
Non-classical logics

Lecture 6: Many-valued logics (Part 2)

20.11.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation

Syntax

Semantics

2

1 Syntax

• propositional variables Π

• logical operations F

Propositional Formulas FF
Π is the set of propositional formulas over

Π defined as follows:

F ,G ,H ::= c (c constant logical operator)

| P, P ∈ Π (atomic formula)

| f (F1, . . . ,Fn) (f ∈ F with arity n)

3

Semantics

We assume that a set M = {w1, w2, . . . , wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M (truth tables for the operations in F)

2. The meaning of the propositional variables

A Π-valuation is a map A : Π → M.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fM}f∈F), any Π-valuation

A : Π → M, can be extended to A∗ : Σ-formulas → M.

A∗
(c) = cM (for every constant operator c ∈ F)

A∗
(P) = A(P)

A∗(f (F1, . . . , Fn)) = fM (A∗(F1), . . . , A∗(Fn))

For simplicity, we write A instead of A∗.

4

Models, Validity, and Satisfiability

M = {w1, . . . ,wm} set of truth values

D ⊆ M set of designated truth values

A : Π → M.

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) ∈ D

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

5

The logic L3

Set of truth values: M = {1, u, 0}.

Designated truth values: D = {1}.

Logical operators: F = {∨,∧,¬,∼}.

Truth tables for the operators

∨ 0 u 1

0 0 u 1

u u u 1

1 1 1 1

∧ 0 u 1

0 0 0 0

u 0 u u

1 0 u 1

v(F ∧ G) = min(v(F), v(G))

v(F ∨ G) = max(v(F), v(G))

Under the assumption that 0 < u < 1.

6

Truth tables for negations

A ¬A ∼ A ∼ ¬A ∼∼ A ¬¬A ¬ ∼ A

1 0 0 1 1 1 1

u u 1 1 0 u 0

0 1 1 0 0 0 0

Translation in natural language:

v(A) = 1 gdw. A is true

v(¬A) = 1 gdw. A is false

v(∼ A) = 1 gdw. A is not true

v(∼ ¬A) = 1 gdw. A is not false

7

First-order many-valued logic

1. Syntax

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols F , quantifiers

⇒ formulae

8

Signature;Variables; Terms/Atoms/Formulae

Signature: Σ = (Ω, Π), where
• Ω: set of function symbols f with arity n ≥ 0, written f /n,
• Π: set of predicate symbols p with arity m ≥ 0, written p/m.

Variables: Countably infinite set X .

Terms: As in classical logic

Atoms: (atomic formulas) over Σ are formed according to this syntax:

A, B ::= p(s1, ..., sm) , p/m ∈ Π

Formulae:

F set of logical operations; Q = {Q1, . . . , Qk} set of quantifiers

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F , G , H ::= c (c ∈ F , constant)

| A (atomic formula)

| f (F1, . . . , Fn) (f ∈ F with arity n)

| QxF (Q ∈ Q is a quantifier)

9

Semantics

• Truth values; Interpretation of logical symbols M = {1, . . . , m} set of truth

values; D ⊆ M set of designated truth values.

– Truth tables for the logical operations: {fM : Mn → M|f /n ∈ F}

– “Truth tables” for the quantifiers: {QM : P(M) → M|Q ∈ Q}

• Interpretation of non-logical variables: M-valued Σ-structure

A = (U, (fA : Un → U)f /n∈Ω, (pA : Um → M)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

• Variable assignments: β : X → A and extensions to terms A(β) : TΣ → A as

in classical logic.

• Truth value of a formula in A with respect to β A(β) : FΣ(X) → M is defined

inductively as follows:

A(β)(c) = cM

A(β)(p(s1, . . . , sn)) = pA(A(β)(s1), . . . , A(β)(sn)) ∈ M

A(β)(f (F1, . . . , Fn)) = fM (A(β)(F1), . . . , A(β)(Fn))

A(β)(QxF) = QM ({A(β[x 7→ a])(F) | a ∈ U})

10

First-order version of L3

M = {0, u, 1}, D = {1}

F = {∨, ∧, ¬, ∼}; truth values as the propositional version

Q = {∀, ∃}

∀M (S) =















1 if S = {1}

0 if 0 ∈ S

u otherwise

∃M (S) =















1 if 1 ∈ S

0 if S = {0}

u otherwise

A(β)(∀xF (x)) = 1 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∀xF (x)) = 0 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise

A(β)(∃xF (x)) = 1 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∃xF (x)) = 0 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise

11

Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F) ∈ D

F is valid in A (A is a model of F):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid:

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

12

Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F) ∈ D.

13

Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F) ∈ D.

Goal: Define a version of implication ’⇒’ such that

F |= G iff |= F ⇒ G

14

Weak implication

The logical operations ⊃ and ≡ are introduced as defined operations:

Weak implication

F ⊃ G :=∼ F ∨ G

Weak equivalence

F ≡ G := (F ⊃ G) ∧ (G ⊃ F)

F ⊃ G 1 u 0

1 1 u 0

u 1 1 1

0 1 1 1

F ≡ G 1 u 0

1 1 u 0

u u 1 1

0 0 1 1

15

Strong implication

The logical operations → and ↔ are introduced as defined operations:

Strong implication

F → G := ¬F ∨ G

Strong equivalence

F ↔ G := (F → G) ∧ (G → F)

F → G 1 u 0

1 1 u 0

u 1 u u

0 1 1 1

F ↔ G 1 u 0

1 1 u 0

u u u u

0 0 u 1

16

Comparisons

Implications

A ⊃ B 1 u 0

1 1 u 0

u 1 1 1

0 1 1 1

A → B 1 u 0

1 1 u 0

u 1 u u

0 1 1 1

Equivalences

A ≡ B 1 u 0

1 1 u 0

u u 1 1

0 0 1 1

A ↔ B 1 u 0

1 1 u 0

u u u u

0 0 u 1

17

Equivalences

A ⊃ B := ∼ A ∨ B A → B := ¬A ∨ B

A ≡ B := (A ⊃ B) ∧ (B ⊃ A) A ↔ B := (A → B) ∧ (B → A)

A ≈ B := (A ≡ B) ∧ (¬A ≡ ¬B) A ⇔ B := (A ↔ B) ∧ (¬A ↔ ¬B)

A id B := ∼∼ (A ≈ B)

A B A ≡ B A ↔ B A ≈ B A ⇔ B A id B

1 1 1 1 1 1 1

1 u u u u u 0

1 0 0 0 0 0 0

u 1 u u u u 0

u u 1 u 1 u 1

u 0 1 u u u 0

0 1 0 0 0 0 0

0 u 1 u u u 0

0 0 1 1 1 1 1

18

Some L3 tautologies

¬¬A id A (A ∧ B) ∨ C id (A ∨ C) ∧ (B ∨ C)

∼∼ A ≡ A (A ∨ B) ∧ C id (A ∧ C) ∨ (B ∧ C)

¬ ∼ A ≡ A

¬(A ∨ B) id ¬A ∧ ¬B ∼ (A ∨ B) id ∼ A∧ ∼ B

¬(A ∧ B) id ¬A ∨ ¬B ∼ (A ∧ B) id ∼ A∨ ∼ B

¬(∀xA) id ∃x¬A ∼ (∀xA) id ∃x ∼ A

¬(∃xA) id ∀x¬A ∼ (∃xA) id ∀x ∼ A

19

No occurrence of ¬

Lemma. Let F be a formula which does not contain the strong negation ¬.

Then the following are equivalent:

(1) F is an L3-tautology.

(2) F is a two-valued tautology (negation is identified with ∼)

Proof.

“⇒” Every L3-tautology is a 2-valued tautology (the restriction of the

operators ∨,∧,∼ to {0, 1} coincides with the Boolean operations ∨,∧,¬).

“⇐” Assume that F is a two-valued tautology. Let A be an L3-structure

and β : X → A be a valuation. We construct a two-valued structure A′

from A, which agrees with A except for the fact that whenever pA(x) = u

we define pA′(x) = 0. Then A′(β)(F) = 1. It can be proved that

A(β)(F) = 1 ⇒ A′(β)(F) = 1

A(β)(F) ∈ {0, u} ⇒ A′(β)(F) = 0.

Hence, A(β)(F) = 1.

20

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

21

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

22

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

2. Prove that for every term t, ∀xq(x) ⊃ q(x)[t/x] is an L3-tautology.

3. Show that ∀xq(x) → q(x)[t/x] is not a tautology.

23

Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

2. Prove that for every term t, ∀xq(x) ⊃ q(x)[t/x] is an L3-tautology.

3. Show that ∀xq(x) → q(x)[t/x] is not a tautology.

Solution. q → q is not a tautology.

24

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β, A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β, A(β)(F) ∈

{0, 1}.

25

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β, A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β, A(β)(F) ∈

{0, 1}.

26

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β, A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β, A(β)(F) ∈

{0, 1}.

27

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

true

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β, A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β, A(β)(F) ∈

{0, 1}.

28

Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

true

If F ≡ G is a tautology and F is two-valued then G is two-valued.

false

F is a non-tautology iff for every 3-valued structure, A and every valuation

β, A(β)(F) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β, A(β)(F) ∈

{0, 1}.

29

Functional completeness

Definition A family (M, {fM : Mn → M}f∈F) is called functionally

complete if every function g : Mm → M can be expressed in terms of the

functions {fM : Mn → M | f ∈ F}.

Definition A many-valued logic with finite set of truth values M and

logical operators F is called functionally complete if for every function

g : Mm → M there exists a propositional formula F of the logic such that

for every A : Π → M

g(A(x1), . . . ,A(xm)) = A(F).

30

Example: Propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

31

Example: Propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

32

Example: Propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

DNF: (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ R)

33

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every g : {0, 1}m → {0, 1} let:

F =
∨

(a1 ,...,am)∈{0,1}(cg (a1, . . . , am) ∧ P
a1
1 ∧ · · · ∧ P

am
m)

where Pa =







P if a = 1

¬P if a = 0

(Then clearly A(P)a = 1 iff A(P) = a, i.e. 11 = 00 = 1; 10 = 01 = 0.)

It can be easily checked that for every A : {P1, . . . ,Pm} → {0, 1} we have:

g(A(P1), . . . ,A(Pm)) = A(F).

34

Functional completeness

Theorem. The logic L3 is not functionally complete.

Proof. If F is a formula with n propositional variables in the language of L3

with operators {¬,∼,∨,∧} then for the valuation A : Π = {P1, . . . ,Pn} →

{0, u, 1} with A(Pi) = 1 for all i we have: A(F) 6= u.

Therefore: If g is a function which takes value u when the arguments are in

{0, 1} then there is no formula F such that g(A(P1), . . . ,A(Pn)) = A(F)

for all A : Π → {0, u, 1}.

Theorem. L+
3 , obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

35

A simple criterion for functional completeness

Theorem. An m-valued logic with set of truth values M = {w1, . . . ,wm}

and logical operations F with truth tables {fM | f ∈ F} in which the

functions:

• min(x , y), max(x , y),

• Jk (x) =






1 (maximal element) if k = x

0 (minimal element) otherwise

• all constant functions cnk (x1, . . . , xn) = k

can be expressed in terms of the functions {fM | f ∈ F}

is functionally complete.

Proof. Let g : Mn → M.

g(x1, . . . , xn) =

max{min{cn
g(a1,...,an)

, Ja1 (x1), . . . , Jan (xn)} | (a1, . . . an) ∈ Mn}

36

Functional completeness of L+
3

Theorem. L+
3 , obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

• We define J1, Ju , J0 : {0, u, 1} → {0, u, 1} as follows:

J0(x) =∼∼ ¬x

Ju(x) =∼ x∧ ∼ ¬x

J1(x) =∼∼ x

x J0(x) Ju(x) J1(x)

0 1 0 0

u 0 1 0

1 0 0 1

37

Functional completeness of L+
3

Theorem. L+
3 , obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

• We define J1, Ju , J0 : {0, u, 1} → {0, u, 1} as follows:

J0(x) =∼∼ ¬x

Ju(x) =∼ x∧ ∼ ¬x

J1(x) =∼∼ x

x J0(x) Ju(x) J1(x)

0 1 0 0

u 0 1 0

1 0 0 1

• min and max are ∧ resp. ∨.

38

Functional completeness of L+
3

Theorem. L+
3 , obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

• We define J1, Ju , J0 : {0, u, 1} → {0, u, 1} as follows:

J0(x) =∼∼ ¬x

Ju(x) =∼ x∧ ∼ ¬x

J1(x) =∼∼ x

x J0(x) Ju(x) J1(x)

0 1 0 0

u 0 1 0

1 0 0 1

• min and max are ∧ resp. ∨.

• The constant operation u is in the language.

• The constant functions 0 and 1 are definable as follows:

1(x) =∼ x ∨ ¬ ∼ x

0(x) =∼ (∼ x ∨ ¬ ∼ x)

39

Example

Let g the following binary function:

g 0 u 1

0 0 u 0

u u u u

1 0 u 0

g(x1, x2) = (u ∧ J0(x1) ∧ Ju(x2)) ∨ (u ∧ Ju(x1) ∧ J0(x2))∨

(u ∧ Ju(x1) ∧ Ju(x2)) ∨ (u ∧ Ju(x1) ∧ J0(x2)) ∨ (u ∧ J1(x1) ∧ Ju(x2))

= (u∧ ∼∼ ¬x1∧ ∼ x2∧ ∼ ¬x2) ∨ (u∧ ∼ x1∧ ∼ ¬x1∧ ∼∼ ¬x2)∨

(u∧ ∼ x1∧ ∼ ¬x1∧ ∼ x2∧ ∼ ¬x2) ∨

40

Post logics

Pm = {0, 1, . . . ,m − 1}

F = {∨, s}

∨P (a, b) = max(a, b)

sP (a) = a− 1 (mod m)

41

Post logics

Theorem. The Post logics are functionally complete.

Proof:

1. max is ∨P

2. The functions x − k (mod m) and x + k (mod m) are definable

x − k = s(s(...s
︸ ︷︷ ︸

k times

(x))) (mod m)

x + k = x − (m − k) (mod m), 0 < k < m.

x + 0 = x

3. min(x , y) = m − 1 − max(m − 1 − x ,m − 1 − y)

42

Post logics

Theorem. The Post logics are functionally complete.

Proof:

4. All constants are definable

T (x) = max{x , x − 1, . . . , x −m + 1}

T (x) = m − 1 for all x .

The other constants are definable using s iterated 1, 2, . . . ,m − 1 times.

5. Tk (x) = max(max[T (x) − 1, x] − m + 1, x + k) − m + 1 has the

property that Tk (x) =







0 if x 6= m − 1

k if x = m − 1

Then Jk (x) = max(TJk (0)(x + m − 1), . . . ,TJk (m−2)(x + 1),TJk (m−1)(x)).

in general, if g(i)=ki then g(x)=max(Tkm−1
(x), Tkm−2

(x + 1), . . . , Tk0
(x+(m−1)))

43

Other many-valued logics

 Lukasiewicz logics Ln

• Set of truth values M = {0, 1
n−1

, 2
n−1

, . . . , 1}

• Logical operations: ∨,∧,¬,⇒

• ∨ Ln
= max

• ∧ Ln
= min

• ¬ Ln
x = 1 − x

• x ⇒ Ln
y = min(1, 1 − x + y)

• First-order version: Q = {∀, ∃}

44

 Lukasiewicz logics

 Lukasiewicz implication x ⇒ Ln
y = min(1, 1 − x + y)

Ln

⇒ 0 1
n−1

2
n−1 . . . n−2

n−1 1

0 1 1 1 . . . 1 1

1
n−1

n−2
n−1 1 1 . . . 1 1

2
n−1

n−3
n−1

n−2
n−1 1 . . . 1 1

. . .

1 0 1
n−1

2
n−1 . . . n−2

n−1 1

45

Belnap’s 4-valued logic

{0, 1} both false and true

{} neither false nor true

{0} {1}

false true

information

ordering

truth ordering

∧,∨: sup/inf in the truth ordering

∼ {} = {}, ∼ {0, 1} = {0, 1}, ∼ {0} = {1}, ∼ {1} = {0}

Designated values:

Computer science: D = {{1}}

Other applications (e.g. information bases): D = {{1}, {0, 1}}

46

Proof Calculi and Automated reasoning

• Axiom systems 7→ proofs

• Tableau calculi

• Resolution calculi

...

47

Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷

F1 . . . Fn

Fn+1
︸︷︷︸

conclusion

.

Inferences with 0 premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One

also considers inference systems over other data structures.

48

Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .

49

Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . ,Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥

50

Axiom systems

For L3: Wajsberg proposed an axiom system

(based on connectors ¬ and ⇒):

A1 : (A ⇒ (B ⇒ A))

A2 : (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C))

A3 : (¬A ⇒ ¬B) ⇒ (B ⇒ A)

A4 : ((A ⇒ ¬A) ⇒ A) ⇒ A

Inference rules:

Moduls Ponens:
A A ⇒ B

B

51

Axiom systems

For L3: Wajsberg proposed an axiom system

(based on connectors ¬ and ⇒):

x ∧ y = x · (x ⇒ y),

where x · y = ¬(x ⇒ ¬y)

52

Proof calculi

Main disadvantage:

New proof calculus for each many-valued logic.

Goal:

Uniform methods for checking validity/satisfiability of formulae.

53

Automated reasoning

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

54

Automated reasoning

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

Many-valued logic:

Task: prove that F is valid

(i.e. A(β)(F) ∈ D for all A,β)

Method: prove that it is not possible that A(β) ∈ M\D:

− assume F ∈ M\D; derive a contradiction.

55

Automated reasoning

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

Many-valued logic:

Task: prove that F is valid

(i.e. A(β)(F) ∈ D for all A,β)

Method: prove that it is not possible that A(β) ∈ M\D:

− assume F ∈ M\D; derive a contradiction.

Problem: How do we express the fact that F ∈ M\D

1)
∨

v∈M\D(F = v)

2) more economical notation?

56

Automated reasoning

Idea: Use signed formulae

• F v , where F is a formula and v ∈ M

A,β |= F v iff A(β)(F) = v .

• S :F , where F is a formula and

∅ 6= S ⊆ M (set of truth values)

A,β |= S :F iff A(β)(F) ∈ S .

57

Semantic tableaux

For every ∅ 6= S ⊆ M and every logical operator f we have a

tableau rule:

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (A1, . . . ,An) is a finite extended tableau containing only

formulae of the form Si :Fi .

Informally: Exhaustive list of conditions which ensure that the

value of f (F1, . . . ,Fn) is in S .

58

Example

Let L5 be the 5-valued Lukasiewicz logic with M = {0, 1, 2, 3, 4}.

⇒ 0 1 2 3 4

0 4 4 4 4 4

1 3 4 4 4 4

2 2 3 4 4 4

3 1 2 3 4 4

4 0 1 2 3 4

{4}(p ⇒ q)

{0}p {0, 1}p {0, 1, 2}p {0, 1, 2, 3}p

{1, 2, 3, 4}q {2, 3, 4}q {3, 4}q {4}q

59

Labelling sets

Let V ⊆ P(M) be the set of all sets of truth values which are used for

labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so V 6= P(M).

2. Proof by contradiction:

Goal: Prove that F is valid, i.e. A(β)(F) ∈ D.

We start from (M\D):F and build the tableau

⇒ We assume that (M\D) ∈ V .

3. Need to make sure that the new signs introduced by the tableau rules

are in V .

60

Tableau rules: Soundness

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (F1, . . . ,Fn) is a finite extended tableau containing only formulae

of the form Si :Fi .

S :f (F1, . . . ,Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . ,Fn}

61

Tableau rules: Soundness

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (F1, . . . ,Fn) is a finite extended tableau containing only formulae

of the form Si :Fi .

S :f (F1, . . . ,Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . ,Fn}

For every A,β: A(β)(F) ∈ S then there exists i such that for all j :

A(β)(Cij) ∈ Sij .

62

Tableau rules: Soundness

S :f (F1, . . . ,Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . ,Fn}

Every model of S :f (F1, . . . ,Fn) is also a model of the formulae on one of

the branches

If there is no expansion rule for a premise: premise is unsatisfiable

(A(β)(F) 6∈ S for all A, β).

If f (F1, . . . ,Fn) satisfiable then there is an expansion rule.

63

L3: Tableau rules for ∧

{1}A ∧ B

{1}A

{1}B

{u}A ∧ B

{u}A | {u}B | {u}A
| |

{1}B | {1}A | {u}B

{0}A ∧ B

{0}A|{0}B

{u, 0}A ∧ B

{u, 0}A|{u, 0}B

64

L3: Tableau rules for ∨

{1}A ∨ B

{1}A|{1}B

{u}A ∨ B

{u, 0}A | {u}A
|

{u}B | {u, 0}B

{0}A ∨ B

{0}A

{0}B

{u, 0}A ∨ B

{u, 0}A

{u, 0}B

65

L3: Tableau rules for ¬,∼

{1} ∼ A

{u, 0}A

{0} ∼ A

{1}A

{u} ∼ A {u, 0} ∼ A

{1}A

{1}¬A

{0}A

{0}¬A

{1}A

{u}¬A

{u}A

{u, 0}¬A

{1}A|{u}A

66

L3: Tableau rules for ⊃

{1}A ⊃ B

{u, 0}A|{1}B

{0}A ⊃ B

{1}A

{0}B

{u}A ⊃ B

{1}A

{u}B

{u, 0}A ⊃ B

{1}A

{u, 0}B

67

L3: Tableau rules for ∃

{1}∃xA(x)

{1}A(f (y1, . . . , yk))

{0}∃xA(x)

{0}A(z)

{u}∃xA(x)

{u}A(f (y1, . . . yk))

{u, 0}A(z)

{u, 0}∃xA(x)

{u, 0}A(z)

where

• z is a new free variable

• y1, . . . , yk are the free variables in ∃xA(x)

• f is a new function symbol

68

L3: Tableau rules for ∀

{1}∀xA(x)

{1}A(z)

{0}∀xA(x)

{0}A(f (y1, . . . , yk)

{u}∀xA(x)

{u}A(f (y1, . . . yk))

{u, 1}A(z)

{u, 0}∀xA(x)

{u, 0}A(f (y1, . . . , yk))

where

• z is a new free variable

• y1, . . . , yk are the free variables in ∀xA(x)

• f is a new function symbol

69

Tableaux

A tableau for a finite set For of signed formulae is constructed as follows:

• A linear tree, in which each formula in For occurs once is a tableau.

• Let T be a tableau for For und P a path in T , which contains a signed

formula S :F .

Assume that there exists a tableau rule with premise S :F . If

E1, ...,En are the possible conclusions of the tableau rule (under the

corresponding restrictions in case of quantified formulae) then T is

exteded with n linear subtrees containing the signed formulae from Ei

(respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

70

Closed Tableaux

A path P in a tableau T is closed if:

• P contains complementary formulae, i.e. there exists a substitution

σ and there exists signed formulae S1:F1, . . . , Sk :Fk occurring of the

branch such that:

– F1σ = · · · = Fnσ

– S1 ∩ · · · ∩ Sn = ∅, or

• P contains a signed formula S :F for which no expansion rule can be

applied and F is not atomic.

A path which is not closed is called open.

71

Closed Tableaux

A path P in a tableau T is closed if:

• P contains complementary formulae, i.e. there exists a substitution

σ and there exists signed formulae S1:F1, . . . , Sk :Fk occurring of the

branch such that:

– F1σ = · · · = Fnσ

– S1 ∩ · · · ∩ Sn = ∅, or

• P contains a signed formula S :F for which no expansion rule can be

applied and F is not atomic.

A path which is not closed is called open.

A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

72

Soundness and completeness

Given an signature Σ, by Σsko we denote the result of adding infinitely many

new Skolem function symbols which we may use in the rules for quantifiers.

Let A be a Σsko-interpretation, T a tableau, and β a variable assignment

over A.

T is called (A, β)-valid, if there is a path Pβ in T such that A, β |= F , for

each formula F on Pβ .

T is called satisfiable if there exists a structure A such that for each

assignment β the tableau T is (A,β)-valid.

(This implies that we may choose Pβ depending on β.)

73

Soundness and completeness

Theorem (Soundness of the tableau calculus for L3)

Let F be a L3-formula without free variables. If there exists a closed tableau

T for {U,F}F , then F is an L3-tautology (it is valid).

Theorem (Refutational completeness)

Let F be a L3-tautology. Then we can construct a closed tableau for

{U, F}F . (The order in which we apply the expansion rules is not

important).

74

