
Non-classical logics

Lecture 9 + 10:

– Many-valued logics: Applications in verification

– Infinitely-valued logics

4.12.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

• Many-valued logic (finitely-valued)

History and Motivation

Syntax /Semantics

Functional completeness

Automated reasoning: Tableaux, Resolution

Applications: logic

2

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

3

Applications of many-valued logic

• independence proofs last time

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification) today

4

Shape analysis

Shape Analysis is an important and well covered part of static program

analysis.

The central role in shape analysis is played by the set U of abstract stores.

U is perceived as the abstraction of the locations program variables can

point to.

In an object-oriented context U can be viewed as an abstraction of the set

of all objects existing at a snapshot during program execution

5

Shape analysis

U set of abstract stores.

X set of program variables.

Abstract state of a program at a given snapshot:

• Structure S = (U, {x : U → {0, 1}}x∈X ∪ Additional predicates)

x(v) = 1 (also denoted S |= x[v]) iff variable x points to store v .

For any abstract state S and any program variable x we require that the

unary predicate x holds true of at most one store, i.e. we require

S |= ∀s1∀s2((x(s1) ∧ x(s2)) → s1 = s2).

It is possible that x does not point to any store, i.e. S |= ∀s(¬x(s)).

6

Shape analysis

Additional predicates on S depend on the specific program/task

Example: next : U2 → {0, 1}

Examples of properties:

∃s x(s) x does not point to null

∀s(¬(x(s) ∧ t(s))) x and t do not point to the same store

∃s is(s) the list defined by next contains a shared node

We have used the abbreviation

is(s) = ∃s1∃s2(next(s1, s) ∧ next(s2, s) ∧ s1 6= s2)

Goal: prove for a given program, or a given program part, that a certain

property holds at every program state, or every stable program state.

7

Example: List reversing

Goal: Cycle-freeness of a list pointer structure is preserved by the algorithm

reversing the list.

Describing cycle-freeness

1. ¬∃v(next(v , n) n is the store representing the head of the list

2. ∀v∀w(next(m, v) ∧ next(m,w) → v = w) for all stores m reachable

from n,

3. ¬is(m) for all stores m reachable from n.

Remark:

If conditions 1.–3. hold then the list with entry point n cannot be cyclic.

We concentrate here on showing the preservation of the formula is(s).

8

Example: List reversing

Algorithm for list reversing:

class ReverseList {

int value;

ReverseList next;

public ReverseList reverse() {

ReverseList t, y= null, x = this;

while (x != null) {

st1: t=y;

st2: y=x;

st3: x=x.next;

st4: y.next = t;}

return y;}}

9

Example: List reversing

Task:

Assume that at the beginning of the while loop S |= ¬is(n) is true for all

stores n in the list.

Show that in the state Se after execution of the while loop again

Se |= ¬is(n) holds true for all n.

Problem: Since we cannot make any assumptions on the set of stores U at

the start of the while-loop we need to investigate infinitely many structures,

which obviously is not possible.

10

Shape analysis

Idea [Mooly Sagiv, Thomas Reps and Reinhard Wilhelm]

Use of three-valued structures to approximate two-valued structures.

More precisely, we try to find finitely many three-valued structures S3
1 , ...,S3

k

such that for an arbitrary two-valued abstract state S that may be possible

before the while-loop starts there is a surjective mapping F from S onto

one of the S3
i for 1 ≤ i ≤ k with S ⊑F S3

i , i.e.

• for all n-ary predicate symbols p and all b1, . . . , bn ∈ US we have:

p
S3
i

(F (b1), . . . ,F (bn)) ≤i pS(b1, . . . , bn)

bb where a ≤i b iff a = b or a = 1
2

(every possible initial state has an abstraction among S3
1 , ...,S3

k
)

11

Shape analysis

Plan:

Step 1:

For every three-valued structure S3
i we will define an algorithm to compute

a three-valued structure S3
i ,e .

We think of S3
i ,e as the three-valued state reached after execution of αr

(the body of the while-loop) when started in S3
i .

If S is a two-valued state it is fairly straight forward to compute the

two-valued state Se that is reached after executing αr starting with S, since

the commands in αr are so simple.

The construction of S3
i ,e will be done such that S ⊑F S3

i implies Se ⊑F S3
i ,e .

12

Shape analysis

Plan:

Step 2:

Determine a set M0 of abstract three-valued states to start with.

13

Shape analysis

Plan:

Step 3:

At iteration k(k ≥ 1) we are dealing with a set Mk−1 of abstract

three-valued states.

We try to prove for every S3 ∈ Mk−1 that if S3 |= ∀s(¬is(s))) then

S3
e |= (∀s(¬is(s))).

It will then follow that for any two-valued state S that is reachable with

k − 1 iterations of αr :

S |= ∀¬is(s) ⇒ Se |= ∀s¬is(s)

If we succeed we set

Mk = {S3
e |S

3 ∈ Mk−1}

14

Shape analysis

Plan:

Step 3 (continued)

If Mk ⊆ Mk−1 we are finished and the claim is positively established.

Otherwise we repeat step 3 with Mk .

If for one S3 ∈ Mk−1, ∀s(¬is(s))) evaluated to 0 then our conjecture was

false.

If for one S3 ∈ Mk−1, ∀s(¬is(s))) evaluated to 1
2

then this result is

inconclusive. Should this happen we need to iterate the procedure with a

larger set M′

k−1.

There is, unfortunately, no guarantee that this iteration will come to a con-

clusive end in the general case.

15

Shape analysis

[Example on the blackboard]

cf. also P.H. Schmidt’s lecture notes, Section 2.4.4 (pages

91-100).

16

Conclusions

• Finitely-valued logics: natural generalization of classical logic

• Tableau calculi

• Resolution

extend in a natural way

• Applications

Similar results also for logics with infinitely many truth values?

17

Infinitely-Valued Logics

18

 Lukasiewicz logics

 Lukasiewicz logics

Ln, n ∈ N Wn = {0, 1
n−1

, 2
n−1

, . . . , 1}

Lℵ0
Wℵ0

= [0, 1] ∩ Q

Lℵ1
Wℵ1

= [0, 1]

Logical operations: ∨,∧,¬,⇒

• ∨ = max

• ∧ = min

• ¬x = 1 − x

• x ⇒ y = min(1, 1 − x + y)

19

 Lukasiewicz logics

 Lukasiewicz implication x ⇒ Ln
y = min(1, 1 − x + y)

Ln

⇒ 0 1
n−1

2
n−1 . . .

n−2
n−1 1

0 1 1 1 . . . 1 1

1
n−1

n−2
n−1 1 1 . . . 1 1

2
n−1

n−3
n−1

n−2
n−1 1 . . . 1 1

. . .

1 0 1
n−1

2
n−1 . . .

n−2
n−1 1

20

 Lukasiewicz logics

Theorems.

1. For n,m ∈ N, s.t. (m − 1)|(n − 1), we have

Tautologies(Ln) ⊆ Tautologies(Lm)

2. Tautologies(Lℵ0
) = Tautologies(Lℵ1

)

3. Tautologies(Lℵ0
) =

⋂
{Tautologies(Ln) | n ≥ 2, n ∈ N}

21

Proofs

Theorem. For n,m ∈ N, s.t. (m − 1)|(n − 1), we have

Tautologies(Ln) ⊆ Tautologies(Lm)

Proof

Assume (m − 1)|(n − 1). Then Wm ⊆ Wn. Assume F ∈ Tautologies(Ln).

Then F evaluates to 1 under every valuation into Wn, hence also under

every valuation into Wm, so F ∈ Tautologies(Lm)

22

Proofs

Theorem. For n,m ∈ N, s.t. (m − 1)|(n − 1), we have

Tautologies(Ln) ⊆ Tautologies(Lm)

Remark: the converse also holds

If Tautologies(Ln) ⊆ Tautologies(Lm) then (m − 1)|(n − 1).

(This will be discussed in the next exercise session.)

23

Proofs

Theorem.

Tautologies(Lℵ0
) = Tautologies(Lℵ1

)

Proof.

” ⊇ ” : Since [0, 1] ∩ Q ⊆ [0, 1], it is clear that

Tautologies(Lℵ1
) ⊆ Tautologies(Lℵ0

)

24

Proofs

Theorem.

Tautologies(Lℵ0
) = Tautologies(Lℵ1

)

Proof.
” ⊆ ” : Let F ∈ Tautologies(Lℵ0

). Then for every assignment of values in [0, 1] ∩ Q

to the propositional variables {P1, . . . , Pn} of F evaluates to 1.

We can associate a function fF : [0, 1]n → [0, 1] with F which is defined as follows:

For all (x1, . . . , xn) ∈ [0, 1]n let A : {P1, . . . , Pn} → [0, 1] be defined by A(Pi) = xi .

We define fF (x1, . . . , xn) := A(F)

It can be proved by structural induction that fF is a continuous function.

Let (a1, . . . , an) ∈ [0, 1]n. It is now sufficient to choose sequences of rational numbers

converging to a1, . . . , an respectively. fF (a1, . . . , an) is the limit of the sequence

defined this way, hence its value is 1.

25

Proofs

Tautologies(Lℵ0
) =

⋂
{Tautologies(Ln) | n ≥ 2, n ∈ N}

Proof.

” ⊆ ” : Follows from the fact that Wn ⊆ [0, 1] ∩ Q for every n ∈ N.

26

Proofs

Tautologies(Lℵ0
) =

⋂
{Tautologies(Ln) | n ≥ 2, n ∈ N}

Proof. ” ⊇ ”

Let F be a formula with prop. variables {P1, . . . , Pk} s.t. F 6∈ Tautologies(Lℵ0
).

Then there exists A : {P1, . . . , Pk} → [0, 1] ∩ Q s.t. A(F) 6= 1.

Assume that A(P1) =
q1
p1

, . . . , A(Pk) =
qk
pk

Let m = lcm(p1, . . . , pk). Then it is easy to see that A(Pi) ∈ Wm+1 for all 1 ≤ i ≤ k.

We thus constructed a valuation A : {P1, . . . , Pk} → Wm such that A(F) 6= 1.

Hence, F 6∈ Tautologies(Lm), so

F 6∈
⋂

{Tautologies(Ln) | n ≥ 2, n ∈ N}

27

“Fuzzy” logics

W = [0, 1]

Question: How to define conjunction?

Answer: Desired conditions

f : [0, 1]2 → [0, 1] such that:

• f associative and commutative

• for all 0 ≤ A ≤ B ≤ 1 and all 0 ≤ C ≤ 1 we have f (A,C) ≤ f (B,C)

• for all 0 ≤ C ≤ 1 we have f (C , 1) = C .

Definition A function with the properties above is called a t-norm.

28

Examples of t-norms

Gödel t-norm fG (x , y) = min(x , y)

 Lukasiewicz t-norm f L(x , y) = max(0, x + y − 1)

Product t-norm fP(x , y) = x · y

29

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every x , y ∈ [0, 1] and

every sequence {xn}n∈N with 0 ≤ xn ≤ x and limn→∞xn = x we have

limn→∞f (xn, y) = f (x , y).

30

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every x , y ∈ [0, 1] and

every sequence {xn}n∈N with 0 ≤ xn ≤ x and limn→∞xn = x we have

limn→∞f (xn, y) = f (x , y).

The following t-norms are left continuous:

Gödel t-norm fG (x , y) = min(x , y)

 Lukasiewicz t-norm f L(x , y) = max(0, x + y − 1)

Product t-norm fP(x , y) = x · y

31

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

Remark: Left continuity ensures that max{z | f (x , z) ≤ y} exists.

Validity: D = {1}

32

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

 Lukasiewicz t-norm

x ◦ L y = max(0, x + y − 1)

x ⊕ L y = 1 − max(0, 1 − x − y)

x ⇒f y = min(1, 1 − x + y)

¬x = min(1, 1 − x) = 1 − x

33

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

 Lukasiewicz t-norm

x ◦ L y = max(0, x + y − 1) x ∧ L y = x ◦ L (x ⇒ y)

x ⊕ L y = 1 − max(0, 1 − x − y) x ∨ L y = ¬ L((¬ Lx) ∧ L (¬ Ly))

x ⇒f y = min(1, 1 − x + y)

¬x = min(1, 1 − x) = 1 − x

34

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

Gödel t-norm

x ◦G y = min(x , y)

x ⊕G y = max(x , y)

x ⇒G y = max{z | x ∧ z ≤ y} =

{

1 if x ≤ y

y if x > y

¬G x = max{z | x ∧ z = 0) =

{

1 if x = 0

0 if x > 0

35

Checking validity of formulae in fuzzy logics

Given: F formula in a t-norm based fuzzy logic formed with the

operations {◦,⊕,¬,⇒} (and also ∨,∧ if definable)

Task: Check whether F is valid (a tautology)

i.e. whether for all A : X → [0, 1], A(F) = 1

Idea:

Assume that there exists A : X → [0, 1] such that A(F) 6= 1.

Derive a contradiction.

Let P1, . . . ,Pn be the propositional variables which occur in F .

Check whether ∃x1, . . . , xnF (x1, . . . , xm) 6= 1 is satisfiable in

A = ([0, 1], {◦f ,⊕f ,¬f ,→f ,↔f }).

36

Example 1: Lukasiewicz logic L = Lα1

F F-formula, where F = {∨,∧, ◦,¬,→,↔}.

Let P1, . . . ,Pn be the propositional variables which occur in F .

Check whether ∃x1, . . . , xnF (x1, . . . , xm) 6= 1 is satisfiable in

[0, 1] L = ([0, 1], {∨,∧, ◦,¬,→})

where ∨,∧,¬,→,↔ are the operations induced by the t-norm

f L(x , y) = max(0, x + y − 1), i.e.:

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

(Def¬ L
) ¬x = 1 − x

37

Example 1: Lukasiewicz logic L = Lα1

F F-formula, where F = {∨,∧, ◦,¬,→,↔}.

Remark: The following are equivalent:

(1) F (x1, . . . , xm) 6= 1 is satisfiable in [0, 1] L = ([0, 1], {∨,∧, ◦,¬,→}),

where ∨,∧,¬,→,↔ are the operations induced by the t-norm f L

(2) Def L ∧ F (x1, . . . , xm) 6= 1 satisfiable in [0, 1].

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

(Def¬ L
) ¬x = 1 − x

38

Example

To show: ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) is a tautology

New task: Def L ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

unsatisfiable

where (Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

39

Example

New task: Def L ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

unsatisfiable

where (Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

1. Rename subterms starting with L-operators and expand definitions:

p = x ⇒ 0 s 6= 1 x ≤ 0 → x ⇒ 0 = 1 x > 0 → x ⇒ 0 = 1 − x + 0
q = p ⇒ 0 p ≤ 0 → p ⇒ 0 = 1 p > 0 → p ⇒ 0 = 1 − p + 0
r = x ∨ y q ≤ r → q ⇒ r = 1 q > r → q ⇒ r = 1 − q + r

s = q ⇒ r x ≤ y → x ∨ y = y x > y → x ∨ y = x

40

Example

New task: Def L ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

unsatisfiable

where (Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

2. Replace terms starting with L-operations; SAT checking in [0, 1]

p = x ⇒ 0 s 6= 1 x ≤ 0 → p = 1 x > 0 → p = 1 − x + 0
q = p ⇒ 0 p ≤ 0 → q = 1 p > 0 → q = 1 − p + 0
r = x ∨ y q ≤ r → s = 1 q > r → s = 1 − q + r

s = q ⇒ r x ≤ y → r = y x > y → r = x

41

Reduction to checking constraints over [0, 1]

Reduction to checking satisfiability in [0, 1] of constraints in linear arithmetic

(implications of LA expressions).

NP complete [Sonntag’85]

Similar techniques can be used also for Gödel logics (with the Gödel

t-norm).

This method was first described (in a slightly more general context) in:

Viorica Sofronie-Stokkermans and Carsten Ihlemann,

”Automated reasoning in some local extensions of ordered structures.”

Proceedings of ISMVL’07, IEEE Press, paper 1, 2007.

and (with full proofs) in

Viorica Sofronie-Stokkermans and Carsten Ihlemann,

”Automated reasoning in some local extensions of ordered structures.”

Journal of Multiple-Valued Logics and Soft Computing

(Special issue dedicated to ISMVL’07) 13 (4-6), 397-414, 2007.

42

Example 1: Gödel logic

F F-formula, where F = {∨,∧,¬,→,↔}.

Let P1, . . . ,Pn be the propositional variables which occur in F .

Check whether ∃x1, . . . , xnF (x1, . . . , xm) 6= 1 is satisfiable in

[0, 1]G = ([0, 1], {∨,∧, ◦,¬,→})

where ∨,∧,¬,→,↔ are the operations induced by the t-norm

fG(x , y) = min(x , y), i.e.:

(Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

43

Example

Check whether ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) is a tautology in the Gödel logic.

New task: DefG ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

satisfiable?

where (Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

44

Example

New task: DefG ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

satisfiable?

where (Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

1. Rename subterms starting with L-operators and expand definitions:

p = x ⇒ 0 s 6= 1 x ≤ 0 → x ⇒ 0 = 1 x > 0 → x ⇒ 0 = 0
q = p ⇒ 0 p ≤ 0 → p ⇒ 0 = 1 p > 0 → p ⇒ 0 = 0
r = x ∨ y q ≤ r → q ⇒ r = 1 q > r → q ⇒ r = r

s = q ⇒ r x ≤ y → x ∨ y = y x > y → x ∨ y = x

45

Example

New task: DefG ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

satisfiable?

where (Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

2. Replace terms starting with L-operations; SAT checking in [0, 1]

p = x ⇒ 0 s 6= 1 x ≤ 0 → p = 1 x > 0 → p = 0
q = p ⇒ 0 p ≤ 0 → q = 1 p > 0 → q = 0
r = x ∨ y q ≤ r → s = 1 q > r → s = r

s = q ⇒ r x ≤ y → r = y x > y → r = x

Satisfiable (e.g. by β(x)=β(y)= 1
2), so ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) not tautology

in Gödel logic.

46

Product logic

Similar techniques can be used also for the product logic

(with the product t-norm)

7→ non-linearity (hence higher complexity)

47

Many-Valued Logics

• Many-valued logics (finitely-valued)

History and Motivation

Syntax /Semantics

Functional completeness

Automated reasoning: Tableaux, Resolution

Applications: logic; verification

• Infinitely-valued logics

Examples: Lukasiewics logics Lℵ0
,Lℵ1

description of the tautologies

Fuzzy logics:

– t-norms, Lukasiewics, Gödel, Product t-norm

– Lukasiewics logic, Gödel logic, Product logic

– Automated methods for checking validity

48

