Non-classical logics

Lecture 6: Many-valued logics (Part 2) 20.11.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation Syntax Semantics

1 Syntax

- propositional variables Π
- logical operations ${\cal F}$

Propositional Formulas $F_{\Pi}^{\mathcal{F}}$ is the set of propositional formulas over Π defined as follows:

F, G, H::=c(c constant logical operator)| $P, P \in \Pi$ (atomic formula)| $f(F_1, \dots, F_n)$ $(f \in \mathcal{F} \text{ with arity } n)$

Semantics

We assume that a set $M = \{w_1, w_2, \ldots, w_m\}$ of truth values is given. We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators

 $f \in \mathcal{F}$ with arity $n \mapsto f_M : M^n \to M$ (truth tables for the operations in \mathcal{F})

2. The meaning of the propositional variables

A Π -valuation is a map $\mathcal{A} : \Pi \to M$.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols $(M, \{f_M\}_{f \in \mathcal{F}})$, any Π -valuation $\mathcal{A} : \Pi \to M$, can be extended to $\mathcal{A}^* : \Sigma$ -formulas $\to M$.

 $\mathcal{A}^*(c) = c_M$ (for every constant operator $c \in \mathcal{F}$) $\mathcal{A}^*(P) = \mathcal{A}(P)$ $\mathcal{A}^*(f(F_1, \dots, F_n)) = f_M(\mathcal{A}^*(F_1), \dots, \mathcal{A}^*(F_n))$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^* .

Models, Validity, and Satisfiability

 $M = \{w_1, \ldots, w_m\}$ set of truth values $D \subseteq M$ set of designated truth values $\mathcal{A} : \Pi \to M$.

F is valid in \mathcal{A} (\mathcal{A} is a model of *F*; *F* holds under \mathcal{A}):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}(F) \in D$$

F is valid (or is a tautology):

 $\models F : \Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi \text{-valuations } \mathcal{A}$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$. Otherwise *F* is called unsatisfiable (or contradictory).

The logic \mathcal{L}_3

Set of truth values: $M = \{1, u, 0\}$.

Designated truth values: $D = \{1\}$.

Logical operators: $\mathcal{F} = \{ \lor, \land, \neg, \sim \}.$

Truth tables for the operators

\vee	0	u	1
0	0	u	1
u	u	u	1
1	1	1	1

\wedge	0	u	1
0	0	0	0
u	0	u	u
1	0	u	1

 $v(F \land G) = \min(v(F), v(G))$ $v(F \lor G) = \max(v(F), v(G))$

Under the assumption that 0 < u < 1.

Truth tables for negations

A	$\neg A$	\sim A	$\sim \neg A$	$\sim \sim A$	$\neg \neg A$	$\neg \sim A$
1	0	0	1	1	1	1
u	и	1	1	0	и	0
0	1	1	0	0	0	0

Translation in natural language:

v(A) = 1 gdw. A is true $v(\neg A) = 1$ gdw. A is false $v(\sim A) = 1$ gdw. A is not true $v(\sim \neg A) = 1$ gdw. A is not false

First-order many-valued logic

1. Syntax

- non-logical symbols (domain-specific)
 ⇒ terms, atomic formulas
- logical symbols \mathcal{F} , quantifiers \Rightarrow formulae

Signature; Variables; Terms/Atoms/Formulae

Signature: $\Sigma = (\Omega, \Pi)$, where

- Ω : set of function symbols f with arity $n \ge 0$, written f/n,
- Π : set of predicate symbols p with arity $m \ge 0$, written p/m.

Variables: Countably infinite set X.

Terms: As in classical logic

Atoms: (atomic formulas) over Σ are formed according to this syntax:

A, B ::=
$$p(s_1, ..., s_m)$$
 , $p/m \in \Pi$

Formulae:

 \mathcal{F} set of logical operations; $\mathcal{Q} = \{Q_1, \ldots, Q_k\}$ set of quantifiers

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

$$F, G, H$$
::= c $(c \in \mathcal{F}, \text{ constant})$ $|$ A (atomic formula) $|$ $f(F_1, \ldots, F_n)$ $(f \in \mathcal{F} \text{ with arity } n)$ $|$ $Q \times F$ $(Q \in \mathcal{Q} \text{ is a quantifier})$

Semantics

- Truth values; Interpretation of logical symbols M = {1,..., m} set of truth values; D ⊆ M set of designated truth values.
 - Truth tables for the logical operations: $\{f_M : M^n \to M | f/n \in \mathcal{F}\}$
 - "Truth tables" for the quantifiers: $\{Q_M : \mathcal{P}(M) \to M | Q \in \mathcal{Q}\}$
- Variable assignments: β : X → A and extensions to terms A(β) : T_Σ → A as in classical logic.
- Truth value of a formula in A with respect to β A(β) : F_Σ(X) → M is defined inductively as follows:

$$egin{aligned} &\mathcal{A}(eta)(c)=c_{\mathcal{M}}\ &\mathcal{A}(eta)(p(s_{1},\ldots,s_{n}))=p_{\mathcal{A}}(\mathcal{A}(eta)(s_{1}),\ldots,\mathcal{A}(eta)(s_{n}))\in\mathcal{M}\ &\mathcal{A}(eta)(f(F_{1},\ldots,F_{n}))=f_{\mathcal{M}}(\mathcal{A}(eta)(F_{1}),\ldots,\mathcal{A}(eta)(F_{n}))\ &\mathcal{A}(eta)(QxF)=Q_{\mathcal{M}}(\{\mathcal{A}(eta[x\mapsto a])(F)\mid a\in U\}) \end{aligned}$$

First-order version of \mathcal{L}_3

 $M = \{0, u, 1\}, \quad D = \{1\}$ $\mathcal{F} = \{ \lor, \land, \neg, \sim \};$ truth values as the propositional version $\mathcal{Q} = \{ \forall, \exists \}$ $\forall_M(S) = \begin{cases} 1 & \text{if } S = \{1\} \\ 0 & \text{if } 0 \in S \\ \mu & \text{otherwise} \end{cases} \quad \exists_M(S) = \begin{cases} 1 & \text{if } 1 \in S \\ 0 & \text{if } S = \{0\} \\ \mu & \text{otherwise} \end{cases}$ $\mathcal{A}(\beta)(\forall x F(x)) = 1$ iff for all $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 1$ $\mathcal{A}(\beta)(\forall xF(x)) = 0$ iff for some $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 0$ $\mathcal{A}(\beta)(\forall xF(x)) = u$ otherwise $\mathcal{A}(\beta)(\exists xF(x)) = 1$ iff for some $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 1$ $\mathcal{A}(\beta)(\exists xF(x)) = 0$ iff for all $a \in U_{\mathcal{A}}$, $\mathcal{A}(\beta[x \mapsto a])(F(x)) = 0$ $\mathcal{A}(\beta)(\forall x F(x)) = u$ otherwise

Models, Validity, and Satisfiability

F is valid in A under assignment β :

$$\mathcal{A}, \beta \models F : \Leftrightarrow \mathcal{A}(\beta)(F) \in D$$

F is valid in \mathcal{A} (\mathcal{A} is a model of F):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}, \beta \models F$$
, for all $\beta \in X \to U_{\mathcal{A}}$

F is valid:

$$\models$$
 F : \Leftrightarrow $\mathcal{A} \models$ *F*, for all $\mathcal{A} \in \Sigma$ -alg

F is called satisfiable iff there exist A and β such that $A, \beta \models F$. Otherwise *F* is called unsatisfiable.

$N \models F : \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}(\beta)(G) \in D$, for all $G \in N$, then $\mathcal{A}(\beta)(F) \in D$.

 $N \models F : \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$: if $\mathcal{A}(\beta)(G) \in D$, for all $G \in N$, then $\mathcal{A}(\beta)(F) \in D$.

Goal: Define a version of implication ' \Rightarrow ' such that

 $F \models G \text{ iff } \models F \Rightarrow G$

Weak implication

The logical operations \supset and \equiv are introduced as defined operations:

Weak implication

$$F \supset G := \sim F \lor G$$

Weak equivalence

$$F \equiv G := (F \supset G) \land (G \supset F)$$

Strong implication

The logical operations \rightarrow and \leftrightarrow are introduced as defined operations:

Strong implication

 $F \rightarrow G := \neg F \lor G$

Strong equivalence

$$F \leftrightarrow G := (F \rightarrow G) \land (G \rightarrow F)$$

$F \rightarrow G$	1	и	0	$F \leftrightarrow G$	1	и	0
1	1	U	0	1	1	и	0
u	1	u	u	и	u	u	и
0	1	1	1	0	0	u	1

Comparisons

Implications

$A \supset B$	1	и	0
1	1	и	0
и	1	1	1
0	1	1	1

$A \rightarrow B$	1	и	0
1	1	и	0
u	1	и	и
0	1	1	1

Equivalences

$A \equiv B$	1	u	0	
1	1	и	0	
и	u	1	1	
0	0	1	1	

$A \leftrightarrow B$	1	и	0
1	1	и	0
и	u	и	u
0	0	и	1

Equivalences

$A \supset B := \sim A \lor B$	$A \rightarrow B := -$	$A \lor B$
$A \equiv B := (A \supset B) \land (B)$	$B \supset A)$	$A \leftrightarrow B := (A o B) \wedge (B o A)$
$Approx B:=(A\equiv B)\wedge (-$	$\neg A \equiv \neg B)$	$A \Leftrightarrow B := (A \leftrightarrow B) \land (\neg A \leftrightarrow \neg B)$
A id $B:= \sim \sim (A \approx B)$	3)	

A	В	$A \equiv B$	$A \leftrightarrow B$	$A \approx B$	$A \Leftrightarrow B$	A id B
1	1	1	1	1	1	1
1	и	и	и	и	и	0
1	0	0	0	0	0	0
и	1	и	и	и	и	0
u	и	1	и	1	и	1
u	0	1	и	и	и	0
0	1	0	0	0	0	0
0	и	1	и	и	и	0
0	0	1	1	1	1	1

Some \mathcal{L}_3 tautologies

 $\neg \neg A \text{ id } A \qquad (A \land B) \lor C \text{ id } (A \lor C) \land (B \lor C)$ $\sim \sim A \equiv A \qquad (A \lor B) \land C \text{ id } (A \land C) \lor (B \land C)$ $\neg \sim A \equiv A \qquad (A \lor B) \text{ id } \sim A \land \sim B$ $\neg (A \land B) \text{ id } \neg A \land \neg B \qquad \sim (A \lor B) \text{ id } \sim A \land \sim B$ $\neg (A \land B) \text{ id } \neg A \lor \neg B \qquad \sim (A \land B) \text{ id } \sim A \lor \sim B$ $\neg (\forall xA) \text{ id } \exists x \neg A \qquad \sim (\forall xA) \text{ id } \exists x \sim A$ $\neg (\exists xA) \text{ id } \forall x \neg A \qquad \sim (\exists xA) \text{ id } \forall x \sim A$

Lemma. Let *F* be a formula which does not contain the strong negation \neg . Then the following are equivalent:

(1) F is an \mathcal{L}_3 -tautology.

(2) F is a two-valued tautology (negation is identified with \sim)

Proof.

" \Rightarrow " Every \mathcal{L}_3 -tautology is a 2-valued tautology (the restriction of the operators \lor, \land, \sim to $\{0, 1\}$ coincides with the Boolean operations \lor, \land, \neg).

" \Leftarrow " Assume that *F* is a two-valued tautology. Let *A* be an *L*₃-structure and $\beta : X \to A$ be a valuation. We construct a two-valued structure *A'* from *A*, which agrees with *A* except for the fact that whenever $p_A(\overline{x}) = u$ we define $p_{A'}(\overline{x}) = 0$. Then $A'(\beta)(F) = 1$. It can be proved that $A(\beta)(F) = 1 \Rightarrow A'(\beta)(F) = 1$ $A(\beta)(F) \in \{0, u\} \Rightarrow A'(\beta)(F) = 0$. Hence, $A(\beta)(F) = 1$.

1. Let *F* be a formula which does not contain \sim . Then *F* is not a tautology.

1. Let F be a formula which does not contain \sim . Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

1. Let F be a formula which does not contain \sim . Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

- 2. Prove that for every term t, $\forall xq(x) \supset q(x)[t/x]$ is an \mathcal{L}_3 -tautology.
- 3. Show that $\forall xq(x) \rightarrow q(x)[t/x]$ is not a tautology.

1. Let *F* be a formula which does not contain \sim . Then *F* is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

- 2. Prove that for every term t, $\forall xq(x) \supset q(x)[t/x]$ is an \mathcal{L}_3 -tautology.
- 3. Show that $\forall xq(x) \rightarrow q(x)[t/x]$ is not a tautology. Solution. $q \rightarrow q$ is not a tautology.

4. Which of the following statements are true? If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

true

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

true

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued. false

F is a non-tautology iff for every 3-valued structure, \mathcal{A} and every valuation β , $\mathcal{A}(\beta)(F) \neq 1$.

Definition A family $(M, \{f_M : M^n \to M\}_{f \in \mathcal{F}})$ is called functionally complete if every function $g : M^m \to M$ can be expressed in terms of the functions $\{f_M : M^n \to M \mid f \in \mathcal{F}\}.$

Definition A many-valued logic with finite set of truth values M and logical operators \mathcal{F} is called functionally complete if for every function $g: M^m \to M$ there exists a propositional formula F of the logic such that for every $\mathcal{A}: \Pi \to M$

 $g(\mathcal{A}(x_1),\ldots,\mathcal{A}(x_m))=\mathcal{A}(F).$

Example: Propositional logic

$F: (P \lor Q) \land ((\neg P \land Q) \lor R)$								
	Ρ	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F
_	0	0	0	0	1	0	0	0
	0	0	1	0	1	0	1	0
	0	1	0	1	1	1	1	1
	0	1	1	1	1	1	1	1
	1	0	0	1	0	0	0	0
	1	0	1	1	0	0	1	1
	1	1	0	1	0	0	0	0
	1	1	1	1	0	0	1	1

Example: Propositional logic

F :	$(P \lor Q) \land ((\neg P \land Q) \lor R)$							
Р	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F	
0	0	0	0	1	0	0	0	
0	0	1	0	1	0	1	0	
0	1	0	1	1	1	1	1	
0	1	1	1	1	1	1	1	
1	0	0	1	0	0	0	0	
1	0	1	1	0	0	1	1	
1	1	0	1	0	0	0	0	
1	1	1	1	0	0	1	1	

Example: Propositional logic

$F: (P \lor Q) \land ((\neg P \land Q) \lor R)$								
	Ρ	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F
	0	0	0	0	1	0	0	0
	0	0	1	0	1	0	1	0
	0	1	0	1	1	1	1	1
	0	1	1	1	1	1	1	1
	1	0	0	1	0	0	0	0
	1	0	1	1	0	0	1	1
	1	1	0	1	0	0	0	0
	1	1	1	1	0	0	1	1

DNF: $(\neg P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every
$$g : \{0,1\}^m \to \{0,1\}$$
 let:
 $F = \bigvee_{(a_1,\ldots,a_m)\in\{0,1\}} (c_g(a_1,\ldots,a_m) \wedge P_1^{a_1} \wedge \cdots \wedge P_m^{a_m})$
where $P^a = \begin{cases} P & \text{if } a = 1 \\ \neg P & \text{if } a = 0 \end{cases}$
(Then clearly $\mathcal{A}(P)^a = 1$ iff $\mathcal{A}(P) = a$, i.e. $1^1 = 0^0 = 1; 1^0 = 0^1 = 0$.)
It can be easily checked that for every $\mathcal{A} : \{P_1,\ldots,P_m\} \to \{0,1\}$ we have:
 $g(\mathcal{A}(P_1),\ldots,\mathcal{A}(P_m)) = \mathcal{A}(F)$.

Theorem. The logic \mathcal{L}_3 is not functionally complete.

Proof. If *F* is a formula with *n* propositional variables in the language of \mathcal{L}_3 with operators $\{\neg, \sim, \lor, \land\}$ then for the valuation $\mathcal{A} : \Pi = \{P_1, \ldots, P_n\} \rightarrow \{0, u, 1\}$ with $\mathcal{A}(P_i) = 1$ for all *i* we have: $\mathcal{A}(F) \neq u$.

Therefore: If g is a function which takes value u when the arguments are in $\{0, 1\}$ then there is no formula F such that $g(\mathcal{A}(P_1), \ldots, \mathcal{A}(P_n)) = \mathcal{A}(F)$ for all $\mathcal{A} : \Pi \to \{0, u, 1\}$.

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

A simple criterion for functional completeness

Theorem. An *m*-valued logic with set of truth values $M = \{w_1, \ldots, w_m\}$ and logical operations \mathcal{F} with truth tables $\{f_M \mid f \in \mathcal{F}\}$ in which the functions:

• $\min(x, y)$, $\max(x, y)$,

•
$$J_k(x) = \begin{cases} 1 \text{ (maximal element)} & \text{if } k = x \\ 0 \text{ (minimal element)} & \text{otherwise} \end{cases}$$

• all constant functions $c_k^n(x_1, \ldots, x_n) = k$

can be expressed in terms of the functions $\{f_M \mid f \in \mathcal{F}\}$ is functionally complete.

Proof. Let
$$g : M^n \to M$$
.
 $g(x_1, ..., x_n) =$
 $\max\{\min\{c_{g(a_1,...,a_n)}^n, J_{a_1}(x_1), ..., J_{a_n}(x_n)\} \mid (a_1, ..., a_n) \in M^n\}$

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:

$$J_0(x) = \sim \sim \neg x$$

 $J_u(x) = \sim x \land \sim \neg x$
 $J_1(x) = \sim \sim x$

x	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:

$$J_0(x) = \sim \neg x$$

 $J_u(x) = \sim x \land \sim \neg x$
 $J_1(x) = \sim \sim x$

• min and max are \land resp. \lor .

x	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define $J_1, J_u, J_0 : \{0, u, 1\} \to \{0, u, 1\}$ as follows:

$$J_0(x) = \sim \sim \neg x$$

 $J_u(x) = \sim x \land \sim \neg x$
 $J_1(x) = \sim \sim x$

x	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

- min and max are \land resp. \lor .
- The constant operation u is in the language.
- The constant functions 0 and 1 are definable as follows:

$$1(x) = \sim x \lor \neg \sim x$$
$$0(x) = \sim (\sim x \lor \neg \sim x)$$

Example

Let g the following binary function:

g	0	и	1
0	0	и	0
и	и	и	и
1	0	и	0

$$g(x_1, x_2) = (u \land J_0(x_1) \land J_u(x_2)) \lor (u \land J_u(x_1) \land J_0(x_2)) \lor (u \land J_u(x_1) \land J_u(x_2)) \lor (u \land J_u(x_1) \land J_0(x_2)) \lor (u \land J_1(x_1) \land J_u(x_2)) = (u \land \sim \sim \neg x_1 \land \sim x_2 \land \sim \neg x_2) \lor (u \land \sim x_1 \land \sim \neg x_1 \land \sim \sim \neg x_2) \lor (u \land \sim x_1 \land \sim \neg x_1 \land \sim x_2 \land \sim \neg x_2) \lor \dots$$

Post logics

$$egin{aligned} P_m &= \{0, 1, \ldots, m-1\} \ \mathcal{F} &= \{ee, s\} \ ee_P(a, b) &= \max(a, b) \ s_P(a) &= a-1 \pmod{m} \end{aligned}$$

Theorem. The Post logics are functionally complete.

Proof:

1. max is \vee_P

2. The functions
$$x - k \pmod{m}$$
 and $x + k \pmod{m}$ are definable
 $x - k = \underbrace{s(s(...s(x)))}_{k \text{ times}} \pmod{m}$
 $x + k = x - (m - k) \pmod{m}, 0 < k < m.$
 $x + 0 = x$

3.
$$\min(x, y) = m - 1 - \max(m - 1 - x, m - 1 - y)$$

Theorem. The Post logics are functionally complete.

Proof:

4. All constants are definable

$$T(x) = max\{x, x - 1, ..., x - m + 1\}$$

 $T(x) = m - 1$ for all x.

The other constants are definable using s iterated 1, 2, ..., m - 1 times.

5.
$$T_k(x) = \max(\max[T(x) - 1, x] - m + 1, x + k) - m + 1$$
 has the
property that $T_k(x) = \begin{cases} 0 & \text{if } x \neq m - 1 \\ k & \text{if } x = m - 1 \end{cases}$
Then $J_k(x) = \max(T_{J_k(0)}(x + m - 1), \dots, T_{J_k(m-2)}(x + 1), T_{J_k(m-1)}(x)).$

in general, if $g(i) = k_i$ then $g(x) = \max(T_{k_{m-1}}(x), T_{k_{m-2}}(x+1), \dots, T_{k_0}(x+(m-1)))$

Łukasiewicz logics \mathcal{L}_n

- Set of truth values $M = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, 1\}$
- Logical operations: \lor , \land , \neg , \Rightarrow

•
$$\vee_{\mathbf{L}_n} = \max$$

•
$$\wedge_{\mathbf{L}_n} = \min$$

•
$$\neg_{\mathbf{L}_n} x = 1 - x$$

•
$$x \Rightarrow_{\mathbf{L}_n} y = \min(1, 1 - x + y)$$

• First-order version: $Q = \{ \forall, \exists \}$

Łukasiewicz logics

Lukasiewicz implication $x \Rightarrow_{L_n} y = \min(1, 1 - x + y)$

$$\mathcal{L}_n$$

\Rightarrow	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	•••	$\frac{n-2}{n-1}$	1
0	1	1	1	• • •	1	1
$\frac{1}{n-1}$	$\frac{n-2}{n-1}$	1	1	•••	1	1
$\frac{2}{n-1}$	$\frac{n-3}{n-1}$	$\frac{n-2}{n-1}$	1	•••	1	1
1	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	•••	$\frac{n-2}{n-1}$	1

Belnap's 4-valued logic

 $\begin{array}{l} \wedge, \vee: \ \text{sup/inf in the truth ordering} \\ \sim \{\} = \{\}, \quad \sim \{0, 1\} = \{0, 1\}, \quad \sim \{0\} = \{1\}, \quad \sim \{1\} = \{0\} \end{array}$

Designated values:

Computer science: $D = \{\{1\}\}\$ Other applications (e.g. information bases): $D = \{\{1\}, \{0, 1\}\}\$

Proof Calculi and Automated reasoning

- $\bullet \ \mathsf{Axiom \ systems} \mapsto \mathsf{proofs}$
- Tableau calculi
- Resolution calculi

Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

```
(F_1, \ldots, F_n, F_{n+1}), n \ge 0,
```

called inferences or inference rules, and written

Inferences with 0 premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F : \Leftrightarrow$ there exists a proof Γ of F from N.

 $\Gamma \text{ is called sound } :\Leftrightarrow$

$$\frac{F_1 \ldots F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \ldots, F_n \models F$$

 Γ is called complete : \Leftrightarrow

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

 Γ is called refutationally complete $:\Leftrightarrow$

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

Axiom systems

For \mathcal{L}_3 : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):

$$A_{1} : (A \Rightarrow (B \Rightarrow A))$$

$$A_{2} : (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

$$A_{3} : (\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$$

$$A_{4} : ((A \Rightarrow \neg A) \Rightarrow A) \Rightarrow A$$

Inference rules:

Moduls Ponens:
$$\frac{A \qquad A \Rightarrow B}{B}$$

Axiom systems

For \mathcal{L}_3 : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):

 $x \wedge y = x \cdot (x \Rightarrow y),$

where $x \cdot y = \neg(x \Rightarrow \neg y)$

Proof calculi

Main disadvantage:

New proof calculus for each many-valued logic.

Goal:

Uniform methods for checking validity/satisfiability of formulae.

Automated reasoning

Classical logic:

Task: prove that *F* is valid

Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Automated reasoning

Classical logic:

Task: prove that F is valid **Method:** prove that $\neg F$ is unsatisfiable: – assume $\neg F$; derive a contradiction.

Many-valued logic:

Task: prove that *F* is valid

(i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \setminus D$:

- assume $F \in M \setminus D$; derive a contradiction.

Automated reasoning

Classical logic:

Task: prove that F is valid **Method:** prove that $\neg F$ is unsatisfiable: - assume $\neg F$; derive a contradiction.

Many-valued logic:

Task: prove that *F* is valid

(i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \setminus D$:

- assume $F \in M \setminus D$; derive a contradiction.

Problem: How do we express the fact that $F \in M \setminus D$

1)
$$\bigvee_{v \in M \setminus D} (F = v)$$

2) more economical notation?

Idea: Use signed formulae

- F^{ν} , where F is a formula and $v \in M$ $\mathcal{A}, \beta \models F^{\nu}$ iff $\mathcal{A}(\beta)(F) = v$.
- S:F, where F is a formula and $\emptyset \neq S \subseteq M$ (set of truth values) $\mathcal{A}, \beta \models S:F$ iff $\mathcal{A}(\beta)(F) \in S$.

For every $\emptyset \neq S \subseteq M$ and every logical operator f we have a tableau rule:

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(A_1, \ldots, A_n)$ is a finite extended tableau containing only formulae of the form $S_i:F_i$.

Informally: Exhaustive list of conditions which ensure that the value of $f(F_1, \ldots, F_n)$ is in S.

Example

Let L_5 be the 5-valued Łukasiewicz logic with $M = \{0, 1, 2, 3, 4\}$.

\Rightarrow	0	1	2	3	4
0	4	4	4	4	4
1	3	4	4	4	4
2	2	3	4	4	4
3	1	2	3	4	4
4	0	1	2	3	4

$$\{4\}(p \Rightarrow q)$$

$$\{0,1\}p \quad \{0,1,2\}p \quad \{0,1,2,3\}p \quad \\ \{1,2,3,4\}q \quad \{2,3,4\}q \quad \{3,4\}q \quad \{4\}q \quad$$

Let $V \subseteq \mathcal{P}(M)$ be the set of all sets of truth values which are used for labelling the formulae.

Remarks:

- 1. In general not all subsets of truth values are used, so $V \neq \mathcal{P}(M)$.
- 2. Proof by contradiction:

Goal: Prove that F is valid, i.e. $\mathcal{A}(\beta)(F) \in D$. We start from $(M \setminus D)$: F and build the tableau \Rightarrow We assume that $(M \setminus D) \in V$.

3. Need to make sure that the new signs introduced by the tableau rules are in V.

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(F_1, \ldots, F_n)$ is a finite extended tableau containing only formulae of the form $S_i:F_i$.

$S:f(F_1,\ldots,F_n)$						
<i>S</i> ₁₁ : <i>C</i> ₁₁	$S_{21}: C_{21}$	•••	$S_{q1}: C_{q1}$			
• • •	•••		• • •			
$S_{1k_1}: C_{1k_1}$	$S_{2k_2}: C_{2k_2}$		$S_{qk'}:C_{qk'}$			

where $C_{i,j} \in \{F_1, \ldots, F_n\}$

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(F_1, \ldots, F_n)$ is a finite extended tableau containing only formulae of the form $S_i:F_i$.

where $C_{i,j} \in \{F_1, \ldots, F_n\}$

For every \mathcal{A}, β : $\mathcal{A}(\beta)(F) \in S$ then there exists *i* such that for all *j*: $\mathcal{A}(\beta)(C_{ij}) \in S_{ij}$.

$$\begin{array}{c|c|c} S:f(F_1, \dots, F_n) \\ \hline S_{11}:C_{11} & S_{21}:C_{21} & \dots & S_{q1}:C_{q1} \\ \dots & \dots & & \dots \\ S_{1k_1}:C_{1k_1} & S_{2k_2}:C_{2k_2} & & S_{qk'}:C_{qk'} \end{array}$$

where $C_{i,j} \in \{F_1, \ldots, F_n\}$

Every model of $S:f(F_1, \ldots, F_n)$ is also a model of the formulae on one of the branches

If there is no expansion rule for a premise: premise is unsatisfiable $(\mathcal{A}(\beta)(F) \notin S \text{ for all } \mathcal{A}, \beta).$

If $f(F_1, \ldots, F_n)$ satisfiable then there is an expansion rule.

$\{1\}A\wedge B$	$\{u\}A \wedge B$	$\{0\}A\wedge B$	$\{u,0\}A \wedge B$
$\{1\}A$	$\{u\}A \mid \{u\}B \mid \{u\}A$	$\{0\}A \{0\}B$	${u,0}A {u,0}B$
$\{1\}B$	$\{1\}B \mid \{1\}A \mid \{u\}B$		

$\{1\}A \lor B$	4	$\{0\}A \lor B$			
$\{1\}A \{1\}B$	${u, 0}A$		$\{u\}A$	{0} <i>A</i>	
	$\{u\}B$		{ <i>u</i> ,0} <i>B</i>	{0} <i>B</i>	
	{ <i>u</i> , 0} <i>A</i>				
	$\{u, 0\}B$				

$\{1\}\sim A$	$\{0\}\sim A$	$\{u\} \sim A$	$\{u,0\}\sim A$
$\{u,0\}A$	$\{1\}A$		{1}A
$\{1\} eg A$	$\{0\} eg A$	$\{u\} \neg A$	$\{u, 0\} \neg A$
{0} <i>A</i>	$\{1\}A$	$\{u\}A$	$\{1\}A \{u\}A$

$\{1\}A \supset B$	$\{0\}A \supset B$	$\{u\}A \supset B$	$\{u, 0\}A \supset B$
${u,0}A {1}B$	$\{1\}A$	$\{1\}A$	$\{1\}A$
	$\{0\}B$	{ <i>u</i> } <i>B</i>	{ <i>u</i> ,0} <i>B</i>

where

- *z* is a new free variable
- y_1, \ldots, y_k are the free variables in $\exists x A(x)$
- *f* is a new function symbol

$$\begin{array}{c|c} \hline \{1\}\forall xA(x) & \{0\}\forall xA(x) & \{u\}\forall xA(x) & \{u,0\}\forall xA(x) \\ \hline \{1\}A(z) & \{0\}A(f(y_1,\ldots,y_k)) & \{u\}A(f(y_1,\ldots,y_k)) & \{u,0\}A(f(y_1,\ldots,y_k)) \\ & & \{u,1\}A(z) \end{array}$$

where

- *z* is a new free variable
- y_1, \ldots, y_k are the free variables in $\forall xA(x)$
- *f* is a new function symbol

A tableau for a finite set For of signed formulae is constructed as follows:

- A linear tree, in which each formula in For occurs once is a tableau.
- Let *T* be a tableau for For und *P* a path in *T*, which contains a signed formula *S*:*F*.

Assume that there exists a tableau rule with premise S:F. If $E_1, ..., E_n$ are the possible conclusions of the tableau rule (under the corresponding restrictions in case of quantified formulae) then T is exteded with n linear subtrees containing the signed formulae from E_i (respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

A path P in a tableau T is closed if:

- *P* contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_1:F_1, \ldots, S_k:F_k$ occurring of the branch such that:
 - $F_1 \sigma = \cdots = F_n \sigma$
 - $S_1 \cap \cdots \cap S_n = \emptyset$, or
- *P* contains a signed formula *S*:*F* for which no expansion rule can be applied and *F* is not atomic.

A path which is not closed is called open.

A path P in a tableau T is closed if:

- *P* contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_1:F_1, \ldots, S_k:F_k$ occurring of the branch such that:
 - $F_1 \sigma = \cdots = F_n \sigma$
 - $S_1 \cap \cdots \cap S_n = \emptyset$, or
- *P* contains a signed formula *S*:*F* for which no expansion rule can be applied and *F* is not atomic.

A path which is not closed is called open.

A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

Given an signature Σ , by Σ^{sko} we denote the result of adding infinitely many new Skolem function symbols which we may use in the rules for quantifiers.

Let \mathcal{A} be a Σ^{sko} -interpretation, \mathcal{T} a tableau, and β a variable assignment over \mathcal{A} .

T is called (\mathcal{A}, β) -valid, if there is a path P_{β} in T such that $\mathcal{A}, \beta \models F$, for each formula F on P_{β} .

T is called satisfiable if there exists a structure \mathcal{A} such that for each assignment β the tableau T is (\mathcal{A}, β) -valid. (This implies that we may choose P_{β} depending on β .) **Theorem** (Soundness of the tableau calculus for \mathcal{L}_3) Let F be a \mathcal{L}_3 -formula without free variables. If there exists a closed tableau T for $\{U, F\}F$, then F is an \mathcal{L}_3 -tautology (it is valid).

Theorem (Refutational completeness)

Let F be a \mathcal{L}_3 -tautology. Then we can construct a closed tableau for $\{U, F\}F$. (The order in which we apply the expansion rules is not important).