated wrt. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.

28

Model Existence Theorem

Proof:

Suppose ⊥ 6∈ N, but I≻N 6|= N. Let C ∈ N minimal (in ≻) such that

I≻N 6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C .

Case 1: C = ¬A ∨ C ′ (i.e., the maximal atom occurs negatively)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer

that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

Case 2: C = C ′ ∨ A ∨ A. Then C′∨A∨A
C′∨A

yields a smaller

counterexample C ′ ∨ A ∈ N. ⇒ contradicts minimality of C .

29

Ordered Resolution with Selection

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem) one only

needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection

30

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

31

Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of

clauses.

32

Resolution Calculus Res≻S

C ∨ A D ∨ ¬A

C ∨ D
[ordered resolution with selection]

if

(i) A ≻ C ;

(ii) nothing is selected in C by S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

33

Resolution Calculus Res≻S

C ∨ A ∨ A

(C ∨ A)
[ordered factoring]

if A is maximal in C and nothing is selected in C .

34

Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B

3 ¬A ∨ B

4 ¬A ∨ ¬B

5 B ∨ B Res 1, 3

6 B Fact 5

7 ¬A Res 6, 4

8 A Res 6, 2

9 ⊥ Res 8, 7

we assume A ≻ B and S as in-

dicated by X . The maximal

literal in a clause is depicted

in red.

With this ordering and selection function the refutation proceeds

strictly deterministically in this example. Generally, proof search will

still be non-deterministic but the search space will be much smaller

than with unrestricted resolution.

35

Today

Propositional Logic

• Tableaux calculus

First-order Logic

36

1.6 Semantic Tableaux

Literature:

M. Fitting: First-Order Logic and Automated Theorem

Proving, Springer-Verlag, New York, 1996, chapters 3, 6, 7.

R. M. Smullyan: First-Order Logic, Dover Publ., New York,

1968, revised 1995.

Like resolution, semantic tableaux were developed in the sixties,

by R. M. Smullyan on the basis of work by Gentzen in the 30s

and of Beth in the 50s.

(According to Fitting, semantic tableaux were first proposed by

the Polish scientist Z. Lis in a paper in Studia Logica 10, 1960

that was only recently rediscovered.)

37

Idea

Idea (for the propositional case):

A set {F ∧ G} ∪ N of formulas has a model if and only if

{F ∧ G , F , G} ∪ N has a model.

A set {F ∨ G} ∪ N of formulas has a model if and only if

{F ∨ G , F} ∪ N or {F ∨ G , G} ∪ N has a model.

(and similarly for other connectives).

To avoid duplication, represent sets as paths of a tree.

Continue splitting until two complementary formulas are

found ⇒ inconsistency detected.

38

A Tableau for {P ∧ ¬(Q ∨ ¬R), ¬Q ∨ ¬R}

3. ¬Q

5. P

6. ¬(Q ∨ ¬R)

7. ¬Q

8. ¬¬R

9. R

4. ¬R

10. P

11. ¬(Q ∨ ¬R)

�
�

�
�

�

P
P
P
P
P

1. P ∧ ¬(Q ∨ ¬R)

2. ¬Q ∨ ¬R

This tableau is not

“maximal”, however

the first “path” is.

This path is not

“closed”, hence the

set {1, 2} is satisfiable.

(These notions will all

be defined below.)

39

Properties

Properties of tableau calculi:

analytic: inferences according to the logical content of the symbols.

goal oriented: inferences operate directly on the goal to be proved

(unlike, e. g., resolution).

global: some inferences affect the entire proof state (set of

formulas), as we will see later.

40

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and

expand the tableau at a leaf. We append the conclusions of a

rule (horizontally or vertically) at a leaf, whenever the premise

of the expansion rule matches a formula appearing anywhere on

the path from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤

41

Propositional Expansion Rules

α-Expansion

(for formulas that are essentially conjunctions: append

subformulas α1 and α2 one on top of the other)

α

α1

α2

β-Expansion

(for formulas that are essentially disjunctions:

append β1 and β2 horizontally, i. e., branch into β1 and β2)

β

β1 | β2

42

Classification of Formulas

conjunctive disjunctive

α α1 α2 β β1 β2

X ∧ Y X Y ¬(X ∧ Y) ¬X ¬Y

¬(X ∨ Y) ¬X ¬Y X ∨ Y X Y

¬(X → Y) X ¬Y X → Y ¬X Y

We assume that the binary connective ↔ has been eliminated in

advance.

43

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered

tree and inductively defined as follows: Let {F1, . . . ,Fn} be a

set of formulas.

(i) The tree consisting of a single path

F1

...

Fn

is a tableau for {F1, . . . ,Fn}.

(We do not draw edges if nodes have only one successor.)

44

Tableaux: Notions

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results from T

by applying an expansion rule then T ′ is also a tableau for

{F1, . . . ,Fn}.

A path (from the root to a leaf) in a tableau is called closed,

if it either contains ⊥, or else it contains both some formula F

and its negation ¬F . Otherwise the path is called open.

A tableau is called closed, if all paths are closed.

A tableau proof for F is a closed tableau for {¬F}.

45

Tableaux: Notions

A path P in a tableau is called maximal, if for each non-atomic

formula F on P there exists a node in P at which the expansion

rule for F has been applied.

In that case, if F is a formula on P , P also contains:

(i) F1 and F2, if F is a α-formula,

(ii) F1 or F2, if F is a β-formula, and

(iii) F ′, if F is a negation formula, and F ′ the conclusion of

the corresponding elimination rule.

A tableau is called maximal, if each path is closed or maximal.

46

Tableaux: Notions

A tableau is called strict, if for each formula the corresponding

expansion rule has been applied at most once on each path

containing that formula.

A tableau is called clausal, if each of its formulas is a clause.

47

A Sample Proof

One starts out from the negation of the formula to be proved.

10. P [41] 11. S [42]

�
�

�
�

�

X
X
X
X
X

8. ¬P [21] 9. Q → R [22]

�
�

�
�

�

hhhhhhhh

1. ¬[(P → (Q → R)) → ((P ∨ S) → ((Q → R) ∨ S))]

2. (P → (Q → R)) [11]

3. ¬((P ∨ S) → ((Q → R) ∨ S)) [12]

4. P ∨ S [31]

5. ¬((Q → R) ∨ S)) [32]

6. ¬(Q → R) [51]

7. ¬S [52]

There are three paths, each of them closed.

48

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . ,Fn}.

Theorem 1.8:

{F1, . . . ,Fn} satisfiable ⇔ some path (i.e., the set of its formulas) in

T is satisfiable.

(Proof by induction over the structure of T .)

Corollary 1.9:

T closed ⇒ {F1, . . . ,Fn} unsatisfiable

49

Properties of Propositional Tableaux

Theorem 1.10:

Let T be a strict propositional tableau. Then T is finite.

Proof:

New formulas resulting from expansion are either ⊥, ⊤ or subformulas

of the expanded formula. By strictness, on each path a formula can

be expanded at most once. Therefore, each path is finite, and a

finitely branching tree with finite paths is finite (König’s Lemma).

Conclusion: Strict and maximal tableaux can be effectively

constructed.

50

Refutational Completeness

Theorem 1.11:

Let P be a maximal, open path in a tableau. Then set of

formulas on P is satisfiable.

Theorem 1.12:

{F1, . . . ,Fn} satisfiable ⇔ there exists no closed strict tableau

for {F1, . . . ,Fn}.

51

Consequences

The validity of a propositional formula F can be established by

constructing a strict, maximal tableau T for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths wrt. atomic

formulas.

• Which of the potentially many strict, maximal tableaux one

computes does not matter. In other words, tableau expan-

sion rules can be applied don’t-care non-deterministically

(“proof confluence”).

52

Checking validity of formulae

Nota bene: We cannot check the validity of a formula F by constructing a

strict, maximal tableau for F .

53

Checking validity of formulae

Nota bene: We cannot check the validity of a formula F by constructing a

strict, maximal tableau for F .

Example: Let F := (P ∨ Q)

A strict, maximal tableau for F is:

2. P [11] 3. Q [12]

�
�

�
�

P
P
P
P

1. P ∨ Q

This shows that F is satisfiable. Nothing can be inferred about the validity of F this

way.

To check whether F is valid, we construct a strict, maximal tableau T for ¬F . If T is

closed, then ¬F is unsatisfiable, hence F is valid; otherwise F is not valid.

(In the example below, we can construct a strict, maximal tableau for ¬F which is not

closed, so F is not valid.)

54

Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

55

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

56

Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R, S , to denote propositional variables.

57

Variables

Predicate logic admits the formulation of abstract, schematic

assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the

denotation of) variables.

58

Terms

Terms over Σ (resp., Σ-terms) are formed according to these

syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

59

Terms

In other words, terms are formal expressions with well-balanced

brackets which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has

exactly n subtrees representing the n immediate subterms of v .

60

Atoms

Atoms (also called atomic formulas) over Σ are formed according

to this syntax:

A,B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the

realm of first-order logic with equality. Admitting equality does

not really increase the expressiveness of first-order logic. But

deductive systems where equality is treated specifically can be

much more efficient.

61

Literals

L ::= A (positive literal)

| ¬A (negative literal)

62

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

63

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀x F (universal quantification)

| ∃x F (existential quantification)

64

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∧ >p ∨ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . .Qxn F .

65

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual

operator precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

0 for 0()

66

