Non-classical logics

Lecture 6: Many-valued logics (Part 2)
20.11.2013

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

- Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics

1 Syntax

- propositional variables Π
- logical operations \mathcal{F}

Propositional Formulas $F_{\Pi}^{\mathcal{F}}$ is the set of propositional formulas over Π defined as follows:

$$
\begin{array}{rlr}
F, G, H & :=c & \text { (c constant logical operator) } \\
& \mid \quad P, \quad P \in \Pi & \text { (atomic formula) } \\
& \mid & f\left(F_{1}, \ldots, F_{n}\right)
\end{array}
$$

Semantics

We assume that a set $M=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators
$f \in \mathcal{F}$ with arity $n \quad \mapsto \quad f_{M}: M^{n} \rightarrow M$ (truth tables for the operations in \mathcal{F})
2. The meaning of the propositional variables

A Π-valuation is a $\operatorname{map} \mathcal{A}: \Pi \rightarrow M$.
3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols $\left(M,\left\{f_{M}\right\}_{f \in \mathcal{F}}\right)$, any Π-valuation $\mathcal{A}: \Pi \rightarrow M$, can be extended to $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow M$.

$$
\begin{aligned}
\mathcal{A}^{*}(c) & =c_{M}(\text { for every constant operator } c \in \mathcal{F}) \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}\left(f\left(F_{1}, \ldots, F_{n}\right)\right) & =f_{M}\left(\mathcal{A}^{*}\left(F_{1}\right), \ldots, \mathcal{A}^{*}\left(F_{n}\right)\right)
\end{aligned}
$$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^{*}.

Models, Validity, and Satisfiability

$M=\left\{w_{1}, \ldots, w_{m}\right\}$ set of truth values
$D \subseteq M$ set of designated truth values
$\mathcal{A}: \Pi \rightarrow M$.
F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ holds under $\mathcal{A})$:

$$
\mathcal{A} \models F: \Leftrightarrow \mathcal{A}(F) \in D
$$

F is valid (or is a tautology):

$$
\models F: \Leftrightarrow \mathcal{A} \models F \text { for all } \Pi \text {-valuations } \mathcal{A}
$$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$.
Otherwise F is called unsatisfiable (or contradictory).

The logic \mathcal{L}_{3}

Set of truth values: $M=\{1, u, 0\}$.
Designated truth values: $D=\{1\}$.
Logical operators: $\mathcal{F}=\{\vee, \wedge, \neg, \sim\}$.
Truth tables for the operators

V	0	u	1
0	0	u	1
u	u	u	1
1	1	1	1

\wedge	0	u	1
0	0	0	0
u	0	u	u
1	0	u	1

$v(F \wedge G)=\min (v(F), v(G))$
$v(F \vee G)=\max (v(F), v(G))$
Under the assumption that $0<u<1$.

Truth tables for negations

A	$\neg A$	$\sim A$	$\sim \neg A$	$\sim \sim A$	$\neg \neg A$	$\neg \sim A$
1	0	0	1	1	1	1
u	u	1	1	0	u	0
0	1	1	0	0	0	0

Translation in natural language:
$v(A)=1 \mathrm{gdw} . A$ is true
$v(\neg A)=1 \mathrm{gdw} . A$ is false
$v(\sim A)=1 \mathrm{gdw} . A$ is not true
$v(\sim \neg A)=1 \mathrm{gdw} . A$ is not false

First-order many-valued logic

1. Syntax

- non-logical symbols (domain-specific)
\Rightarrow terms, atomic formulas
- logical symbols \mathcal{F}, quantifiers
\Rightarrow formulae

Signature;Variables; Terms/Atoms/Formulae

Signature: $\Sigma=(\Omega, \Pi)$, where

- Ω : set of function symbols f with arity $n \geq 0$, written f / n,
- Π : set of predicate symbols p with arity $m \geq 0$, written p / m.

Variables: Countably infinite set X.
Terms: As in classical logic
Atoms: (atomic formulas) over Σ are formed according to this syntax:
$A, B \quad::=p\left(s_{1}, \ldots, s_{m}\right) \quad, p / m \in \Pi$

Formulae:

\mathcal{F} set of logical operations; $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k}\right\}$ set of quantifiers
$F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

F, G, H	c	($c \in \mathcal{F}$, constant)
	A	(atomic formula)
	$f\left(F_{1}, \ldots, F_{n}\right)$	$(f \in \mathcal{F}$ with arity $n)$
	$Q \times F$	$(Q \in \mathcal{Q}$ is a quantifier)

Semantics

- Truth values; Interpretation of logical symbols $M=\{1, \ldots, m\}$ set of truth values; $D \subseteq M$ set of designated truth values.
- Truth tables for the logical operations: $\left\{f_{M}: M^{n} \rightarrow M \mid f / n \in \mathcal{F}\right\}$
- "Truth tables" for the quantifiers: $\left\{Q_{M}: \mathcal{P}(M) \rightarrow M \mid Q \in \mathcal{Q}\right\}$
- Interpretation of non-logical variables: M-valued Σ-structure

$$
\mathcal{A}=\left(U,\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}}: U^{m} \rightarrow M\right)_{p / m \in \Pi}\right)
$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A}.

- Variable assignments: $\beta: X \rightarrow \mathcal{A}$ and extensions to terms $\mathcal{A}(\beta): T_{\Sigma} \rightarrow \mathcal{A}$ as in classical logic.
- Truth value of a formula in \mathcal{A} with respect to $\beta \mathcal{A}(\beta): \mathrm{F}_{\Sigma}(X) \rightarrow M$ is defined inductively as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(c) & =c_{M} \\
\mathcal{A}(\beta)\left(p\left(s_{1}, \ldots, s_{n}\right)\right) & =p_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right) \in M \\
\mathcal{A}(\beta)\left(f\left(F_{1}, \ldots, F_{n}\right)\right) & =f_{M}\left(\mathcal{A}(\beta)\left(F_{1}\right), \ldots, \mathcal{A}(\beta)\left(F_{n}\right)\right) \\
\mathcal{A}(\beta)(Q \times F) & =Q_{M}(\{\mathcal{A}(\beta[\times \mapsto a])(F) \mid a \in U\})
\end{aligned}
$$

First-order version of \mathcal{L}_{3}

$$
\begin{aligned}
& M=\{0, u, 1\}, \quad D=\{1\} \\
& \mathcal{F}=\{\vee, \wedge, \neg, \sim\} ; \quad \text { truth values as the propositional version } \\
& \mathcal{Q}=\{\forall, \exists\} \\
& \forall_{M}(S)=\left\{\begin{array}{ll}
1 & \text { if } S=\{1\} \\
0 & \text { if } 0 \in S \\
u & \text { otherwise }
\end{array} \quad \exists_{M}(S)= \begin{cases}1 & \text { if } 1 \in S \\
0 & \text { if } S=\{0\} \\
u & \text { otherwise }\end{cases} \right. \\
& \mathcal{A}(\beta)(\forall x F(x))=1 \quad \text { iff } \quad \text { for all } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=1 \\
& \mathcal{A}(\beta)(\forall x F(x))=0 \quad \text { iff } \quad \text { for some } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=0 \\
& \mathcal{A}(\beta)(\forall x F(x))=u \quad \text { otherwise } \\
& \mathcal{A}(\beta)(\exists x F(x))=1 \quad \text { iff } \quad \text { for some } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=1 \\
& \mathcal{A}(\beta)(\exists x F(x))=0 \quad \text { iff } \quad \text { for all } a \in U_{\mathcal{A}}, \quad \mathcal{A}(\beta[x \mapsto a])(F(x))=0 \\
& \mathcal{A}(\beta)(\forall x F(x))=u \quad \text { otherwise }
\end{aligned}
$$

Models, Validity, and Satisfiability

F is valid in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models F \quad: \Leftrightarrow \quad \mathcal{A}(\beta)(F) \in D
$$

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F)$:

$$
\mathcal{A} \models F \quad: \Leftrightarrow \quad \mathcal{A}, \beta \models F, \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

F is valid:

$$
\models F \quad: \Leftrightarrow \quad \mathcal{A} \models F, \text { for all } \mathcal{A} \in \Sigma \text {-alg }
$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$.
Otherwise F is called unsatisfiable.

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Goal: Define a version of implication ' \Rightarrow ' such that

$$
F \models G \text { iff } \models F \Rightarrow G
$$

Weak implication

The logical operations \supset and \equiv are introduced as defined operations:
Weak implication

$$
F \supset G:=\sim F \vee G
$$

Weak equivalence

$$
F \equiv G:=(F \supset G) \wedge(G \supset F)
$$

$F \supset G$	1	u	0
1	1	u	0
u	1	1	1
0	1	1	1

$F \equiv G$	1	u	0
1	1	u	0
u	u	1	1
0	0	1	1

Strong implication

The logical operations \rightarrow and \leftrightarrow are introduced as defined operations:
Strong implication

$$
F \rightarrow G:=\neg F \vee G
$$

Strong equivalence

$$
F \leftrightarrow G:=(F \rightarrow G) \wedge(G \rightarrow F)
$$

$F \rightarrow G$	1	u	0
1	1	u	0
u	1	u	u
0	1	1	1

$F \leftrightarrow G$	1	u	0
1	1	u	0
u	u	u	u
0	0	u	1

Comparisons

Implications

$A \supset B$	1	u	0
1	1	u	0
u	1	1	1
0	1	1	1

$A \rightarrow B$	1	u	0
1	1	u	0
u	1	u	u
0	1	1	1

Equivalences

$A \equiv B$	1	u	0
1	1	u	0
u	u	1	1
0	0	1	1

$A \leftrightarrow B$	1	u	0
1	1	u	0
u	u	u	u
0	0	u	1

Equivalences

$$
\begin{array}{rlrl}
A \supset B:=\sim A \vee B & A \rightarrow B:=\neg A \vee B \\
A \equiv B:=(A \supset B) \wedge(B \supset A) & A \leftrightarrow B:=(A \rightarrow B) \wedge(B \rightarrow A) \\
A \approx B:=(A \equiv B) \wedge(\neg A \equiv \neg B) & A \Leftrightarrow B:=(A \leftrightarrow B) \wedge(\neg A \leftrightarrow \neg B) \\
A \text { id } B:=\sim \sim(A \approx B) & &
\end{array}
$$

A	B	$A \equiv B$	$A \leftrightarrow B$	$A \approx B$	$A \Leftrightarrow B$	A id B
1	1	1	1	1	1	1
1	u	u	u	u	u	0
1	0	0	0	0	0	0
u	1	u	u	u	u	0
u	u	1	u	1	u	1
u	0	1	u	u	u	0
0	1	0	0	0	0	0
0	u	1	u	u	u	0
0	0	1	1	1	1	1

Some \mathcal{L}_{3} tautologies

$\neg \neg A$ id A
$\sim \sim A \equiv A$
$\neg \sim A \equiv A$
$\neg(A \vee B)$ id $\neg A \wedge \neg B$
$\neg(A \wedge B)$ id $\neg A \vee \neg B$
$\neg(\forall x A)$ id $\exists x \neg A$
$\neg(\exists x A)$ id $\forall x \neg A$
$\sim(\forall x A)$ id $\exists x \sim A$
$(A \wedge B) \vee C$ id $(A \vee C) \wedge(B \vee C)$
$(A \vee B) \wedge C$ id $(A \wedge C) \vee(B \wedge C)$
$\sim(A \vee B)$ id $\sim A \wedge \sim B$
$\sim(A \wedge B)$ id $\sim A \vee \sim B$
$\sim(\exists x A)$ id $\forall x \sim A$

No occurrence of \neg

Lemma. Let F be a formula which does not contain the strong negation \neg. Then the following are equivalent:
(1) F is an \mathcal{L}_{3}-tautology.
(2) F is a two-valued tautology (negation is identified with \sim)

Proof.
" \Rightarrow " Every \mathcal{L}_{3}-tautology is a 2 -valued tautology (the restriction of the operators \vee, \wedge, \sim to $\{0,1\}$ coincides with the Boolean operations \vee, \wedge, \neg).
" \Leftarrow " Assume that F is a two-valued tautology. Let \mathcal{A} be an \mathcal{L}_{3}-structure and $\beta: X \rightarrow \mathcal{A}$ be a valuation. We construct a two-valued structure \mathcal{A}^{\prime} from \mathcal{A}, which agrees with \mathcal{A} except for the fact that whenever $p_{\mathcal{A}}(\bar{x})=u$ we define $p_{\mathcal{A}^{\prime}}(\bar{x})=0$. Then $\mathcal{A}^{\prime}(\beta)(F)=1$. It can be proved that

$$
\begin{aligned}
& \mathcal{A}(\beta)(F)=1 \Rightarrow \mathcal{A}^{\prime}(\beta)(F)=1 \\
& \mathcal{A}(\beta)(F) \in\{0, u\} \Rightarrow \mathcal{A}^{\prime}(\beta)(F)=0 \\
& \text { Hence, } \mathcal{A}(\beta)(F)=1
\end{aligned}
$$

Exercises

1. Let F be a formula which does not contain \sim. Then F is not a tautology.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term $t, \forall x q(x) \supset q(x)[t / x]$ is an \mathcal{L}_{3}-tautology.
3. Show that $\forall x q(x) \rightarrow q(x)[t / x]$ is not a tautology.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term $t, \forall x q(x) \supset q(x)[t / x]$ is an \mathcal{L}_{3}-tautology.
3. Show that $\forall x q(x) \rightarrow q(x)[t / x]$ is not a tautology.

Solution. $q \rightarrow q$ is not a tautology.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology. true

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable. true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.
true
If $F \equiv G$ is a tautology and F is a non-tautology then G is a
non-tautology.
true
If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.
true
If $F \equiv G$ is a tautology and F is a non-tautology then G is a
non-tautology.
true
If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
false
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Functional completeness

Definition A family ($M,\left\{f_{M}: M^{n} \rightarrow M\right\}_{f \in \mathcal{F}}$) is called functionally complete if every function $g: M^{m} \rightarrow M$ can be expressed in terms of the functions $\left\{f_{M}: M^{n} \rightarrow M \mid f \in \mathcal{F}\right\}$.

Definition A many-valued logic with finite set of truth values M and logical operators \mathcal{F} is called functionally complete if for every function $g: M^{m} \rightarrow M$ there exists a propositional formula F of the logic such that for every $\mathcal{A}: \Pi \rightarrow M$
$g\left(\mathcal{A}\left(x_{1}\right), \ldots, \mathcal{A}\left(x_{m}\right)\right)=\mathcal{A}(F)$.

Example: Propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$

$P$$|$| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | R | $(P \vee Q)$ | $\neg P$ | $(\neg P \wedge Q)$ | $((\neg P \wedge Q) \vee R)$ | F |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 |

Example: Propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

DNF: $\quad(\neg P \wedge Q \wedge \neg R) \vee(\neg P \wedge Q \wedge R) \vee(P \wedge \neg Q \wedge R) \vee(P \wedge Q \wedge R)$

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every $g:\{0,1\}^{m} \rightarrow\{0,1\}$ let:
$F=\bigvee_{\left(a_{1}, \ldots, a_{m}\right) \in\{0,1\}}\left(c_{g}\left(a_{1}, \ldots, a_{m}\right) \wedge P_{1}^{a_{1}} \wedge \cdots \wedge P_{m}^{a_{m}}\right)$
where $P^{a}= \begin{cases}P & \text { if } a=1 \\ \neg P & \text { if } a=0\end{cases}$
(Then clearly $\mathcal{A}(P)^{a}=1$ iff $\mathcal{A}(P)=$ a, \quad i.e. $1^{1}=0^{0}=1 ; 1^{0}=0^{1}=0$.)
It can be easily checked that for every $\mathcal{A}:\left\{P_{1}, \ldots, P_{m}\right\} \rightarrow\{0,1\}$ we have:
$g\left(\mathcal{A}\left(P_{1}\right), \ldots, \mathcal{A}\left(P_{m}\right)\right)=\mathcal{A}(F)$.

Functional completeness

Theorem. The logic \mathcal{L}_{3} is not functionally complete.

Proof. If F is a formula with n propositional variables in the language of \mathcal{L}_{3} with operators $\{\neg, \sim, \vee, \wedge\}$ then for the valuation $\mathcal{A}: \Pi=\left\{P_{1}, \ldots, P_{n}\right\} \rightarrow$ $\{0, u, 1\}$ with $\mathcal{A}\left(P_{i}\right)=1$ for all i we have: $\mathcal{A}(F) \neq u$.

Therefore: If g is a function which takes value u when the arguments are in $\{0,1\}$ then there is no formula F such that $g\left(\mathcal{A}\left(P_{1}\right), \ldots, \mathcal{A}\left(P_{n}\right)\right)=\mathcal{A}(F)$ for all $\mathcal{A}: \Pi \rightarrow\{0, u, 1\}$.

Theorem. \mathcal{L}_{3}^{+}, obtained from \mathcal{L}_{3} by adding one more constant operation u (which takes always value u) is functionally complete.

A simple criterion for functional completeness

Theorem. An m-valued logic with set of truth values $M=\left\{w_{1}, \ldots, w_{m}\right\}$ and logical operations \mathcal{F} with truth tables $\left\{f_{M} \mid f \in \mathcal{F}\right\}$ in which the functions:

- $\min (x, y), \max (x, y)$,
- $J_{k}(x)= \begin{cases}1 \text { (maximal element) } & \text { if } k=x \\ 0 \text { (minimal element) } & \text { otherwise }\end{cases}$
- all constant functions $c_{k}^{n}\left(x_{1}, \ldots, x_{n}\right)=k$
can be expressed in terms of the functions $\left\{f_{M} \mid f \in \mathcal{F}\right\}$
is functionally complete.
Proof. Let $g: M^{n} \rightarrow M$.

$$
\begin{aligned}
& g\left(x_{1}, \ldots, x_{n}\right)= \\
& \quad \max \left\{\min \left\{c_{g\left(a_{1}, \ldots, a_{n}\right)}^{n}, J_{a_{1}}\left(x_{1}\right), \ldots, J_{a_{n}}\left(x_{n}\right)\right\} \mid\left(a_{1}, \ldots a_{n}\right) \in M^{n}\right\}
\end{aligned}
$$

Functional completeness of \mathcal{L}_{3}^{+}

Theorem. \mathcal{L}_{3}^{+}, obtained from \mathcal{L}_{3} by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

- We define $J_{1}, J_{u}, J_{0}:\{0, u, 1\} \rightarrow\{0, u, 1\}$ as follows:

$$
\begin{aligned}
& J_{0}(x)=\sim \sim \neg x \\
& J_{u}(x)=\sim x \wedge \sim \neg x \\
& J_{1}(x)=\sim \sim x
\end{aligned}
$$

x	$J_{0}(x)$	$J_{u}(x)$	$J_{1}(x)$
0	1	0	0
u	0	1	0
1	0	0	1

Functional completeness of \mathcal{L}_{3}^{+}

Theorem. \mathcal{L}_{3}^{+}, obtained from \mathcal{L}_{3} by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

- We define $J_{1}, J_{u}, J_{0}:\{0, u, 1\} \rightarrow\{0, u, 1\}$ as follows:

$$
\begin{aligned}
& J_{0}(x)=\sim \sim \neg x \\
& J_{u}(x)=\sim x \wedge \sim \neg x \\
& J_{1}(x)=\sim \sim x
\end{aligned}
$$

x	$J_{0}(x)$	$J_{u}(x)$	$J_{1}(x)$
0	1	0	0
u	0	1	0
1	0	0	1

- min and max are \wedge resp. \vee.

Functional completeness of \mathcal{L}_{3}^{+}

Theorem. \mathcal{L}_{3}^{+}, obtained from \mathcal{L}_{3} by adding one more constant operation u (which takes always value u) is functionally complete.
Proof

- We define $J_{1}, J_{u}, J_{0}:\{0, u, 1\} \rightarrow\{0, u, 1\}$ as follows:

$$
\begin{aligned}
& J_{0}(x)=\sim \sim \neg x \\
& J_{u}(x)=\sim x \wedge \sim \neg x \\
& J_{1}(x)=\sim \sim x
\end{aligned}
$$

x	$J_{0}(x)$	$J_{u}(x)$	$J_{1}(x)$
0	1	0	0
u	0	1	0
1	0	0	1

- min and max are \wedge resp. \vee.
- The constant operation u is in the language.
- The constant functions 0 and 1 are definable as follows:

$$
\begin{aligned}
& 1(x)=\sim x \vee \neg \sim x \\
& 0(x)=\sim(\sim x \vee \neg \sim x)
\end{aligned}
$$

Example

Let g the following binary function:

g	0	u	1
0	0	u	0
u	u	u	u
1	0	u	0

$$
\begin{aligned}
g\left(x_{1}, x_{2}\right)= & \left(u \wedge J_{0}\left(x_{1}\right) \wedge J_{u}\left(x_{2}\right)\right) \vee\left(u \wedge J_{u}\left(x_{1}\right) \wedge J_{0}\left(x_{2}\right)\right) \vee \\
& \left(u \wedge J_{u}\left(x_{1}\right) \wedge J_{u}\left(x_{2}\right)\right) \vee\left(u \wedge J_{u}\left(x_{1}\right) \wedge J_{0}\left(x_{2}\right)\right) \vee\left(u \wedge J_{1}\left(x_{1}\right) \wedge J_{u}\left(x_{2}\right)\right) \\
= & \left(u \wedge \sim \sim \neg x_{1} \wedge \sim x_{2} \wedge \sim \neg x_{2}\right) \vee\left(u \wedge \sim x_{1} \wedge \sim \neg x_{1} \wedge \sim \sim \neg x_{2}\right) \vee \\
& \left(u \wedge \sim x_{1} \wedge \sim \neg x_{1} \wedge \sim x_{2} \wedge \sim \neg x_{2}\right) \vee \ldots
\end{aligned}
$$

Post logics

$$
\begin{aligned}
& P_{m}=\{0,1, \ldots, m-1\} \\
& \mathcal{F}=\{\vee, s\} \\
& \vee_{P}(a, b)=\max (a, b) \\
& s_{P}(a)=a-1(\bmod m)
\end{aligned}
$$

Post logics

Theorem. The Post logics are functionally complete.
Proof:

1. \max is \vee_{P}
2. The functions $x-k(\bmod m)$ and $x+k(\bmod m)$ are definable $x-k=\underbrace{s(s(\ldots s}_{k \text { times }}(x)))(\bmod m)$
$x+k=x-(m-k)(\bmod m), 0<k<m$. $x+0=x$
3. $\min (x, y)=m-1-\max (m-1-x, m-1-y)$

Post logics

Theorem. The Post logics are functionally complete.
Proof:
4. All constants are definable

$$
\begin{aligned}
& T(x)=\max \{x, x-1, \ldots, x-m+1\} \\
& T(x)=m-1 \text { for all } x .
\end{aligned}
$$

The other constants are definable using s iterated $1,2, \ldots, m-1$ times.
5. $\quad T_{k}(x)=\max (\max [T(x)-1, x]-m+1, x+k)-m+1$ has the property that $T_{k}(x)= \begin{cases}0 & \text { if } x \neq m-1 \\ k & \text { if } x=m-1\end{cases}$
Then $J_{k}(x)=\max \left(T_{J_{k}(0)}(x+m-1), \ldots, T_{J_{k}(m-2)}(x+1), T_{J_{k}(m-1)}(x)\right)$.
in general, if $g(i)=k_{i}$ then $g(x)=\max \left(T_{k_{m-1}}(x), T_{k_{m-2}}(x+1), \ldots, T_{k_{0}}(x+(m-1))\right)$

Other many-valued logics

Łukasiewicz logics \mathcal{L}_{n}

- Set of truth values $M=\left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, 1\right\}$
- Logical operations: $\vee, \wedge, \neg, \Rightarrow$
- $V_{t_{n}}=\max$
- $\wedge_{\mathbf{t}_{n}}=\min$
- $\neg \mathfrak{t}_{n} x=1-x$
- $x \Rightarrow_{\mathfrak{L}_{n}} y=\min (1,1-x+y)$
- First-order version: $\mathcal{Q}=\{\forall, \exists\}$

Łukasiewicz logics

Łukasiewicz implication $x \Rightarrow_{Ł_{n}} y=\min (1,1-x+y)$
\mathcal{L}_{n}

\Rightarrow	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	\ldots	$\frac{n-2}{n-1}$	1
0	1	1	1	\ldots	1	1
$\frac{1}{n-1}$	$\frac{n-2}{n-1}$	1	1	\ldots	1	1
$\frac{2}{n-1}$	$\frac{n-3}{n-1}$	$\frac{n-2}{n-1}$	1	\ldots	1	1
\ldots						
1	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	\ldots	$\frac{n-2}{n-1}$	1

Belnap's 4-valued logic

\wedge, \vee : sup/inf in the truth ordering
$\sim\}=\{ \}, \quad \sim\{0,1\}=\{0,1\}, \quad \sim\{0\}=\{1\}, \quad \sim\{1\}=\{0\}$
Designated values:
Computer science: $D=\{\{1\}\}$
Other applications (e.g. information bases): $D=\{\{1\},\{0,1\}\}$

Proof Calculi and Automated reasoning

- Axiom systems \mapsto proofs
- Tableau calculi
- Resolution calculi

Proof Calculi/Inference systems and proofs

Inference systems 「 (proof calculi) are sets of tuples

$$
\left(F_{1}, \ldots, F_{n}, F_{n+1}\right), n \geq 0,
$$

called inferences or inference rules, and written
premises

Inferences with 0 premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in 「 of a formula F from a a set of formulas N (called assumptions) is a sequence F_{1}, \ldots, F_{k} of formulas where
(i) $F_{k}=F$,
(ii) for all $1 \leq i \leq k: F_{i} \in N$, or else there exists an inference $\left(F_{i_{1}}, \ldots, F_{i_{n_{i}}}, F_{i}\right)$ in Γ, such that $0 \leq i_{j}<i$, for $1 \leq j \leq n_{i}$.

Soundness and Completeness

Provability $\vdash_{\ulcorner }$of F from N in Γ :
$N \vdash_{\Gamma} F: \Leftrightarrow$ there exists a proof Γ of F from N.
Γ is called sound $: \Leftrightarrow$

$$
\frac{F_{1} \ldots F_{n}}{F} \in \Gamma \Rightarrow F_{1}, \ldots, F_{n} \models F
$$

「 is called complete $: \Leftrightarrow$

$$
N \models F \Rightarrow N \vdash_{\ulcorner } F
$$

Γ is called refutationally complete $: \Leftrightarrow$

$$
N \models \perp \Rightarrow N \vdash_{\ulcorner\perp}
$$

Axiom systems

For \mathcal{L}_{3} : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):
$A_{1}:(A \Rightarrow(B \Rightarrow A))$
$A_{2}:(A \Rightarrow B) \Rightarrow((B \Rightarrow C) \Rightarrow(A \Rightarrow C))$
$A_{3}:(\neg A \Rightarrow \neg B) \Rightarrow(B \Rightarrow A)$
$A_{4}:((A \Rightarrow \neg A) \Rightarrow A) \Rightarrow A$
Inference rules:
Moduls Ponens: $\frac{A \quad A \Rightarrow B}{B}$

Axiom systems

For \mathcal{L}_{3} : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):
$x \wedge y=x \cdot(x \Rightarrow y)$,
where $x \cdot y=\neg(x \Rightarrow \neg y)$

Proof calculi

Main disadvantage:
 New proof calculus for each many-valued logic.

Goal:

Uniform methods for checking validity/satisfiability of formulae.

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Many-valued logic:
Task: prove that F is valid (i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \backslash D$:

- assume $F \in M \backslash D$; derive a contradiction.

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Many-valued logic:
Task: prove that F is valid (i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \backslash D$:

- assume $F \in M \backslash D$; derive a contradiction.

Problem: How do we express the fact that $F \in M \backslash D$

1) $\bigvee_{v \in M \backslash D}(F=v)$
2) more economical notation?

Automated reasoning

Idea: Use signed formulae

- F^{\vee}, where F is a formula and $v \in M$

$$
\mathcal{A}, \beta \models F^{v} \text { iff } \mathcal{A}(\beta)(F)=v .
$$

- $S: F$, where F is a formula and $\emptyset \neq S \subseteq M$ (set of truth values) $\mathcal{A}, \beta \models S: F$ iff $\mathcal{A}(\beta)(F) \in S$.

Semantic tableaux

For every $\emptyset \neq S \subseteq M$ and every logical operator f we have a tableau rule:

$$
\frac{S: f\left(F_{1}, \ldots, F_{n}\right)}{T\left(F_{1}, \ldots, F_{n}\right)}
$$

where $T\left(A_{1}, \ldots, A_{n}\right)$ is a finite extended tableau containing only formulae of the form $S_{i}: F_{i}$.

Informally: Exhaustive list of conditions which ensure that the value of $f\left(F_{1}, \ldots, F_{n}\right)$ is in S.

Example

Let $Ł_{5}$ be the 5 -valued $Ł u k a s i e w i c z$ logic with $M=\{0,1,2,3,4\}$.

\Rightarrow	0	1	2	3	4
0	4	4	4	4	4
1	3	4	4	4	4
2	2	3	4	4	4
3	1	2	3	4	4
4	0	1	2	3	4

\[

\]

Labelling sets

Let $V \subseteq \mathcal{P}(M)$ be the set of all sets of truth values which are used for labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so $V \neq \mathcal{P}(M)$.
2. Proof by contradiction:

Goal: Prove that F is valid, i.e. $\mathcal{A}(\beta)(F) \in D$.
We start from $(M \backslash D)$: F and build the tableau
\Rightarrow We assume that $(M \backslash D) \in V$.
3. Need to make sure that the new signs introduced by the tableau rules are in V.

Tableau rules: Soundness

$$
\frac{S: f\left(F_{1}, \ldots, F_{n}\right)}{T\left(F_{1}, \ldots, F_{n}\right)}
$$

where $T\left(F_{1}, \ldots, F_{n}\right)$ is a finite extended tableau containing only formulae of the form $S_{i}: F_{i}$.

$S: f\left(F_{1}, \ldots, F_{n}\right)$			
$S_{11}: C_{11}$	$S_{21}: C_{21}$	\ldots	$S_{q 1}: C_{q 1}$
\ldots	\ldots		\ldots
$S_{1 k_{1}}: C_{1 k_{1}}$	$S_{2 k_{2}}: C_{2 k_{2}}$		$S_{q k^{\prime}}: C_{q k^{\prime}}$

where $C_{i, j} \in\left\{F_{1}, \ldots, F_{n}\right\}$

Tableau rules: Soundness

$$
\frac{S: f\left(F_{1}, \ldots, F_{n}\right)}{T\left(F_{1}, \ldots, F_{n}\right)}
$$

where $T\left(F_{1}, \ldots, F_{n}\right)$ is a finite extended tableau containing only formulae of the form $S_{i}: F_{i}$.

$S: f\left(F_{1}, \ldots, F_{n}\right)$			
$S_{11}: C_{11}$	$S_{21}: C_{21}$	\ldots	$S_{q 1}: C_{q 1}$
\ldots	\ldots		\ldots
$S_{1 k_{1}}: C_{1 k_{1}}$	$S_{2 k_{2}}: C_{2 k_{2}}$		$S_{q k^{\prime}}: C_{q k^{\prime}}$

where $C_{i, j} \in\left\{F_{1}, \ldots, F_{n}\right\}$

For every $\mathcal{A}, \beta: \mathcal{A}(\beta)(F) \in S$ then there exists i such that for all j : $\mathcal{A}(\beta)\left(C_{i j}\right) \in S_{i j}$.

Tableau rules: Soundness

$S: f\left(F_{1}, \ldots, F_{n}\right)$			
$S_{11}: C_{11}$	$S_{21}: C_{21}$	\ldots	$S_{q 1}: C_{q 1}$
\ldots	\ldots		\ldots
$S_{1 k_{1}}: C_{1 k_{1}}$	$S_{2 k_{2}}: C_{2 k_{2}}$		$S_{q k^{\prime}}: C_{q k^{\prime}}$

where $C_{i, j} \in\left\{F_{1}, \ldots, F_{n}\right\}$

Every model of $S: f\left(F_{1}, \ldots, F_{n}\right)$ is also a model of the formulae on one of the branches

If there is no expansion rule for a premise: premise is unsatisfiable $(\mathcal{A}(\beta)(F) \notin S$ for all $\mathcal{A}, \beta)$.
If $f\left(F_{1}, \ldots, F_{n}\right)$ satisfiable then there is an expansion rule.

\mathcal{L}_{3} : Tableau rules for \wedge

$\{1\} A \wedge B$
$\{1\} A$

$\{1\} B$$~ \frac{\{u\} A \wedge B}{\{u\} A}$| $\{u\} B \mid\{u\} A$ |
| :---: |
| $\{1\} B\|\{1\} A\|\{u\} B$ |$\frac{\{0\} A \wedge B}{\{0\} A \mid\{0\} B} \frac{\{u, 0\} A \wedge B}{\{u, 0\} A \mid\{u, 0\} B}$

\mathcal{L}_{3} : Tableau rules for v

$$
\begin{aligned}
& \\
& \frac{\{u, 0\} A \vee B}{\{u, 0\} A} \\
& \{u, 0\} B
\end{aligned}
$$

\mathcal{L}_{3} : Tableau rules for \neg, \sim

$$
\begin{array}{cccc}
\frac{\{1\} \sim A}{\{u, 0\} A} & \frac{\{0\} \sim A}{\{1\} A} & \frac{\{u\} \sim A}{\{u, 0\} \sim A} \\
\frac{\{1\} \neg A}{\{0\} A} & \frac{\{0\} \neg A}{\{1\} A} & \frac{\{u\} \neg A}{\{u\} A} & \frac{\{u, 0\} \neg A}{\{1\} A \mid\{u\} A}
\end{array}
$$

\mathcal{L}_{3} : Tableau rules for \supset

$$
\begin{array}{ccccc}
\frac{\{1\} A \supset B}{\{u, 0\} A \mid\{1\} B} & \begin{array}{cc}
\{0\} A \supset B & \{u\} A \supset B \\
& \{1\} A \\
& \\
& \{0\} B
\end{array} & \{u, 0\} A \supset B & & \{1\} \in B \\
& \{u, 0\} B
\end{array}
$$

\mathcal{L}_{3} : Tableau rules for \exists

$$
\frac{\{1\} \exists x A(x)}{\{1\} A\left(f\left(y_{1}, \ldots, y_{k}\right)\right)} \frac{\{0\} \exists x A(x)}{\{0\} A(z)} \frac{\{u\} \exists x A(x)}{\{u\} A\left(f\left(y_{1}, \ldots y_{k}\right)\right)} \frac{\{u, 0\} \exists x A(x)}{\{u, 0\} A(z)}
$$

where

- z is a new free variable
- y_{1}, \ldots, y_{k} are the free variables in $\exists x A(x)$
- f is a new function symbol

\mathcal{L}_{3} : Tableau rules for \forall

$$
\begin{aligned}
& \frac{\{1\} \forall x A(x)}{\{1\} A(z)} \frac{\{0\} \forall x A(x)}{\{0\} A\left(f\left(y_{1}, \ldots, y_{k}\right)\right.} \frac{\{u\} \forall x A(x)}{\{u\} A\left(f\left(y_{1}, \ldots y_{k}\right)\right)}\{u, 0\} \forall x A(x) \\
&\{u, 0\} A\left(f\left(y_{1}, \ldots, y_{k}\right)\right) \\
&\{u, 1\} A(z)
\end{aligned}
$$

where

- z is a new free variable
- y_{1}, \ldots, y_{k} are the free variables in $\forall x A(x)$
- f is a new function symbol

Tableaux

A tableau for a finite set For of signed formulae is constructed as follows:

- A linear tree, in which each formula in For occurs once is a tableau.
- Let T be a tableau for For und P a path in T, which contains a signed formula $S: F$.

Assume that there exists a tableau rule with premise $S: F$. If E_{1}, \ldots, E_{n} are the possible conclusions of the tableau rule (under the corresponding restrictions in case of quantified formulae) then T is exteded with n linear subtrees containing the signed formulae from E_{i} (respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

Closed Tableaux

A path P in a tableau T is closed if:

- P contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_{1}: F_{1}, \ldots, S_{k}: F_{k}$ occurring of the branch such that:
- $F_{1} \sigma=\cdots=F_{n} \sigma$
- $S_{1} \cap \cdots \cap S_{n}=\emptyset$, or
- P contains a signed formula $S: F$ for which no expansion rule can be applied and F is not atomic.

A path which is not closed is called open.

Closed Tableaux

A path P in a tableau T is closed if:

- P contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_{1}: F_{1}, \ldots, S_{k}: F_{k}$ occurring of the branch such that:
- $F_{1} \sigma=\cdots=F_{n} \sigma$
- $S_{1} \cap \cdots \cap S_{n}=\emptyset$, or
- P contains a signed formula $S: F$ for which no expansion rule can be applied and F is not atomic.

A path which is not closed is called open.
A tableau is closed if every path can be closed with the same substitution.
Otherwise the tableau is called open.

Soundness and completeness

Given an signature Σ, by $\Sigma^{\text {sko }}$ we denote the result of adding infinitely many new Skolem function symbols which we may use in the rules for quantifiers.
 over \mathcal{A}.
T is called (\mathcal{A}, β)-valid, if there is a path P_{β} in T such that $\mathcal{A}, \beta \models F$, for each formula F on P_{β}.
T is called satisfiable if there exists a structure \mathcal{A} such that for each assignment β the tableau T is (\mathcal{A}, β)-valid.
(This implies that we may choose P_{β} depending on β.)

Soundness and completeness

Theorem (Soundness of the tableau calculus for \mathcal{L}_{3})
Let F be a \mathcal{L}_{3}-formula without free variables. If there exists a closed tableau T for $\{U, F\} F$, then F is an \mathcal{L}_{3}-tautology (it is valid).

Theorem (Refutational completeness)
Let F be a \mathcal{L}_{3}-tautology. Then we can construct a closed tableau for $\{U, F\} F$. (The order in which we apply the expansion rules is not important).

