Non-classical logics

Lecture 6: Many-valued logics (Part 2)
20.11.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

e Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics

1 Syntax

e propositional variables Il

e |ogical operations F

Propositional Formulas F] is the set of propositional formulas over
[1 defined as follows:

F,.G,H := ¢ (c constant logical operator)
| P, Pcll (atomic formula)
| f(Fi,...,Fn) (f € F with arity n)

Semantics

We assume that a set M = {wy, wy, ..., wy, } of truth values is given.
We assume that a subset D C M of designated truth values is given.

1. Meaning of the logical operators
f € F with arityn +— fy : M" — M (truth tables for the operations in F)

2. The meaning of the propositional variables
A [l-valuationisa map A : 1 — M.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fp}rc#), any MN-valuation
A Ml — M, can be extended to A™ : >-formulas — M.

A*(C) = CM(for every constant operator ¢ €]—‘)
A*(P) = A(P)
A*(f(Fl, Ce ey Fn)) — fM(A*(Fl), o ,A*(Fn))

For simplicity, we write A instead of A™.

Models, Validity, and Satisfiability

M = {wy, ..., wn} set of truth values
D C M set of designated truth values
A: M — M.

F is valid in A (A is a model of F; F holds under A):

A= F i A(F)ED

F is valid (or is a tautology):

= F < A = F for all lNM-valuations A

F is called satisfiable iff there exists an A such that A |= F.

Otherwise F is called unsatisfiable (or contradictory).

The logic L3

Set of truth values: M = {1, u, 0}.
Designated truth values: D = {1}.
Logical operators: F = {V, A, -, ~}.

Truth tables for the operators

vV |0 1 AN | O 1
0| O 1 0O 0
u u 1 u | 0

1 |1 1 1 |0 1

v(F A G) = min(v(F), v(G))
v(F VvV G) = max(v(F), v(G))

Under the assumption that 0 < u < 1.

Truth tables for negations

Translation in natural language:
v(A) =1 gdw. A is true

v(—A) =1 gdw. A is false

v(~ A) =1 gdw. A is not true
v(~ —A) =1 gdw. A is not false

A|l-A|l~A|~—-A|~~A| —A| -~A
1|0 0 1 1 1 1
u | u 1 1 0 u 0
0|1 1 0 0 0 0

First-order many-valued logic

1. Syntax

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical symbols F, quantifiers
= formulae

Signature;Variables; Terms/Atoms/Formulae

Signature: ¥ = (Q, 1), where
e (2: set of function symbols f with arity n > 0, written f /n,
e [1: set of predicate symbols p with arity m > 0, written p/m.

Variables: Countably infinite set X.
Terms: As in classical logic

Atoms: (atomic formulas) over ¥ are formed according to this syntax:

A, B = p(si, ..., Sm) , p/m € Tl
Formulae:
F set of logical operations; Q = {Q1, ..., Q«} set of quantifiers

Fs(X) is the set of first-order formulas over ¥ defined as follows:

F G H = C (c € F, constant)
| A (atomic formula)
| f(Fi, ..., Fn) (f € F with arity n)
|

QxF (Q € Q is a quantifier)

Semantics

e Truth values; Interpretation of logical symbols M = {1,..., m} set of truth
values; D C M set of designated truth values.
— Truth tables for the logical operations: {fy : M" — M|f/n € F}
— “Truth tables” for the quantifiers: {Qy : P(M) — M|Q € Q}

e Interpretation of non-logical variables: M-valued > -structure
A = (U, (fA - U" — U)f/neﬂ, (p_A - U" — M)p/mGI’I)
where U # () is a set, called the universe of A.

e Variable assignments: 5 : X — A and extensions to terms A(8) : Ty — A as
in classical logic.

e Truth value of a formula in A with respect to 5 A(3) : Fx(X) — M is defined
inductively as follows:

A(B)(c) = cm
A(B)(p(st, - -, sn)) = pa(A(B)(s1), .-, A(B)(sn)) € M
AB)F(Fr, ..., Fa)) = fm(A(B)(F1), - ... A(B)(Fn))
A(B)(QxF) = Qu({ A(B[x — a])(F) | a € U})

10

First-order version of L3

M= {0,u1}, D={1}

F={V,N, ,~}
Q = {V, 3}

(

1
Vmu(S) =< 0

u

\

A(B)(VxF(x)) =1
A(B)(VxF(x)) =0
A(B)(VxF(x)) = u

A(B)(3xF(x)) =1
A(B)(3xF(x)) =0
A(B)(VxF(x)) = u

truth values as the propositional version

if S = {1}

ifoesS

otherwise

iff for all a € Uy,

iff for some a € U4,
otherwise

iff for some a € U4,

iff for all a € Uy,

otherwise

(1 if1es

I(S) =< 0 ifS=1{0

u otherwise

\

A(Blx = a])(F(x)) =1
A(B[x = a])(F(x)) =0

A(Blx = a])(F(x)) =1
A(Blx = a])(F(x)) =0

11

Models, Validity, and Satisfiability

F is valid in A under assignment [3:

ABE=EF & AB)(F)eD

F is valid in A (A is a model of F):
A=F & APBEF, forall e X — Uy

F is valid:
=F & AEF, forall Ac X-alg

F is called satisfiable iff there exist A and (such that A, 3 = F.

Otherwise F is called unsatisfiable.

12

Entailment

NEF <

forall A € X-algand 8 € X — Ux:
if A(6)(G) € D, for all G € N, then A(B)(F) € D.

13

Entailment

N F &< forall Ae X-algand g€ X — Uax:
if A(6)(G) € D, for all G € N, then A(B)(F) € D.

Goal: Define a version of implication '=" such that

FEGiff=EF=G

14

Weak implication

The logical operations D and = are introduced as defined operations:
Weak implication

F>G:=~FVG
Weak equivalence

F=G:=(F>G)A(GDF)

FOG|1|ul|O F=G||1|u|O0
1 1|u |0 1 1|u]0
u 1(1]1 u u|l|l
0 1111 0 011

Strong implication

The logical operations — and < are introduced as defined operations:
Strong implication

F—G:=-FVG
Strong equivalence

F«< G:=(F—=G)N(G—= F)

F—-G||1|u]|O0 F<G||1|u|0
1 1| u]|0 1 1|u]0
u 1 |u|u u ul|uiu
0 1111 0 0| u|l

Comparisons

Implications

Equivalences

ADB 0
1 0
u 1
0 1
A=B 0
1 0
u 1
0 1

A— B 0
1 0
u u
0 1
A< B 0
1 0

c

| —

17

Equivalences

ADB:= ~AVEB A— B :=

A=B:=(ADB)AN(BDA)
Ax~B:=(A=B)A(—-A=-B)

-AV B

A< B:=(A—-B)AN (B — A)
As B:=(A+ B)AN(—A <+ —B)

Aid B:= ~~ (A~ B)

A|BI||A=B | A«+«B | AxB | A& B | AdB
1 |1 1 1 1 1 1
1 | u u u u u 0
1 |0 0 0 0 0 0
u | 1 u u u u 0
u | u 1 u 1 u 1
u |0 1 u u u 0
0|1 0 0 0 0 0
0 | u 1 u u u 0
0|0 1 1 1 1 1

18

Some L3 tautologies

—-—Aid A
~~ A=A
-—-~A=ZA

~(AV B) id =AA B
~(AAB)id =AV B

—(VxA) id Ix-A
—(3xA) id Vx—-A

(AANB)VCid (Av C)A(BV C)
(AVB)ACid(AANC)V(BAC)

~(AVB)id ~AA~ B
~(AAB)id ~ AV ~ B

~ (VxA) id Ix ~ A
~ (IxA) id Vx ~ A

19

No occurrence of —

Lemma. Let F be a formula which does not contain the strong negation —.

Then the following are equivalent:

(1) F is an L3-tautology.
(2) F is a two-valued tautology (negation is identified with ~)

Proof.

“=" Every L3-tautology is a 2-valued tautology (the restriction of the
operators V, A, ~ to {0, 1} coincides with the Boolean operations V, A, —).

“<" Assume that F is a two-valued tautology. Let A be an L3-structure
and 8 : X — A be a valuation. We construct a two-valued structure A’
from A, which agrees with A except for the fact that whenever p4(Xx) = u
we define p4/(X) = 0. Then A’(B)(F) = 1. It can be proved that
A(B)(F) =1 = A/(B)(F) = 1
A(B)(F) € {0, u} = A’(B)(F) = 0.
Hence, A(B)(F) = 1.

20

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

21

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

22

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term t, Vxq(x) D q(x)[t/x] is an L3-tautology.

3. Show that Vxq(x) — q(x)[t/x] is not a tautology.

23

Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term t, Vxq(x) D q(x)[t/x] is an L3-tautology.

3. Show that Vxq(x) — q(x)[t/x] is not a tautology.

Solution. g — g is not a tautology.

24

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

If F = G is a tautology and F is satisfiable then G is satisfiable.

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.
F is two-valued iff for every 3-valued structure, A and every valuation 5, A(B)(F) €

0,1},

25

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 5, A(B)(F) €
{0, 1}.

26

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 5, A(B)(F) €
{0, 1}.

27

Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

true

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 5, A(B)(F) €

0,1},

28

Exercises

4. Which of the following statements are true?
If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

true

If F = G is a tautology and F is two-valued then G is two-valued.

false

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 5, A(B)(F) €
{0, 1}.

29

Functional completeness

Definition A family (M, {fy; : M" — M}¢cr) is called functionally
complete if every function g : M™ — M can be expressed in terms of the

functions {fyy : M" - M | f € F}.

Definition A many-valued logic with finite set of truth values M and
logical operators F is called functionally complete if for every function
g : M™ — M there exists a propositional formula F of the logic such that

for every A: 1 - M
g(A(x1), ..., A(xm)) = A(F).

30

Example: Propositional logic

F: (PVQ)A((-PAQ)VR)
Pl Q|R|(PVQ) | -P|(-PAQ)| (-PAQ)VR)|F
0|00 0 1 0 0 0
0|0 |1 0 1 0 1 0
0110 1 1 1 1 1
011 1 1 1 1 1
11010 1 0 0 0 0
1|01 1 0 0 1 1
1|1]0 1 0 0 0 0
1|11 1 0 0 1 1

31

Example: Propositional logic

F: (PVQ)A((-PAQ)VR)
plol|lrR|l(PPve)|-P| (=PrQ) | (-PAQ)VR) | F
olo]o 0 1 0 0 0
0olo]1 0 1 0 1 0
0| 1o 1 1 1 1 1
ol 11 1 1 1 1 (1
1] o0]o 1 0 0 0 0
101 1 0 0 1 1
1] 1]o0 1 0 0 0 0
1] 1|1 1 0 0 1 1

32

Example: Propositional logic

F: (PVQ)A((-PAQ)VR)

plol|lrR|l(PPve)|-P| (=PrQ) | (-PAQ)VR) | F
olo]o 0 1 0 0 0
0olo]1 0 1 0 1 0
0| 1o 1 1 1 1 1
ol 11 1 1 1 1 (1
1|0/ o0 1 0 0 0 0
1] 0|1 1 0 0 1 1
1] 1]o0 1 0 0 0 0
1] 1|1 1 0 0 1 1
DNF: (=PAQA-R)V(-PAQAR)V(PAN=QAR)V(PNQRQAR)

33

Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every g : {0,1}" — {0, 1} let:

F=Via.. ameion(celat,...,am) APt Ao A PR
P ifa=1

where P? =
-P ifa=~0

(Then clearly A(P)? =1 iff A(P)=a, ie. 1'=0°=1;12=0!=0)

It can be easily checked that for every A : {P,.

g(A(P1), ..., A(Pm)) = A(F).

... Pm} — {0,1} we have:

34

Functional completeness

Theorem. The logic L3 is not functionally complete.

Proof. If F is a formula with n propositional variables in the language of L3
with operators {—, ~, V, A} then for the valuation A : M = {Py,...,Pr} —
{0, u, 1} with A(P;) = 1 for all i we have: A(F) # u.

Therefore: If g is a function which takes value u when the arguments are in
{0, 1} then there is no formula F such that g(A(P1),...,A(Pn)) = A(F)
forall A: 1M — {0, u, 1}.

Theorem. E;, obtained from L3 by adding one more constant operation u
(which takes always value u) is functionally complete.

35

A simple criterion for functional completeness

Theorem. An m-valued logic with set of truth values M = {wy, ..., wn}
and logical operations F with truth tables {fy, | f € F} in which the
functions:

e min(x,y), max(x,y),

1 (maximal element) if k=x
o Ji(x) =

0 (minimal element) otherwise
e all constant functions ¢/(x1,...,xn) = k

can be expressed in terms of the functions {fy | f € F}

is functionally complete.

Proof. Let g : M" — M.

g(x1,...,xn) =
max{min{cg(a

an)’ Jal (Xl)v c ey Jan(Xn)} | (31, .. an) & M”}

36

Functional completeness of £

Theorem. [,gL, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

e We define J1, J,, Jo : {0,u,1} — {0, u, 1} as follows:

Ju(x) =~ XA ~ —x

J1(x) =~ x

x | Jo(x) | Ju(x) | J1(x)
0|1 0 0
ul O 1 0
1 0 1

37

Functional completeness of £

Theorem. [,gL, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

e We define J1, J,, Jo : {0,u,1} — {0, u, 1} as follows:

Ju(x) =~ XA ~ —x

J1(x) =~ x

x | Jo(x) | Ju(x) | J1(x)
0|1 0 0
ul O 1 0
1 0 1

e min and max are A resp. V.

38

Functional completeness of £

Theorem. £§L, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.
Proof
e We define J1, J,, Jo : {0,u,1} — {0, u, 1} as follows:

X JO(X) JU(X) J1(X)
Jolox) =renv = 0|1 0 0
JU(X) =~ XN\ ~ —X U 0 1 0
J1(x) =~ x 1|0 0 1

e min and max are A resp. V.
e The constant operation u is in the language.
e The constant functions O and 1 are definable as follows:

1(x) =~ xV - ~x
O(x) =~ (~xV = ~ x)

39

Example

Let g the following binary function:

gl 0|ull
0O|0|u|O
ulululu
1 [{0|ul|O
g(x1,x2) = (uNJo(x1)AJu(x2))V (uAN Ju(x1) A Jo(x2))V

(u A Jy(x1) AN Ju(x2) V(uAJdy(xi) A Jo(x2)) V (u A Ji(xy) A Ju(x2))
— (u/\ ~r~ X1\~ Xo/\ ~ —|X2) V (u/\ ~ X1/\ ~ X1 /\ ~r~v —|X2)\/

(u/\ ~ X1/\ ~ —Xx1/\ ~ Xo/\ ~ —|X2) V...

40

Post logics

Pmn=1{0,1,..., m—1}
F =AV,s}
Vp(a, b) = max(a, b)

sp(a) =a—1 (mod m)

41

Post logics

Theorem. The Post logics are functionally complete.
Proof:

1. maxis Vp
2. The functions x — k (mod m) and x 4+ k (mod m) are definable
x — k = s(s(...s(x))) (mod m)

N——

k times
x+k=x—(m—k)(mod m),0< k< m.
x+0=x

3. min(x,y)=m—1—max(m—1—x,m—1—y)

42

Post logics

Theorem. The Post logics are functionally complete.
Proof:

4. All constants are definable
T(x)=max{x,x—1,...,x —m+ 1}
T(x) = m —1 for all x.
The other constants are definable using s iterated 1,2,..., m — 1 times.
5. Ti(x) = max(max[T(x) —1,x] — m+1,x+ k) — m+ 1 has the
0 ifx#Fm-1
k ifx=m-1
Then Jk(X) — max(TJk(O)(X + m — 1), ce, TJk(m—2)(X -+ 1), TJk(m—l)(X))-

property that T,(x) =

in general, if g(i)=k; then g(x)=max(Tx__ (x), T _,(x+1),..., Tiy (x+(m—1)))

43

Other many-valued logics

tukasiewicz logics L,

o Set of truth values M = {0, -1 -2

e lLogical operations: V, A\, =, =

° \/Ln = max

* Ny = min

® T} X= 1—x

e x=4 y=min(l,1-x+y)
e First-order version: Q = {V, 3}

"n—1" n—11"""°

1)

44

tukasiewicz logics

tukasiewicz implication x =1 Y= min(1l,1 — x + y)
L

1 2 n—2
= 0 n—1 n—1 n—1 1
0 1 1 1 1 1
1 n—2
— || =7 | 1 1 1 1
2 n—3 n—?2
n—1 n—1 n—1 1 1 1
1 2 n—2
1 0 n—1 n—1 n—1 1

Belnap’s 4-valued logic

A {0, 1} both false and true

information / \
ordering { o} (1
true

{} neither false nor true

[
Ll

truth ordering

A, V: sup/inf in the truth ordering
~{3={} ~{01}={01}, ~{0}={1}, ~{1}=1{0}

Designated values:
Computer science: D = {{1}}
Other applications (e.g. information bases): D = {{1}, {0,1}}

46

Proof Calculi and Automated reasoning

e Axiom systems —> proofs
e [ableau calculi

e Resolution calculi

47

Proof Calculi/Inference systems and proofs

Inference systems ' (proof calculi) are sets of tuples
(F11°'°1Fn1Fn—|—1)1 nZOy

called inferences or inference rules, and written

premises

_/A\

Fi ... F,

Fn—l—l
N~

conclusion

Inferences with O premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One
also considers inference systems over other data structures.

Proofs

A proof in I of a formula F from a a set of formulas N (called
assumptions) is a sequence Fi, ..., Fx of formulas where

(i) F = F,

(i) forall 1 < i < k: F; € N, or else there exists an inference
(Fiy, ..., Fi,., Fi) in T, such that 0 < j; </, for 1 <j < n;.

49

Soundness and Completeness

Provability Fr of F from N in I
N r F < there exists a proof [of F from N.

[is called sound &

F = Focr o Fi,....Fn = F

[is called complete &

NE=F = Nt F

[is called refutationally complete &

N):J_ = Nt L

50

Axiom systems

For £3: Wajsberg proposed an axiom system
(based on connectors — and =):

A (A= (B=A)

A :(A=B)=((B=C)= (A= ())
Az : (-A= -B)= (B= A)

A (A= -A) = A=A

Inference rules:

A A= B

Moduls Ponens:

51

Axiom systems

For £3: Wajsberg proposed an axiom system
(based on connectors — and =):

xANy=x-(x=y),

where x - y = —=(x = —y)

52

Proof calculi

Main disadvantage:
New proof calculus for each many-valued logic.

Goal:
Uniform methods for checking validity /satisfiability of formulae.

53

Automated reasoning

Classical logic:
Task: prove that F is valid

Method: prove that —F is unsatisfiable:

— assume —F: derive a contradiction.

54

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that —F is unsatisfiable:
— assume —F; derive a contradiction.

Many-valued logic:
Task: prove that F is valid

(i.,e. A(B)(F) € D for all A,)
Method: prove that it is not possible that A(8) € M\D:

— assume F € M\ D; derive a contradiction.

55

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that —F is unsatisfiable:
— assume —F; derive a contradiction.

Many-valued logic:
Task: prove that F is valid

(i.e. A(B)(F) € D for all A,)

Method: prove that it is not possible that A(8) € M\D:

— assume F € M\ D; derive a contradiction.

Problem: How do we express the fact that F € M\D

1) \/veM\D(F = V)

2) more economical notation?

56

Automated reasoning

Idea: Use signed formulae

e FY, where F is a formula and ve M

A, B = FY iff A(B)(F)=v.

e S:F, where F is a formula and
0D #S C M (set of truth values)

A, B = S:F iff A(B)(F) € S.

57

Semantic tableaux

For every) # S C M and every logical operator f we have a

tableau rule:

Sif(Fl, c ooy Fn)
T(Fq,..., Fr)
where T(Aq, ..., A,) is a finite extended tableau containing only

formulae of the form S;:F;.

Informally: Exhaustive list of conditions which ensure that the
value of f(Fq,..., F,)isin S.

58

Example

Let L5 be the 5-valued tukasiewicz logic with M = {0,1,2,3,4}.

~1lol1]2]3]4
0 414|444
1 314|444
2 213|444
3 1123 |(4] 4
4 [lol1]2]3]4
{4}(p = q)
{0}p | {0,1}p {0,1,2}p | {0,1,2,3}p
{1.2,3,4}q | {2,3,4}q | {3.4}q {4}q

Labelling sets

Let V C P(M) be the set of all sets of truth values which are used for
labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so V # P(M).

2. Proof by contradiction:
Goal: Prove that F is valid, i.e. A(B)(F) € D.
We start from (M\D):F and build the tableau
= We assume that (M\D) € V.

3. Need to make sure that the new signs introduced by the tableau rules
are in V.

60

Tableau rules: Soundness

S:f(Fi,...,Fp)
T(F1,...,Fn)
where T(F1, ..., Fn) is a finite extended tableau containing only formulae
of the form S;:F;.
S:f(F1, ..., Fpn)
51k1 :Clkl 52/(2 . C2k2 qu/ . qu/

where C;; € {F1,..., Fn}

Tableau rules: Soundness

S:A(Fq,..., Fr)
T(Fy,..., Fr)
where T(Fy,..., Fr) is a finite extended tableau containing only formulae
of the form S;:F;.
S:f(F,..., Fnr)
S11:Cq1 S>1:Co1 - Sql:qu
Slkl ZC1k1 52k2:C2k2 qu/:qu/

where C,',j c {Fl ,,,,, Fn}

For every A, 3: A(B)(F) € S then there exists i such that for all j:
A(B)(Cj) € Sy

62

Tableau rules: Soundness

S:f(F1,..., Fpn)
S511:Cq1 S51:Co1 . .. 5q1:Cq1
Slkl :Clkl 52k2:C2k2 qu/:qu/
where C;; € {F1,..., Fn}
Every model of S:f(F1,..., Fp) is also a model of the formulae on one of

the branches

If there is no expansion rule for a premise: premise is unsatisfiable

(A(B)(F) ¢ S for all A, B).

If f(F1,..., Fn) satisfiable then there is an expansion rule.

L3: Tableau rules for A

(1)AAB {UYAA B

{0}AAB

{u,0}ANB

{1}A {ujA | {u}B } {u}A
{1}B {1}B [{1}JA[{u}B

10}A[{0}B

{u,0}Al|{u,0}B

64

L3: Tableau rules for V

{1}AV B {u}AvV B {0}AV B
{1}A{1}B {u,0}A {u}A {0}A
{u}B {u,0}B {0}B
{u,0}AV B
{u,0}A

{u,0}B

65

L3: Tableau rules for —, ~

{1y~ A 10} ~ A {u} ~ A {u,0} ~ A
{u,0}A {1}1A 114
{1}-A 10}-A {u}—A {u,0}-A
{03A {1}A {u}A (11A|{u} A

66

L3: Tableau rules for D

{1}AD B {0}A>B {u}ADB {u0}ADB
{u, 0}A[{1}B {1}A {1}A {1}A
{0}B {ul}B {u,0}B

67

L3: Tableau rules for 4

{1}3xA(x) {0}3xA(x) {u}3xA(x)

{u, 0}3xA(x)

{1}A(f (1

where

,,,,, Yk)) {0}A(z) {uA(F (e, - i)
{u, 0}A(2)

® ~ is a new free variable

® Vi,...,

yk are the free variables in IxA(x)

e f is a new function symbol

{u, 0}A(2)

68

L3: Tableau rules for V

{1}VxA(x) {0}VxA(x) {u}VxA(x) {u, 0}VxA(x)

{1}A(z) {0JA(F(yr, - ov) {udA(F(y, - yvi)) {u OFA(F(ya, - -+ yi))
{u, 13A(z)

where

® ~ is a new free variable
® Vi,..., vk are the free variables in VxA(x)

e f is a new function symbol

69

Tableaux

A tableau for a finite set For of sighed formulae is constructed as follows:
e A linear tree, in which each formula in For occurs once is a tableau.
e Let T be a tableau for For und P a path in T, which contains a signed

formula S:F.

Assume that there exists a tableau rule with premise S:F. If

Ei, ..., E, are the possible conclusions of the tableau rule (under the
corresponding restrictions in case of quantified formulae) then T is
exteded with n linear subtrees containing the signed formulae from E;
(respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

70

Closed Tableaux

A path P in a tableau T is closed if:

e P contains complementary formulae, i.e. there exists a substitution
o and there exists signed formulae S1:Fq, ..., Sk:Fx occurring of the
branch such that:

- Fho=---=Fuo

- 5N---NS,=0, or

e P contains a signed formula S:F for which no expansion rule can be
applied and F is not atomic.

A path which is not closed is called open.

71

Closed Tableaux

A path P in a tableau T is closed if:

e P contains complementary formulae, i.e. there exists a substitution
o and there exists signed formulae S1:Fq, ..., Sk:Fx occurring of the
branch such that:

- Fho=---=Fuo

- 5N---NS,=0, or

e P contains a signed formula S:F for which no expansion rule can be

applied and F is not atomic.

A path which is not closed is called open.

A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

72

Soundness and completeness

Given an signature ¥, by X% we denote the result of adding infinitely many
new Skolem function symbols which we may use in the rules for quantifiers.

Let A be a X°-interpretation, T a tableau, and 3 a variable assignment
over A.

T is called (A, B)-valid, if there is a path Pg in T such that A, 8 = F, for
each formula F on Pg.

T is called satisfiable if there exists a structure A such that for each
assignment (3 the tableau T is (A, 3)-valid.
(This implies that we may choose Pg depending on §3.)

73

Soundness and completeness

Theorem (Soundness of the tableau calculus for £3)

Let F be a L£3-formula without free variables. If there exists a closed tableau
T for {U, F}F, then F is an L3-tautology (it is valid).

Theorem (Refutational completeness)

Let F be a L3-tautology. Then we can construct a closed tableau for
{U, F}F. (The order in which we apply the expansion rules is not
important).

74

