
Non-classical logics

Lecture 7+8: Many-valued logics (Part 3)

27.11.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation

Syntax

Semantics

Functional completeness

Automated reasoning: Tableaux

2

Automated reasoning

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

Many-valued logic:

Task: prove that F is valid

(i.e. A(β)(F) ∈ D for all A,β)

Method: prove that it is not possible that A(β) ∈ M\D:

− assume F ∈ M\D; derive a contradiction.

Problem: How do we express the fact that F ∈ M\D

1)
∨

v∈M\D(F = v)

2) more economical notation?

3

Automated reasoning

Idea: Use signed formulae

• F v , where F is a formula and v ∈ M

A,β |= F v iff A(β)(F) = v .

• S :F , where F is a formula and

∅ 6= S ⊆ M (set of truth values)

A,β |= S :F iff A(β)(F) ∈ S .

4

Semantic tableaux

For every ∅ 6= S ⊆ M and every logical operator f we have a

tableau rule:

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (A1, . . . ,An) is a finite extended tableau containing only

formulae of the form Si :Fi .

Informally: Exhaustive list of conditions which ensure that the

value of f (F1, . . . ,Fn) is in S .

5

Example

Let L5 be the 5-valued Lukasiewicz logic with M = {0, 1, 2, 3, 4}.

⇒ 0 1 2 3 4

0 4 4 4 4 4

1 3 4 4 4 4

2 2 3 4 4 4

3 1 2 3 4 4

4 0 1 2 3 4

{4}(p ⇒ q)

{0}p {0, 1}p {0, 1, 2}p {0, 1, 2, 3}p

{1, 2, 3, 4}q {2, 3, 4}q {3, 4}q {4}q

6

Labelling sets

Let V ⊆ P(M) be the set of all sets of truth values which are used for

labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so V 6= P(M).

2. Proof by contradiction:

Goal: Prove that F is valid, i.e. A(β)(F) ∈ D.

We start from (M\D):F and build the tableau

⇒ We assume that (M\D) ∈ V .

3. Need to make sure that the new signs introduced by the tableau rules

are in V .

7

Tableau rules: Soundness

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (F1, . . . ,Fn) is a finite extended tableau containing only formulae

of the form Si :Fi .

S :f (F1, . . . ,Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . ,Fn}

8

Tableau rules: Soundness

S :f (F1, . . . ,Fn)

T (F1, . . . ,Fn)

where T (F1, . . . ,Fn) is a finite extended tableau containing only formulae

of the form Si :Fi .

S :f (F1, . . . ,Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . ,Fn}

For every A,β: A(β)(F) ∈ S then there exists i such that for all j :

A(β)(Cij) ∈ Sij .

9

Tableau rules: Soundness

S :f (F1, . . . ,Fn)

S11:C11 S21:C21 . . . Sq1:Cq1

.

S1k1
:C1k1

S2k2
:C2k2

Sqk′ :Cqk′

where Ci ,j ∈ {F1, . . . ,Fn}

Every model of S :f (F1, . . . ,Fn) is also a model of the formulae on one of

the branches

If there is no expansion rule for a premise: premise is unsatisfiable

(A(β)(F) 6∈ S for all A, β).

If f (F1, . . . ,Fn) satisfiable then there is an expansion rule.

10

L3: Tableau rules for ∧

{1}A ∧ B

{1}A

{1}B

{u}A ∧ B

{u}A | {u}B | {u}A
| |

{1}B | {1}A | {u}B

{0}A ∧ B

{0}A|{0}B

{u, 0}A ∧ B

{u, 0}A|{u, 0}B

11

L3: Tableau rules for ∨

{1}A ∨ B

{1}A|{1}B

{u}A ∨ B

{u, 0}A | {u}A
|

{u}B | {u, 0}B

{0}A ∨ B

{0}A

{0}B

{u, 0}A ∨ B

{u, 0}A

{u, 0}B

12

L3: Tableau rules for ¬,∼

{1} ∼ A

{u, 0}A

{0} ∼ A

{1}A

{u} ∼ A {u, 0} ∼ A

{1}A

{1}¬A

{0}A

{0}¬A

{1}A

{u}¬A

{u}A

{u, 0}¬A

{1}A|{u}A

13

L3: Tableau rules for ⊃

{1}A ⊃ B

{u, 0}A|{1}B

{0}A ⊃ B

{1}A

{0}B

{u}A ⊃ B

{1}A

{u}B

{u, 0}A ⊃ B

{1}A

{u, 0}B

14

L3: Tableau rules for ∃

{1}∃xA(x)

{1}A(f (y1, . . . , yk))

{0}∃xA(x)

{0}A(z)

{u}∃xA(x)

{u}A(f (y1, . . . yk))

{u, 0}A(z)

{u, 0}∃xA(x)

{u, 0}A(z)

where

• z is a new free variable

• y1, . . . , yk are the free variables in ∃xA(x)

• f is a new function symbol

15

L3: Tableau rules for ∀

{1}∀xA(x)

{1}A(z)

{0}∀xA(x)

{0}A(f (y1, . . . , yk)

{u}∀xA(x)

{u}A(f (y1, . . . yk))

{u, 1}A(z)

{u, 0}∀xA(x)

{u, 0}A(f (y1, . . . , yk))

where

• z is a new free variable

• y1, . . . , yk are the free variables in ∀xA(x)

• f is a new function symbol

16

Soundness

Theorem (Soundness of the tableau calculus for L3)

Let F be a L3-formula without free variables. If there exists a closed tableau

T for {u, 0}F , then F is an L3-tautology (it is valid).

Proof: Let T be a tableau for F . The following are equivalent:

(1) F is satisfiable

(2) T is satisfiable (i.e. there exists a Σ-structure A such that for each

assignment β there is a path Pβ in T such that A, β |= F , for each

formula F on Pβ .

(2) ⇒ (1) is obvious.

(1) ⇒ (2) can be proved by induction on the structure of the tableau T .

17

Refutational completeness

Theorem (Refutational completeness)

Let F be a L3-tautology. Then we can construct a closed tableau for

{u, 0}F . (The order in which we apply the expansion rules is not important).

Proof (Idea): Assume that we cannot construct a closed tableau. If we can construct

a finite tableau which is not closed, from the previous result we know that F is clearly

satisfiable.

Otherwise, as in the proof for classical logic, we define a fair tableau expansion process

which “converges” towards an infinite tableau T . We analyze all non-closed paths of

T (on which the “γ”-rules are applied an infinite number of times); we show that for

every such path we can order the formula on such path according to a certain ordering

and incrementally construct a model for the formulae on that path. This model will

then be a model of the formula F .

(The argument can be used for every non-classical logic.)

18

Resolution

Goal:

Extend the resolution rule such that it takes into account sets of truth

values.

19

Resolution

Classical logic:

Task: prove that F is valid

Method: prove that ¬F is unsatisfiable:

− assume ¬F ; derive a contradiction.

Many-valued logic:

Task: prove that F is valid

(i.e. A(β)(F) ∈ D for all A,β)

Method: prove that it is not possible that A(β) ∈ M\D:

− assume F ∈ M\D; derive a contradiction.

F v : abbreviation for {v}:F .

S :F =
∨

v∈S F v .

20

Resolution

Natural generalization of the resolution rule:

Signed resolution

L
v1
1 ∨ C L

v2
2 ∨ D

(C ∨ D)σ

if v1 6= v2, and σ = mgu(L1, L2)

Signed factoring

C ∨ Lv1 ∨ Lv2

(C ∨ Lv1)σ

if σ = mgu(L1, L2)

21

Resolution

Needed:

Method for computing a conjunctive normal form

22

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

23

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

24

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 1 0 0 1 1

1 1 0 1 0 0 0 0

1 1 1 1 0 0 1 1

DNF: (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ R)

25

Example: Classical propositional logic

F : (P ∨ Q) ∧ ((¬P ∧ Q) ∨ R)

P Q R (P ∨ Q) ¬P (¬P ∧ Q) ((¬P ∧ Q) ∨ R) F ¬F

0 0 0 0 1 0 0 0 1

0 0 1 0 1 0 1 0 1

0 1 0 1 1 1 1 1 0

0 1 1 1 1 1 1 1 0

1 0 0 1 0 0 0 0 1

1 0 1 1 0 0 1 1 0

1 1 0 1 0 0 0 0 1

1 1 1 1 0 0 1 1 0

CNF: (1) DNF of ¬F :

(¬P ∧ ¬Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R) ∨ (P ∧ Q ∧ ¬R)

(2) negate:

(P ∨ Q ∨ R) ∧ (P ∨ Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬P ∨ ¬Q ∨ R)

26

Signed resolution: Propositional logic

Translation to signed clause form.

Ψ = S :f (F1, . . . ,Fn)

DNF (Ψ) :=
∨

v1,...,vn∈M

fM (v1,...,vn)∈S

F v1
1 ∧ · · · ∧ F vn

n

CNF (Ψ) :=
∧

v1,...,vn∈M

fM (v1,...,vn) 6∈S

(M\{v1}):F1 ∨ · · · ∨ (M\{vn}):Fn

(negate DNF (M\S :f (F1, . . . ,Fn)))

27

Example

⇒ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Compute CNF for {0}:(F1 → F2):

DNF for { 1
2

, 1}:(F1 → F2) :
∨

v1,v2∈{0, 1
2

,1}

v1⇒v2 6=0

{v1}:F1 ∧ {v2}:F2

(F 0
1 ∧ F 0

2) ∨ (F 0
1 ∧ F

1
2

2) ∨ (F 0
1 ∧ F 1

2)

(F
1
2

1 ∧ F 0
2) ∨ (F

1
2

1 ∧ F
1
2

2) ∨ (F
1
2

1 ∧ F 1
2)

(F 1
1 ∧ F

1
2

2) ∨ (F 1
1 ∧ F 1

2)

CNF for {0}:(F1 → F2):

({ 1
2

, 1}:F1 ∨ { 1
2

, 1}:F2) ∧ ({ 1
2

, 1}:F1 ∨ {0, 1}:F2) ∧ ({ 1
2

, 1}:F1 ∨ {0, 1
2
}:F2)

({0, 1}:F1 ∨ { 1
2

, 1}:F2) ∧ ({0, 1}:F1 ∨ {0, 1}:F2) ∧ ({0, 1}:F1 ∨ {0, 1
2
}:F2)

({0, 1
2
}:F1 ∨ {0, 1}:F2) ∧ ({0, 1

2
}:F 1

1 ∨ {0, 1
2
}:F 1

2)

28

Example

⇒ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Compute CNF for {0}:(F1 → F2):

DNF for { 1
2

, 1}:(F1 → F2) :
∨

v1,v2∈{0, 1
2

,1}

v1⇒v2 6=0

{v1}:F1 ∧ {v2}:F2

= (F 0
1 ∧ F

{0, 1
2

,1}

2) ∨ (F
1
2

1 ∧ F
{0, 1

2
,1}

2) ∨ (F 1
1 ∧ F

{ 1
2

,1}

2)

= F 0
1 ∨ F

1
2

1 ∨ (F 1
1 ∧ F

{ 1
2

,1}

2)

CNF for {0}:(F1 → F2):

{ 1
2

, 1}:F1 ∧ {0, 1}:F1 ∧ ({0, 1
2
}:F1 ∨ {0}:F2)

29

Optimization

Ψ = S :f (F1, . . . ,Fn)

DNF (Ψ) :=
∨

v1,...,vn−1∈M

{v1}:F1 ∧ · · · ∧ {vn−1}:Fn−1 ∧ {vn | fM(v1, . . . , vn) ∈ S}:Fn

CNF (Ψ) :=
∧

v1,...,vn−1∈M

(M\{v1}):F1 ∨ · · · ∨ (M\{vn−1}):Fn−1 ∨ {vn | fM(v1, . . . , vn)∈S}:Fn

(negate DNF (M\S :f (F1, . . . ,Fn)))

30

Soundness

Signed resolution (propositional form)

Pv1 ∨ C Pv2 ∨ D

C ∨ D

if v1 6= v2

Signed factoring (propositional form)

C ∨ Pv ∨ Pv

C ∨ Pv

31

Soundness

Theorem. The signed resolution inference rule is sound.

Proof (propositional case)

Let A be a valuation such that A |= Pv1 ∨ C and A |= Pv2 ∨ D.

Case 1: A |= Pv1 . Then A(P) = v1, hence A(P) 6= v2. Therefore, A |= D.

Hence, A |= C ∨ D.

Case 2: A 6|= Pv1 . Then A |= C .

Hence also in this case A |= C ∨ D.

Soundness of signed factoring is obvious.

32

Completeness: Propositional Logic

Encoding into first-order logic with equality

Signed resolution

P ≈ v1 ∨ C P ≈ v2 ∨ D

(C ∨ D)
if v1 6= v2

Signed factoring

C ∨ P ≈ v ∨ P ≈ v

C

Idea: Signed resolution can be simulated by a version of resolution which

handles equality efficiently (superposition). Completeness then follows from

the completeness of this refinement of resolution.

This also guarantees completeness of refinements of signed resolution with

ordering and selection functions

33

Compact form of signed resolution

Propositional logic

Signs: sets of truth values

Resolution

S1:P ∨ C S2:P ∨ D

(S1 ∩ S2):P ∨ C ∨ D
if S1 ∩ S2 = ∅

Simplificaton

C ∨ ∅:P

C

Merging

S1:P ∨ S2:P ∨ C

(S1 ∪ S2):P ∨ C

34

First-order logic

Translation to clause form:

need to take into account also the truth tables of the quantifiers.

S : QxF (x)

DNF:
∨

∅6=V⊆M

QM (V)∈S

(∀x V : F (x) ∧
∧

a∈V ∃x {a} : F (x))

CNF: computed by negating the DNF for M\S : ∀xF (x)

CNF:
∧

∅6=V⊆M

QM (V)∈(M\S)

(∃x(M\V) : F (x) ∨
∨

a∈V ∀x(M\{a}) : F (x))

7→ leave out quantifiers (Skolem functions for existential quantifier)

35

Example

In L3, with truth values M = {0, u, 1}:

{1, u}∀x p(x)

⇒
∧

∅6=V⊆M

min(V)∈{0}

(∃x(M\V) : F (x) ∨
∨

a∈{0} ∀x(M\{a}) : F (x))

⇒ (∃x{1, u}:p(x) ∨ ∀x(M\{0}):p(x))∧ V = {0}

(∃x{u}:p(x) ∨ ∀x{1, u}:p(x) ∨ ∀x{0, u}:p(x))∧ V = {0, 1}

(∃x{1}:p(x) ∨ ∀x{1, u}:p(x) ∨ ∀x{0, 1}:p(x))∧ V = {0, u}

∀x{1, u}:p(x) ∨ ∀x{0, 1} : p(x) ∨ ∀x{0, u} : p(x)) V = M

36

Structure-preserving translation

In order to avoid rapid growth of the number of clauses, a structure-

preserving translation to clause form is used.

Idea

S : F [G(x)] ⇒ S : F [PG(x)(x)] ∧
∧

a∈M ∀x({a}G(x) ↔ {a} : PG(x)(x))

where PG(x) new predicate symbol.

S :F [f (F1, . . . ,Fn)
︸ ︷︷ ︸

G

]

⇒ S : F [PG] ∧
∧

a∈M ∀x(DNF ({a} : f (F1, . . . ,Fn) ↔ {a} : PG)

37

Resolution for first-order clauses

Natural generalization of the resolution rule:

Signed resolution

L
v1
1 ∨ C L

v2
2 ∨ D

(C ∨ D)σ

if v1 6= v2, and σ = mgu(L1, L2)

Signed factoring

C ∨ Lv1 ∨ Lv2

(C ∨ Lv1)σ

if σ = mgu(L1, L2)

38

Regular logics

Many-valued logics for which an order ≤ exists on the sets of truth values

and for which signed CNF’s can be found which contain as signs only the

sets

↑i = {j ∈ M | j ≥ i} and ↓i = {j ∈ M | j ≤ i}

39

Regular logics

Many-valued logics for which an order ≤ exists on the sets of truth values

and for which signed CNF’s can be found which contain as signs only the

sets

↑i = {j ∈ M | j ≥ i} and ↓i = {j ∈ M | j ≤ i}

40

Example

 Lukasiewicz logics Ln

• Set of truth values M = {0, 1
n−1

, 2
n−1

, . . . , 1}

• Logical operations: ∨,∧,¬,⇒

• ∨ Ln
= max

• ∧ Ln
= min

• ¬ Ln
x = 1 − x

• x ⇒ Ln
y = min(1, 1 − x + y)

• First-order version: Q = {∀, ∃}

41

 Lukasiewicz logics

 Lukasiewicz implication x ⇒ Ln
y = min(1, 1 − x + y)

Ln

⇒ 0 1
n−1

2
n−1 . . . n−2

n−1 1

0 1 1 1 . . . 1 1

1
n−1

n−2
n−1 1 1 . . . 1 1

2
n−1

n−3
n−1

n−2
n−1 1 . . . 1 1

. . .

1 0 1
n−1

2
n−1 . . . n−2

n−1 1

42

Example

↑ i : (F1 ∧ F2) 7→ (↑i : F1) ∧ (↑i : F2)

↑i : (F1 ∨ F2) 7→ (↑i : F1) ∨ (↑i : F2)

↑i : ¬F 7→ ↓(1 − i) : F

↑i : F1 ⇒ F2 7→
∨

j∈M (↓j : F1 ∧ ↑(i + j − 1) : F2

Similar for ↓i : F

signed CNFs can be obtained using the transformation rules above (and

possibly negation).

43

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

44

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

45

Independence proofs

Task: Check independence of axioms in axiom systems [Bernays 1926]

Here: Example: Axiom system for propositional logic K1

46

Axiom system: K1

Inference rule: Modus Ponens:
H H⇒G

G

47

Independence

Definition: An axiom system K is independent iff for every axiom A ∈ K ,

A is not provable from K\{A}.

We will show that Ax2 is independent

48

Independence

Definition: An axiom system K is independent iff for every axiom A ∈ K ,

A is not provable from K\{A}.

We will show that Ax2 is independent

Idea: We introduce a 3-valued logic LK1
with truth values {0, u, 1},

D = {1} and operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

49

Independence

From 1,2,3 it follows that every formula which can be proved from K1\Ax2

is a tautology.

Hence – since Ax2 is not a tautology – K1\{Ax2} 6|= Ax2.

50

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

51

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

1. Routine (check all axioms in K1\{Ax2}).

52

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

2. Analyze the truth table of ⇒.

Assume H is a tautology and H ⇒ G is a tautology.

Let A : Π → {0, u, 1}.

Then A(H) = 1 and A(H ⇒ G) = 1, so A(G) = 1.

53

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

3. Let A : Π → {0, u, 1} with A(p1) = u and A(p2) = 0.

Then

A(((p1 ⇒ p2) ⇒ p1) ⇒ p1) = ((u ⇒ 0) ⇒ u) ⇒ u

= (u ⇒ u) ⇒ u = u.

54

