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Until now

Classical logic

• Propositional logic (Syntax, Semantics)

• First-order logic (Syntax, Semantics)

Proof methods (resolution, tableaux)
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From now on: Non-Classical logics

• Many-valued logic (finitely-valued; infinitely-valued)

Syntax, semantics, Automated proof methods (resolution, tableaux)

Reduction to classical logic

• Modal logics (also description logics, dynamic logic)

Syntax, semantics, Automated proof methods (resolution, tableaux)

Reduction to classical logic

• Temporal logic (Linear time; branching time)

Syntax, semantics, Model checking
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From now on: Non-Classical logics

• Many-valued logic (finitely-valued; infinitely-valued)

Syntax, semantics, Automated proof methods (resolution, tableaux)

Reduction to classical logic

• Modal logics (also description logics, dynamic logic)

Syntax, semantics, Automated proof methods (resolution, tableaux)

Reduction to classical logic

• Temporal logic (Linear time; branching time)

Syntax, semantics, Model checking
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Many-valued logic

• Introduction

• Many-valued logics

3-valued logic

finitely-valued logic

fuzzy logic

• Automated theorem proving (resolution, tableaux)

• Reduction to classical logic
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History and Motivation

Many-valued logics were introduced to model undefined or vague information
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History and Motivation

Jan  Lukasiewicz

Began to create systems of many-valued logic in 1920,
using a third value “possible” to deal with Aristotle’s
paradox of the sea battle.

• Jan  Lukasiewicz:

“On 3-valued logic” (Polish) Ruch Filozoficzny, Vol. 5, 1920.

Later, Jan  Lukasiewicz and Alfred Tarski together formulated a logic on n

truth values where n ≥ 2.

• Jan  Lukasiewicz:

Philosophische Bemerkungen zu mehrwertigen Systemen des

Aussagenkalküls. Comptes rendus des séance de la Societé des

Sciences et des Lettres de Varsovie, Classe III, Vol .23, 1930.

• S. McCall:

Polish Logic: 1920–1939. Oxford University Press, 1967.
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History

Emile L. Post

Introduced (in 1921) the formulation of additional truth degrees
with n ≥ 2 where n is the number of truth values (starting
mainly from algebraic considerations).

• Emil Post:

Introduction to a general theory of elementary propositions. American

J. of Math., Vol. 43, 1921.

S. C. Kleene:

Introduced a 3-valued logic in order to express the

fact that some recursive functions might be undefined.
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Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)
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Automated Deduction in Multiple-valued Logics.

Clarendon Press, Oxford, 1993.

• Grzegorz Malinowski:

Many-Valued Logics.

Oxford Logic Guides, Vol. 25, Clarendon Press, Oxford, 1993.

• Siegfried Gottwald

A Treatise On Many-Valued Logics. Studies in Logic and Computation,

Vol. 9, Research Studies Press, 2001.

11



Literature

• Harald Ganzinger and Viorica Sofronie-Stokkermans

Chaining techniques for automated theorem proving in many-valued

logic. ISMVL 2000.

• Viorica Sofronie-Stokkermans and Carsten Ihlemann

Automated reasoning in some local extensions of ordered structures

Multiple-Valued Logic and Soft Computing 13(4-6): 397-414, 2007.

12



A motivating example

B: the sky is blue

R: it rains

U: I take my umbrella

(B → ¬R) ∧ (R → U) ∧ (B → ¬U) ∧ R
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A motivating example

B: the sky is blue

R: it rains

U: I take my umbrella

(B → ¬R) ∧ (R → U) ∧ (B → ¬U) ∧ R

Description of a situation: (partial) variable assignment v : Π → {0, 1}

A v(A)

B 1

R

U 0
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Truth tables in partial logic

v partial valuation.

v ⊑ v1: v1 is a total variable assignment which extends v .

Example

Description of a situation:

(partial) v : Π → {0, 1}

A v(A)

B 1

R

U 0

A v1(A) v2(A)

B 1 1

R 0 1

U 0 0

v ⊑ v1, v ⊑ v2

v(F1 ∧ F2) = 0 iff for all v1 with v ⊑ v1 we have v1(F1 ∧ F2) = 0

v(F1 ∧ F2) = 1 iff for all v1 with v ⊑ v1 we have v1(F1 ∧ F2) = 1
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Truth tables for partial logic

∧ 1 undef 0

1 1 undef 0

undef undef undef 0

0 0 0 0

∨ 1 undef 0

1 1 1 1

undef 1 undef undef

0 1 undef 0

F ¬F

1 0

undef undef

0 1
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A motivating example

∧ 1 undef 0

1 1 undef 0

undef undef undef 0

0 0 0 0

∨ 1 undef 0

1 1 1 1

undef 1 undef undef

0 1 undef 0

F ¬F

1 0

undef undef

0 1

(B → ¬R) ∧ (R → U) ∧ (B → ¬U) ∧ R

Description of a situation: (partial) variable assignment v : Π → {0, 1}

A v(A)

B 1

R undef

U 0

F v(F )

¬B ∨ ¬R undef

¬R ∨ U undef

¬B ∨ ¬U 1
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Another example

Belnap’s 4-valued logic

This particularly interesting system of MVL was the result of research on

relevance logic, but it also has significance for computer science applications.

Its truth degree set may be taken as

M = {{}, {0}, {1}, {0, 1}},

and the truth degrees interpreted as indicating (e.g. with respect to a

database query for some particular state of affairs) that there is

• no information concerning this state of affairs,

• information saying that the state of affairs is false,

• information saying that the state of affairs is true,

• conflicting information saying that the state of affairs is true as well as

false.
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Another example

Belnap’s 4-valued logic M = {{}, {0}, {1}, {0, 1}}

This set of truth degrees has two natural orderings:

{0, 1} both false and true

{} neither false nor true 

{0} {1}

false true

information

ordering 

truth ordering

∧,∨: sup/inf in the truth ordering

∼ {} = {}, ∼ {0, 1} = {0, 1}, ∼ {0} = {1}, ∼ {1} = {0}

“Designated” values: (What we can assume to be true)

Computer science: D = {{1}}

Other applications (e.g. information bases): D = {{1}, {0, 1}}
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Many-valued logics

• Syntax

• Semantics

• Applications

• Proof theory / Methods for automated reasoning
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1 Syntax

• propositional variables

• logical operations
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Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.
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Logical operators

Let F be a set of logical operators.

These logical operators could be the usual ones from classical logic

{¬/1,∨/2,∧/2,→ /2,↔ /2}

but could also be other operations, with arbitrary arity.
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Propositional Formulas

FF
Π is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= c (c constant logical operator)

| P, P ∈ Π (atomic formula)

| f (F1, . . . ,Fn) (f ∈ F with arity n)

24



Example: Classical propositional logic

If F = {⊤/0,⊥ /0,¬/1,∨/2,∧/2,→ /2,↔ /2} then

FΠ is the set of propositional formulas over Π is defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)
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Semantics

We assume that a set M = {w1,w2, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M

(truth tables for the operations in F)

Example 1: If F consists of the Boolean operations and M = B2 = {0, 1}

then specifying the meaning of the logical operations means giving the

truth tables for the operations in F

¬b

0 1

1 0

∨b 0 1

0 0 1

1 1 1

∧b 0 1

0 0 0

1 0 1
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M

(truth tables for the operations in F)

Example 2: If F consists of the operations {∨,∧,¬} and M = {0, undef, 1}

then specifying the meaning of the logical operations means giving the

truth tables for these operations e.g.

F ¬uF

1 0

undef undef

0 1

∧u 1 undef 0

1 1 undef 0

undef undef undef 0

0 0 0 0

∨u 1 undef 0

1 1 1 1

undef 1 undef undef

0 1 undef 0
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M

(truth tables for the operations in F)

Example 2: F = {∨,∧,¬} and M = {{}, {0}, {1}, {0, 1}}. The truth

tables for these operations e.g.

F F

{ } { }

{ 0 } { 1 }

{ 1 } { 0 }

{0, 1 } {0, 1 }

∧B { } {0 } { 1 } {0, 1}

{ } { } { 0 } { } { 0 }

{0 } { 0 } {0 } { 0 } { 0 }

{1 } { } { 0 } { 1 } { 0, 1 }

{0, 1 } { 0 } {0 } { 0, 1 } {0, 1}

∨B { } {0 } { 1 } {0, 1}

{ } { } { } { 1 } { 1 }

{0 } { } {0 } { 1 } { 0, 1 }

{1 } { 1} { 0, 1 } { 1 } { 0, 1 }

{0, 1 } { 1 } {0, 1 } {0, 1 } { 1}
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

2. The meaning of the propositional variables

A Π-valuation is a map

A : Π → M.
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fM}f∈F ) and

Π-valuation A : Π → M, the function A∗ : Σ-formulas → M is defined

inductively over the structure of F as follows:

A∗(c) = cM(for every constant operator c ∈ F)

A∗(P) = A(P)

A∗(f (F1, . . . ,Fn)) = fM(A∗(F1), . . . ,A∗(Fn))

For simplicity, we write A instead of A∗.
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Example 1: Classical logic

Given a Π-valuation A : Π → B2 = {0, 1}, the function A∗ :

Σ-formulas → {0, 1} is defined inductively over the structure of F as

follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F ) = ¬bA
∗(F )

A∗(F ◦ G) = ◦b(A
∗(F ),A∗(G))

with ◦B the Boolean function associated with ◦ ∈ {∨,∧,→,↔}
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Example 2: Logic of undefinedness

Given a Π-valuation A : Π → M = {0, undef, 1}, the function

A∗ : Σ-formulas → {0, undef, 1} is defined inductively over the

structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F ) = ¬u(A
∗(F ))

A∗(F ∨ G) = A∗(F ) ∨u A
∗(G)

A∗(F ∧ G) = A∗(F ) ∧u A
∗(G)
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Example 3: Belnap’s 4-valued logic

Given a Π-valuation A : Π → M = {{}, {0}, {1}, {0, 1}}, the function

A∗ : Σ-formulas → {{}, {0}, {1}, {0, 1}} is defined inductively over

the structure of F as follows:

A∗(⊥) = {0}

A∗(⊤) = {1}

A∗(P) = A(P)

A∗(¬F ) = B(A
∗(F ))

A∗(F ∨ G) = A∗(F ) ∨B A∗(G)

A∗(F ∧ G) = A∗(F ) ∧B A∗(G)
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Models, Validity, and Satisfiability

M = {w1, . . . ,wm} set of truth values

D ⊆ M set of designated truth values

A : Π → M.

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) ∈ D

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).
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The logic L3

Set of truth values: M = {1, u, 0}.

Designated truth values: D = {1}.

Logical operators: F = {∨,∧,¬,∼}.

35



Truth tables for the operators

∨ 0 u 1

0 0 u 1

u u u 1

1 1 1 1

∧ 0 u 1

0 0 0 0

u 0 u u

1 0 u 1

v(F ∧ G ) = min(v(F ), v(G ))

v(F ∨ G ) = max(v(F ), v(G ))

Under the assumption that 0 < u < 1.
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Truth tables for negations

A ¬A ∼ A ∼ ¬A ∼∼ A ¬¬A ¬ ∼ A

1 0 0 1 1 1 1

u u 1 1 0 u 0

0 1 1 0 0 0 0

Translation in natural language:

v(A) = 1 gdw. A is true

v(¬A) = 1 gdw. A is false

v(∼ A) = 1 gdw. A is not true

v(∼ ¬A) = 1 gdw. A is not false
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First-order many-valued logic

M = {w1, . . . ,wm} set of truth values

D ⊆ M set of designated truth values.

1. Syntax

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols F , quantifiers

⇒ formulae
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Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R, S , to denote propositional variables.
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Variables, Terms

As in classical logic
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Atoms

Atoms (also called atomic formulas) over Σ are formed according

to this syntax:

A,B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

In what follows we will only consider variants of first-order logic

without equality.
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Logical Operations

F set of logical operations

Q = {Q1, . . . ,Qk} set of quantifiers
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First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= c (c ∈ F , constant)

| A (atomic formula)

| f (F1, . . . ,Fn) (f ∈ F with arity n)

| QxF (Q ∈ Q is a quantifier)
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Bound and Free Variables

In QxF , Q ∈ Q, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the

scope of a quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas

or sentential forms.

Formulas without variables are called ground.
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Semantics

M = {1, . . . ,m} set of truth values

D ⊆ M set of designated truth values.

Truth tables for the logical operations:

{fM : Mn → M |f /n ∈ F}

“Truth tables” for the quantifiers:

{QM : P(M) → M |Q ∈ Q}

Examples: If M = B2 = {0, 1} then

∀B2 : P({0, 1}) → {0, 1} ∀B2(X ) = min(X )

∃B2
: P({0, 1}) → {0, 1} ∃B2

(X ) = max(X )
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Structures

An M-valued Σ-algebra (Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA : Um → M)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the

algebra and its universe.

By Σ-AlgM we denote the class of all M-valued Σ-algebras.
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Assignments

Variable assignments β : X → A

and extensions to terms A(β) : TΣ → A as in classical logic.
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Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X ) → M is defined inductively as follows:

A(β)(c) = cM

A(β)(p(s1, . . . , sn)) = pA(A(β)(s1), . . . ,A(β)(sn)) ∈ M

A(β)(f (F1, . . . ,Fn)) = fM(A(β)(F1), . . . ,A(β)(Fn))

A(β)(QxF ) = QM({A(β[x 7→ a])(F ) | a ∈ U})
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First-order version of L3

M = {0, u, 1}

D = {1}

F = {∨,∧,¬,∼}

truth values as the propositional version

Q = {∀,∃}

∀M(S) =















1 if S = {1}

0 if 0 ∈ S

u otherwise

∃M(S) =















1 if 1 ∈ S

0 if S = {0}

u otherwise

49



Interpretation of quantifiers

A(β)(∀xF (x)) = 1 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∀xF (x)) = 0 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise

A(β)(∃xF (x)) = 1 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∃xF (x)) = 0 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise
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Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F ) ∈ D

F is valid in A (A is a model of F ):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid:

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.
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Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F ) ∈ D.
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Models, Validity, and Satisfiability in L3

F is valid in A under assignment β:

A,β |=3 F :⇔ A(β)(F ) = 1

F is valid in A (A is a model of F ):

A |=3 F :⇔ A,β |=3 F , for all β ∈ X → UA

F is valid (or is a tautology):

|=3 F :⇔ A |=3 F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |=3 F .

Otherwise F is called unsatisfiable.
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Entailment in L3

N |=3 F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) = 1, for all G ∈ N, then A(β)(F ) = 1.
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Observations

• Every L3-tautology is also a two-valued tautology.

• Not every two-valued tautology is an L3-tautology.

Example: F ∨ ¬F .
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