Non-classical logics

Lecture 7+8: Many-valued logics (Part 3)

27.11.2013

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Until now

- Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics
Functional completeness
Automated reasoning: Tableaux

Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Many-valued logic:
Task: prove that F is valid (i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \backslash D$:

- assume $F \in M \backslash D$; derive a contradiction.

Problem: How do we express the fact that $F \in M \backslash D$

1) $\bigvee_{v \in M \backslash D}(F=v)$
2) more economical notation?

Automated reasoning

Idea: Use signed formulae

- F^{\vee}, where F is a formula and $v \in M$

$$
\mathcal{A}, \beta \models F^{v} \text { iff } \mathcal{A}(\beta)(F)=v .
$$

- $S: F$, where F is a formula and $\emptyset \neq S \subseteq M$ (set of truth values) $\mathcal{A}, \beta \models S: F$ iff $\mathcal{A}(\beta)(F) \in S$.

Semantic tableaux

For every $\emptyset \neq S \subseteq M$ and every logical operator f we have a tableau rule:

$$
\frac{S: f\left(F_{1}, \ldots, F_{n}\right)}{T\left(F_{1}, \ldots, F_{n}\right)}
$$

where $T\left(A_{1}, \ldots, A_{n}\right)$ is a finite extended tableau containing only formulae of the form $S_{i}: F_{i}$.

Informally: Exhaustive list of conditions which ensure that the value of $f\left(F_{1}, \ldots, F_{n}\right)$ is in S.

Example

Let $Ł_{5}$ be the 5 -valued $Ł u k a s i e w i c z$ logic with $M=\{0,1,2,3,4\}$.

\Rightarrow	0	1	2	3	4
0	4	4	4	4	4
1	3	4	4	4	4
2	2	3	4	4	4
3	1	2	3	4	4
4	0	1	2	3	4

\[

\]

Labelling sets

Let $V \subseteq \mathcal{P}(M)$ be the set of all sets of truth values which are used for labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so $V \neq \mathcal{P}(M)$.
2. Proof by contradiction:

Goal: Prove that F is valid, i.e. $\mathcal{A}(\beta)(F) \in D$.
We start from $(M \backslash D)$: F and build the tableau
\Rightarrow We assume that $(M \backslash D) \in V$.
3. Need to make sure that the new signs introduced by the tableau rules are in V.

Tableau rules: Soundness

$$
\frac{S: f\left(F_{1}, \ldots, F_{n}\right)}{T\left(F_{1}, \ldots, F_{n}\right)}
$$

where $T\left(F_{1}, \ldots, F_{n}\right)$ is a finite extended tableau containing only formulae of the form $S_{i}: F_{i}$.

$S: f\left(F_{1}, \ldots, F_{n}\right)$			
$S_{11}: C_{11}$	$S_{21}: C_{21}$	\ldots	$S_{q 1}: C_{q 1}$
\ldots	\ldots		\ldots
$S_{1 k_{1}}: C_{1 k_{1}}$	$S_{2 k_{2}}: C_{2 k_{2}}$		$S_{q k^{\prime}}: C_{q k^{\prime}}$

where $C_{i, j} \in\left\{F_{1}, \ldots, F_{n}\right\}$

Tableau rules: Soundness

$$
\frac{S: f\left(F_{1}, \ldots, F_{n}\right)}{T\left(F_{1}, \ldots, F_{n}\right)}
$$

where $T\left(F_{1}, \ldots, F_{n}\right)$ is a finite extended tableau containing only formulae of the form $S_{i}: F_{i}$.

$S: f\left(F_{1}, \ldots, F_{n}\right)$			
$S_{11}: C_{11}$	$S_{21}: C_{21}$	\ldots	$S_{q 1}: C_{q 1}$
\ldots	\ldots		\ldots
$S_{1 k_{1}}: C_{1 k_{1}}$	$S_{2 k_{2}}: C_{2 k_{2}}$		$S_{q k^{\prime}}: C_{q k^{\prime}}$

where $C_{i, j} \in\left\{F_{1}, \ldots, F_{n}\right\}$

For every $\mathcal{A}, \beta: \mathcal{A}(\beta)(F) \in S$ then there exists i such that for all j : $\mathcal{A}(\beta)\left(C_{i j}\right) \in S_{i j}$.

Tableau rules: Soundness

$S: f\left(F_{1}, \ldots, F_{n}\right)$			
$S_{11}: C_{11}$	$S_{21}: C_{21}$	\ldots	$S_{q 1}: C_{q 1}$
\ldots	\ldots		\ldots
$S_{1 k_{1}}: C_{1 k_{1}}$	$S_{2 k_{2}}: C_{2 k_{2}}$		$S_{q k^{\prime}}: C_{q k^{\prime}}$

where $C_{i, j} \in\left\{F_{1}, \ldots, F_{n}\right\}$

Every model of $S: f\left(F_{1}, \ldots, F_{n}\right)$ is also a model of the formulae on one of the branches

If there is no expansion rule for a premise: premise is unsatisfiable $(\mathcal{A}(\beta)(F) \notin S$ for all $\mathcal{A}, \beta)$.
If $f\left(F_{1}, \ldots, F_{n}\right)$ satisfiable then there is an expansion rule.

\mathcal{L}_{3} : Tableau rules for \wedge

$\{1\} A \wedge B$
$\{1\} A$

$\{1\} B$$~ \frac{\{u\} A \wedge B}{\{u\} A}$| $\{u\} B \mid\{u\} A$ |
| :---: |
| $\{1\} B\|\{1\} A\|\{u\} B$ |$\frac{\{0\} A \wedge B}{\{0\} A \mid\{0\} B} \frac{\{u, 0\} A \wedge B}{\{u, 0\} A \mid\{u, 0\} B}$

\mathcal{L}_{3} : Tableau rules for v

$$
\begin{aligned}
& \\
& \frac{\{u, 0\} A \vee B}{\{u, 0\} A} \\
& \{u, 0\} B
\end{aligned}
$$

\mathcal{L}_{3} : Tableau rules for \neg, \sim

$$
\begin{array}{cccc}
\frac{\{1\} \sim A}{\{u, 0\} A} & \frac{\{0\} \sim A}{\{1\} A} & \frac{\{u\} \sim A}{\{u, 0\} \sim A} \\
\frac{\{1\} \neg A}{\{0\} A} & \frac{\{0\} \neg A}{\{1\} A} & \frac{\{u\} \neg A}{\{u\} A} & \frac{\{u, 0\} \neg A}{\{1\} A \mid\{u\} A}
\end{array}
$$

\mathcal{L}_{3} : Tableau rules for \supset

$$
\begin{array}{ccccc}
\frac{\{1\} A \supset B}{\{u, 0\} A \mid\{1\} B} & \begin{array}{cc}
\{0\} A \supset B & \{u\} A \supset B \\
& \{1\} A \\
& \\
& \{0\} B
\end{array} & \{u, 0\} A \supset B & & \{1\} \in B \\
& \{u, 0\} B
\end{array}
$$

\mathcal{L}_{3} : Tableau rules for \exists

$$
\frac{\{1\} \exists x A(x)}{\{1\} A\left(f\left(y_{1}, \ldots, y_{k}\right)\right)} \frac{\{0\} \exists x A(x)}{\{0\} A(z)} \frac{\{u\} \exists x A(x)}{\{u\} A\left(f\left(y_{1}, \ldots y_{k}\right)\right)} \frac{\{u, 0\} \exists x A(x)}{\{u, 0\} A(z)}
$$

where

- z is a new free variable
- y_{1}, \ldots, y_{k} are the free variables in $\exists x A(x)$
- f is a new function symbol

\mathcal{L}_{3} : Tableau rules for \forall

$$
\begin{aligned}
& \frac{\{1\} \forall x A(x)}{\{1\} A(z)} \frac{\{0\} \forall x A(x)}{\{0\} A\left(f\left(y_{1}, \ldots, y_{k}\right)\right.} \frac{\{u\} \forall x A(x)}{\{u\} A\left(f\left(y_{1}, \ldots y_{k}\right)\right)}\{u, 0\} \forall x A(x) \\
&\{u, 0\} A\left(f\left(y_{1}, \ldots, y_{k}\right)\right) \\
&\{u, 1\} A(z)
\end{aligned}
$$

where

- z is a new free variable
- y_{1}, \ldots, y_{k} are the free variables in $\forall x A(x)$
- f is a new function symbol

Soundness

Theorem (Soundness of the tableau calculus for \mathcal{L}_{3})
Let F be a \mathcal{L}_{3}-formula without free variables. If there exists a closed tableau T for $\{u, 0\} F$, then F is an \mathcal{L}_{3}-tautology (it is valid).

Proof: Let T be a tableau for F. The following are equivalent:
(1) F is satisfiable
(2) T is satisfiable (i.e. there exists a Σ-structure \mathcal{A} such that for each assignment β there is a path P_{β} in T such that $\mathcal{A}, \beta \models F$, for each formula F on P_{β}.
$(2) \Rightarrow(1)$ is obvious.
$(1) \Rightarrow(2)$ can be proved by induction on the structure of the tableau T.

Refutational completeness

Theorem (Refutational completeness)

Let F be a \mathcal{L}_{3}-tautology. Then we can construct a closed tableau for $\{u, 0\} F$. (The order in which we apply the expansion rules is not important).

Proof (Idea): Assume that we cannot construct a closed tableau. If we can construct a finite tableau which is not closed, from the previous result we know that F is clearly satisfiable.

Otherwise, as in the proof for classical logic, we define a fair tableau expansion process which "converges" towards an infinite tableau T. We analyze all non-closed paths of T (on which the " γ "-rules are applied an infinite number of times); we show that for every such path we can order the formula on such path according to a certain ordering and incrementally construct a model for the formulae on that path. This model will then be a model of the formula F.
(The argument can be used for every non-classical logic.)

Resolution

Goal:

Extend the resolution rule such that it takes into account sets of truth values.

Resolution

Classical logic:

Task: prove that F is valid
Method: prove that $\neg F$ is unsatisfiable:

- assume $\neg F$; derive a contradiction.

Many-valued logic:
Task: prove that F is valid

$$
\text { (i.e. } \mathcal{A}(\beta)(F) \in D \text { for all } \mathcal{A}, \beta)
$$

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \backslash D$:

- assume $F \in M \backslash D$; derive a contradiction.
F^{v} : abbreviation for $\{v\}: F$.
$S: F=\bigvee_{v \in S} F^{v}$.

Resolution

Natural generalization of the resolution rule:
Signed resolution

$$
\frac{L_{1}^{v_{1}} \vee C \quad L_{2}^{v_{2}} \vee D}{(C \vee D) \sigma}
$$

if $v_{1} \neq v_{2}$, and $\sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)$
Signed factoring

$$
\frac{C \vee L_{1}^{v} \vee L_{2}^{v}}{\left(C \vee L_{1}^{v}\right) \sigma}
$$

if $\sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)$

Resolution

Needed:
Method for computing a conjunctive normal form

Example: Classical propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q)$							
P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Classical propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

Example: Classical propositional logic

$F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

DNF: $\quad(\neg P \wedge Q \wedge \neg R) \vee(\neg P \wedge Q \wedge R) \vee(P \wedge \neg Q \wedge R) \vee(P \wedge Q \wedge R)$

Example: Classical propositional logic

$$
F: \quad(P \vee Q) \wedge((\neg P \wedge Q) \vee R)
$$

P	Q	R	$(P \vee Q)$	$\neg P$	$(\neg P \wedge Q)$	$((\neg P \wedge Q) \vee R)$	F	$\neg F$
0	0	0	0	1	0	0	0	1
0	0	1	0	1	0	1	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	1	1	1	1	0
1	0	0	1	0	0	0	0	1
1	0	1	1	0	0	1	1	0
1	1	0	1	0	0	0	0	1
1	1	1	1	0	0	1	1	0

CNF: (1) DNF of $\neg F$:

$$
(\neg P \wedge \neg Q \wedge \neg R) \vee(\neg P \wedge \neg Q \wedge R) \vee(P \wedge \neg Q \wedge \neg R) \vee(P \wedge Q \wedge \neg R)
$$

(2) negate:
$(P \vee Q \vee R) \wedge(P \vee Q \vee \neg R) \wedge(\neg P \vee Q \vee R) \wedge(\neg P \vee \neg Q \vee R)$

Signed resolution: Propositional logic

Translation to signed clause form.

$$
\begin{aligned}
& \Psi=S: f\left(F_{1}, \ldots, F_{n}\right) \\
& \operatorname{DNF}(\Psi):=\bigvee_{\substack{v_{1}, \ldots, v_{n} \in M \\
f_{M}\left(v_{1}, \ldots, v_{n}\right) \in S}} F_{1}^{v_{1}} \wedge \cdots \wedge F_{n}^{v_{n}}
\end{aligned}
$$

$$
C N F(\Psi):=\quad \bigwedge \quad\left(M \backslash\left\{v_{1}\right\}\right): F_{1} \vee \cdots \vee\left(M \backslash\left\{v_{n}\right\}\right): F_{n}
$$

$$
\begin{aligned}
& f_{M}\left(v_{1}, \ldots, v_{n} \in M\right. \\
& \left.\left.v_{n}\right) \neq v_{n}\right)
\end{aligned}
$$

$$
\text { (negate } \operatorname{DNF}\left(M \backslash S: f\left(F_{1}, \ldots, F_{n}\right)\right) \text {) }
$$

Example

\Rightarrow	0	$\frac{1}{2}$	1
0	1	1	1
$\frac{1}{2}$	$\frac{1}{2}$	1	1
1	0	$\frac{1}{2}$	1

Compute CNF for $\{0\}:\left(F_{1} \rightarrow F_{2}\right)$:
DNF for $\left\{\frac{1}{2}, 1\right\}:\left(F_{1} \rightarrow F_{2}\right): \quad \bigvee \quad\left\{v_{1}\right\}: F_{1} \wedge\left\{v_{2}\right\}: F_{2}$

\[

\]

CNF for $\{0\}:\left(F_{1} \rightarrow F_{2}\right)$:

$$
\begin{aligned}
& \left(\left\{\frac{1}{2}, 1\right\}: F_{1} \vee\left\{\frac{1}{2}, 1\right\}: F_{2}\right) \wedge\left(\left\{\frac{1}{2}, 1\right\}: F_{1} \vee\{0,1\}: F_{2}\right) \wedge\left(\left\{\frac{1}{2}, 1\right\}: F_{1} \vee\left\{0, \frac{1}{2}\right\}: F_{2}\right) \\
& \left(\{0,1\}: F_{1} \vee\left\{\frac{1}{2}, 1\right\}: F_{2}\right) \wedge\left(\{0,1\}: F_{1} \vee\{0,1\}: F_{2}\right) \wedge\left(\{0,1\}: F_{1} \vee\left\{0, \frac{1}{2}\right\}: F_{2}\right) \\
& \left(\left\{0, \frac{1}{2}\right\}: F_{1} \vee\{0,1\}: F_{2}\right) \wedge\left(\left\{0, \frac{1}{2}\right\}: F_{1}^{1} \vee\left\{0, \frac{1}{2}\right\}: F_{2}^{1}\right)
\end{aligned}
$$

Example

\Rightarrow	0	$\frac{1}{2}$	1
0	1	1	1
$\frac{1}{2}$	$\frac{1}{2}$	1	1
1	0	$\frac{1}{2}$	1

Compute CNF for $\{0\}:\left(F_{1} \rightarrow F_{2}\right)$:
DNF for $\left\{\frac{1}{2}, 1\right\}:\left(F_{1} \rightarrow F_{2}\right): \quad \bigvee \quad\left\{v_{1}\right\}: F_{1} \wedge\left\{v_{2}\right\}: F_{2}$

$$
\begin{aligned}
& \begin{array}{c}
v_{1}, v_{2} \in\left\{0, \frac{1}{2}, 1\right\} \\
v_{1} \Rightarrow v_{2} \neq 0
\end{array} \\
& =\left(F_{1}^{0} \wedge F_{2}^{\left\{0, \frac{1}{2}, 1\right\}}\right) \vee\left(F_{1}^{\frac{1}{2}} \wedge F_{2}^{\left\{0, \frac{1}{2}, 1\right\}}\right) \vee\left(F_{1}^{1} \wedge F_{2}^{\left\{\frac{1}{2}, 1\right\}}\right) \\
& =F_{1}^{0} \vee F_{1}^{\frac{1}{2}} \vee\left(F_{1}^{1} \wedge F_{2}^{\left\{\frac{1}{2}, 1\right\}}\right)
\end{aligned}
$$

CNF for $\{0\}:\left(F_{1} \rightarrow F_{2}\right)$:

$$
\left\{\frac{1}{2}, 1\right\}: F_{1} \wedge\{0,1\}: F_{1} \wedge\left(\left\{0, \frac{1}{2}\right\}: F_{1} \vee\{0\}: F_{2}\right)
$$

Optimization

$$
\begin{aligned}
& \Psi=S: f\left(F_{1}, \ldots, F_{n}\right) \\
& \operatorname{DNF}(\Psi):=\bigvee_{v_{1}, \ldots, v_{n-1} \in M}\left\{v_{1}\right\}: F_{1} \wedge \cdots \wedge\left\{v_{n-1}\right\}: F_{n-1} \wedge\left\{v_{n} \mid f_{M}\left(v_{1}, \ldots, v_{n}\right) \in S\right\}: F_{n} \\
& \left.\operatorname{CNF}(\Psi):=\bigwedge_{\quad\left(M \backslash\left\{v_{1}\right\}\right): F_{1} \vee \cdots \vee\left(M \backslash\left\{v_{n-1}\right\}\right): F_{n-1} \vee\left\{v_{n} \mid f_{M}\left(v_{1}, \ldots, v_{n}\right) \in S\right\}: F_{n}}^{\quad(\text { negate }} \operatorname{DNF}\left(M \backslash S: f\left(F_{1}, \ldots, F_{n}\right)\right)\right)
\end{aligned}
$$

Soundness

Signed resolution (propositional form)

$$
\frac{P^{v_{1}} \vee C \quad P^{v_{2}} \vee D}{C \vee D}
$$

if $v_{1} \neq v_{2}$
Signed factoring (propositional form)

$$
\frac{C \vee P^{v} \vee P^{\vee}}{C \vee P^{\vee}}
$$

Soundness

Theorem. The signed resolution inference rule is sound.

Proof (propositional case)
Let \mathcal{A} be a valuation such that $\mathcal{A} \models P^{v_{1}} \vee C$ and $\mathcal{A} \vDash P^{v_{2}} \vee D$.
Case 1: $\mathcal{A} \models P^{v_{1}}$. Then $\mathcal{A}(P)=v_{1}$, hence $\mathcal{A}(P) \neq v_{2}$. Therefore, $\mathcal{A} \models D$. Hence, $\mathcal{A} \vDash C \vee D$.

Case 2: $\mathcal{A} \not \vDash P^{v_{1}}$. Then $\mathcal{A} \vDash C$.
Hence also in this case $\mathcal{A} \models C \vee D$.
Soundness of signed factoring is obvious.

Completeness: Propositional Logic

Encoding into first-order logic with equality
Signed resolution

$$
\frac{P \approx v_{1} \vee C \quad P \approx v_{2} \vee D}{(C \vee D)} \quad \text { if } v_{1} \neq v_{2}
$$

Signed factoring

$$
\frac{C \vee P \approx v \vee P \approx v}{C}
$$

Idea: Signed resolution can be simulated by a version of resolution which handles equality efficiently (superposition). Completeness then follows from the completeness of this refinement of resolution.
This also guarantees completeness of refinements of signed resolution with ordering and selection functions

Compact form of signed resolution

Propositional logic
Signs: sets of truth values

Resolution

$$
\frac{S_{1}: P \vee C \quad S_{2}: P \vee D}{\left(S_{1} \cap S_{2}\right): P \vee C \vee D} \quad \text { if } S_{1} \cap S_{2}=\emptyset
$$

Simplificaton

$$
\frac{C \vee \emptyset: P}{C}
$$

Merging

$$
\frac{S_{1}: P \vee S_{2}: P \vee C}{\left(S_{1} \cup S_{2}\right): P \vee C}
$$

First-order logic

Translation to clause form:
need to take into account also the truth tables of the quantifiers.
$S: Q x F(x)$
DNF: $\bigvee_{\substack{\phi \neq V \subseteq M \\ Q_{M}(V) \in S}}\left(\forall x V: F(x) \wedge \bigwedge_{a \in V} \exists x\{a\}: F(x)\right)$

CNF: computed by negating the DNF for $M \backslash S: \forall x F(x)$
CNF: $\wedge_{Q_{M}(V) \in(M \backslash S)}^{\emptyset \neq V \subseteq M}\left(\exists x(M \backslash V): F(x) \vee \bigvee_{a \in V} \forall x(M \backslash\{a\}): F(x)\right)$
\mapsto leave out quantifiers (Skolem functions for existential quantifier)

Example

In \mathcal{L}_{3}, with truth values $M=\{0, u, 1\}$:
$\{1, u\} \forall x p(x)$

$$
\begin{array}{rlrl}
\Rightarrow & \wedge_{\min (V) \in\{0\}}^{\emptyset \neq V \subseteq M}\left(\exists x(M \backslash V): F(x) \vee \bigvee_{a \in\{0\}} \forall x(M \backslash\{a\}): F(x)\right) & \\
\Rightarrow & (\exists x\{1, u\}: p(x) \vee \forall x(M \backslash\{0\}): p(x)) \wedge & & \\
& (\exists x\{u\}: p(x) \vee \forall x\{1, u\}: p(x) \vee \forall x\{0, u\}: p(x)) \wedge & & =\{0\} \\
& (\exists x\{1\}: p(x) \vee \forall x\{1, u\}: p(x) \vee \forall x\{0,1\}: p(x)) \wedge & V & =\{0,1\} \\
& \forall x\{1, u\}: p(x) \vee \forall x\{0,1\}: p(x) \vee \forall x\{0, u\}: p(x)) & V & =\{0, u\} \\
& & (\exists x)
\end{array}
$$

Structure-preserving translation

In order to avoid rapid growth of the number of clauses, a structurepreserving translation to clause form is used.

Idea
$S: F[G(x)] \Rightarrow S: F\left[P_{G(x)}(x)\right] \wedge \bigwedge_{a \in M} \forall x\left(\{a\} G(x) \leftrightarrow\{a\}: P_{G(x)}(x)\right)$
where $P_{G(x)}$ new predicate symbol.
$S: F[\underbrace{f\left(F_{1}, \ldots, F_{n}\right)}_{G}]$

$$
\Rightarrow \quad S: F\left[P_{G}\right] \wedge \bigwedge_{a \in M} \forall x\left(\operatorname{DNF}\left(\{a\}: f\left(F_{1}, \ldots, F_{n}\right) \leftrightarrow\{a\}: P_{G}\right)\right.
$$

Resolution for first-order clauses

Natural generalization of the resolution rule:
Signed resolution

$$
\frac{L_{1}^{V_{1}} \vee C \quad L_{2}^{V_{2}} \vee D}{(C \vee D) \sigma}
$$

if $v_{1} \neq v_{2}$, and $\sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)$
Signed factoring

$$
\frac{C \vee L_{1}^{v} \vee L_{2}^{v}}{\left(C \vee L_{1}^{v}\right) \sigma}
$$

if $\sigma=\operatorname{mgu}\left(L_{1}, L_{2}\right)$

Regular logics

Many-valued logics for which an order \leq exists on the sets of truth values and for which signed CNF's can be found which contain as signs only the sets

$$
\uparrow i=\{j \in M \mid j \geq i\} \text { and } \downarrow i=\{j \in M \mid j \leq i\}
$$

Regular logics

Many-valued logics for which an order \leq exists on the sets of truth values and for which signed CNF's can be found which contain as signs only the sets

$$
\uparrow i=\{j \in M \mid j \geq i\} \text { and } \downarrow i=\{j \in M \mid j \leq i\}
$$

Example

Łukasiewicz logics \mathcal{L}_{n}

- Set of truth values $M=\left\{0, \frac{1}{n-1}, \frac{2}{n-1}, \ldots, 1\right\}$
- Logical operations: $\vee, \wedge, \neg, \Rightarrow$
- $V_{t_{n}}=\max$
- $\wedge_{t_{n}}=\min$
- $\neg \mathrm{t}_{n} x=1-x$
- $x \Rightarrow_{\mathbf{t}_{n}} y=\min (1,1-x+y)$
- First-order version: $\mathcal{Q}=\{\forall, \exists\}$

Łukasiewicz logics

Łukasiewicz implication $x \Rightarrow_{Ł_{n}} y=\min (1,1-x+y)$
\mathcal{L}_{n}

\Rightarrow	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	\ldots	$\frac{n-2}{n-1}$	1
0	1	1	1	\ldots	1	1
$\frac{1}{n-1}$	$\frac{n-2}{n-1}$	1	1	\ldots	1	1
$\frac{2}{n-1}$	$\frac{n-3}{n-1}$	$\frac{n-2}{n-1}$	1	\ldots	1	1
\ldots						
1	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	\ldots	$\frac{n-2}{n-1}$	1

Example

$\uparrow i:\left(F_{1} \wedge F_{2}\right) \mapsto\left(\uparrow i: F_{1}\right) \wedge\left(\uparrow i: F_{2}\right)$
$\uparrow i:\left(F_{1} \vee F_{2}\right) \mapsto\left(\uparrow i: F_{1}\right) \vee\left(\uparrow i: F_{2}\right)$
$\uparrow i: \neg F \quad \mapsto \downarrow(1-i): F$
$\uparrow i: F_{1} \Rightarrow F_{2} \mapsto \bigvee_{j \in M}\left(\downarrow j: F_{1} \wedge \uparrow(i+j-1): F_{2}\right.$

Similar for $\downarrow i: F$
signed CNFs can be obtained using the transformation rules above (and possibly negation).

Applications of many-valued logic

- independence proofs
- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification)

Applications of many-valued logic

- independence proofs
- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification)

Independence proofs

Task: Check independence of axioms in axiom systems [Bernays 1926] Here: Example: Axiom system for propositional logic K_{1}

$$
\begin{aligned}
& \operatorname{Ax1} p_{1} \Rightarrow\left(p_{2} \Rightarrow p_{1}\right) \\
& \operatorname{Ax2}\left(\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow p_{1}\right) \Rightarrow p_{1} \\
& \mathbf{A x 3}\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\left(p_{2} \Rightarrow p_{3}\right) \Rightarrow\left(p_{1} \Rightarrow p_{3}\right)\right) \\
& \operatorname{Ax4}\left(p_{1} \wedge p_{2}\right) \Rightarrow p_{1} \\
& \operatorname{Ax5}\left(p_{1} \wedge p_{2}\right) \Rightarrow p_{2} \\
& \left.\operatorname{Ax6}\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\left(p_{1} \Rightarrow p_{3}\right) \Rightarrow p_{1} \Rightarrow p_{2} \wedge p_{3}\right)\right) \\
& \operatorname{Ax7} p_{1} \Rightarrow\left(p_{1} \vee p_{2}\right) \\
& \mathbf{A x 8} p_{2} \Rightarrow\left(p_{1} \vee p_{2}\right)
\end{aligned}
$$

Axiom system: K_{1}

$\left.\mathrm{Ax} 9\left(p_{1} \Rightarrow p_{3}\right) \Rightarrow\left(\left(p_{2} \Rightarrow p_{3}\right) \Rightarrow p_{1} \vee p_{2} \Rightarrow p_{3}\right)\right)$
$\operatorname{Ax10}\left(p_{1} \approx p_{2}\right) \Rightarrow\left(p_{1} \Rightarrow p_{2}\right)$
$\operatorname{Ax11}\left(p_{1} \approx p_{2}\right) \Rightarrow\left(p_{2} \Rightarrow p_{1}\right)$
$\left.\operatorname{Ax12}\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\left(p_{2} \Rightarrow p_{1}\right) \Rightarrow p_{1} \approx p_{2}\right)\right)$
$\operatorname{Ax13}\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\neg p_{2} \Rightarrow \neg p_{1}\right)$
Ax14 $p_{1} \Rightarrow \neg \neg p_{1}$
$\operatorname{Ax15} \neg \neg p_{1} \Rightarrow p_{1}$
Inference rule: Modus Ponens: $\frac{H \quad H \Rightarrow G}{G}$

Independence

Definition: An axiom system K is independent iff for every axiom $A \in K$, A is not provable from $K \backslash\{A\}$.

We will show that $A \times 2$ is independent

Independence

Definition: An axiom system K is independent iff for every axiom $A \in K$, A is not provable from $K \backslash\{A\}$.

We will show that $A \times 2$ is independent

Idea: We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}$, $D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A x 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.

Independence

From $1,2,3$ it follows that every formula which can be proved from $K_{1} \backslash A \times 2$ is a tautology.

Hence - since $A \times 2$ is not a tautology $-K_{1} \backslash\{A \times 2\} \not \models A \times 2$.

Proof

We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A \times 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.

Proof

We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A x 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.
4. Routine (check all axioms in $K_{1} \backslash\{A \times 2\}$).

Proof

We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A \times 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.
4. Analyze the truth table of \Rightarrow.

Assume H is a tautology and $H \Rightarrow G$ is a tautology.
Let $\mathcal{A}: \Pi \rightarrow\{0, u, 1\}$.
Then $\mathcal{A}(H)=1$ and $\mathcal{A}(H \Rightarrow G)=1$, so $\mathcal{A}(G)=1$.

Proof

We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A x 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.
4. Let $\mathcal{A}: \Pi \rightarrow\{0, u, 1\}$ with $\mathcal{A}\left(p_{1}\right)=u$ and $\mathcal{A}\left(p_{2}\right)=0$.

Then

$$
\begin{aligned}
\mathcal{A}\left(\left(\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow p_{1}\right) \Rightarrow p_{1}\right) & =((u \Rightarrow 0) \Rightarrow u) \Rightarrow u \\
& =(u \Rightarrow u) \Rightarrow u=u
\end{aligned}
$$

