Non-classical logics

Lecture 9 + 10:

- Many-valued logics: Applications in verification
- Infinitely-valued logics

4.12.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

• Many-valued logic (finitely-valued)

History and Motivation

Syntax /Semantics

Functional completeness

Automated reasoning: Tableaux, Resolution

Applications: logic

Applications of many-valued logic

- independence proofs
- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification)

Applications of many-valued logic

• independence proofs

last time

- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification) today

Shape Analysis is an important and well covered part of static program analysis.

The central role in shape analysis is played by the set U of abstract stores. U is perceived as the abstraction of the locations program variables can point to.

In an object-oriented context U can be viewed as an abstraction of the set of all objects existing at a snapshot during program execution

U set of abstract stores.

X set of program variables.

Abstract state of a program at a given snapshot:

• Structure $S = (U, \{x : U \to \{0, 1\}\}_{x \in X} \cup \text{Additional predicates})$

x(v) = 1 (also denoted $S \models x[v]$) iff variable x points to store v.

For any abstract state S and any program variable x we require that the unary predicate x holds true of at most one store, i.e. we require

$$\mathcal{S} \models \forall s_1 \forall s_2((x(s_1) \land x(s_2)) \rightarrow s_1 = s_2).$$

It is possible that x does not point to any store, i.e. $S \models \forall s(\neg x(s))$.

Additional predicates on S depend on the specific program/task Example: next : $U^2 \rightarrow \{0, 1\}$

Examples of properties:

 $\exists s \ x(s)$ x does not point to null $\forall s(\neg(x(s) \land t(s)))$ x and t do not point to the same store $\exists s \ is(s)$ the list defined by next contains a shared node

We have used the abbreviation

$$\mathsf{is}(s) = \exists s_1 \exists s_2(\mathsf{next}(s_1, s) \land \mathsf{next}(s_2, s) \land s_1 \neq s_2)$$

Goal: prove for a given program, or a given program part, that a certain property holds at every program state, or every stable program state.

Goal: Cycle-freeness of a list pointer structure is preserved by the algorithm reversing the list.

Describing cycle-freeness

- 1. $\neg \exists v(next(v, n) \ n \text{ is the store representing the head of the list})$
- 2. $\forall v \forall w (next(m, v) \land next(m, w) \rightarrow v = w)$ for all stores *m* reachable from *n*,
- 3. $\neg is(m)$ for all stores *m* reachable from *n*.

Remark:

If conditions 1.–3. hold then the list with entry point *n* cannot be cyclic.

We concentrate here on showing the preservation of the formula is(s).

Example: List reversing

Algorithm for list reversing:

```
class ReverseList {
```

int value;

```
ReverseList next;
```

```
public ReverseList reverse() {
    ReverseList t, y= null, x = this;
    while (x != null) {
        st1: t=y;
        st2: y=x;
        st3: x=x.next;
        st4: y.next = t;}
        return y;}
```

Example: List reversing

Task:

Assume that at the beginning of the while loop $S \models \neg is(n)$ is true for all stores *n* in the list.

Show that in the state S_e after execution of the while loop again $S_e \models \neg is(n)$ holds true for all n.

Problem: Since we cannot make any assumptions on the set of stores U at the start of the while-loop we need to investigate infinitely many structures, which obviously is not possible.

Idea [Mooly Sagiv, Thomas Reps and Reinhard Wilhelm]

Use of three-valued structures to approximate two-valued structures.

More precisely, we try to find finitely many three-valued structures $S_1^3, ..., S_k^3$ such that for an arbitrary two-valued abstract state S that may be possible before the while-loop starts there is a surjective mapping F from S onto one of the S_i^3 for $1 \le i \le k$ with $S \sqsubseteq^F S_i^3$, i.e.

• for all *n*-ary predicate symbols *p* and all $b_1, \ldots, b_n \in U_S$ we have:

$$p_{\mathcal{S}_i^3}(F(b_1),\ldots,F(b_n)) \leq_i p_{\mathcal{S}}(b_1,\ldots,b_n)$$

bb where $a \leq_i b$ iff a = b or $a = \frac{1}{2}$

(every possible initial state has an abstraction among $S_1^3, ..., S_k^3$)

Plan:

Step 1:

For every three-valued structure S_i^3 we will define an algorithm to compute a three-valued structure $S_{i,e}^3$.

We think of $S_{i,e}^3$ as the three-valued state reached after execution of α_r (the body of the while-loop) when started in S_i^3 .

If S is a two-valued state it is fairly straight forward to compute the two-valued state S_e that is reached after executing α_r starting with S, since the commands in α_r are so simple.

The construction of $\mathcal{S}_{i,e}^3$ will be done such that $\mathcal{S} \sqsubseteq^F \mathcal{S}_i^3$ implies $\mathcal{S}_e \sqsubseteq^F \mathcal{S}_{i,e}^3$.

Plan:

Step 2:

Determine a set \mathcal{M}_0 of abstract three-valued states to start with.

Plan:

Step 3:

At iteration $k(k \ge 1)$ we are dealing with a set \mathcal{M}_{k-1} of abstract three-valued states.

We try to prove for every $S^3 \in \mathcal{M}_{k-1}$ that if $S^3 \models \forall s(\neg is(s))$ then $S^3_e \models (\forall s(\neg is(s)))$.

It will then follow that for any two-valued state S that is reachable with k-1 iterations of α_r :

$$\mathcal{S} \models \forall \neg \mathsf{is}(s) \Rightarrow \mathcal{S}_e \models \forall s \neg \mathsf{is}(s)$$

If we succeed we set

$$\mathcal{M}_k = \{\mathcal{S}_e^3 | \mathcal{S}^3 \in \mathcal{M}_{k-1}\}$$

Plan:

Step 3 (continued)

If $\mathcal{M}_k \subseteq \mathcal{M}_{k-1}$ we are finished and the claim is positively established.

Otherwise we repeat step 3 with \mathcal{M}_k .

If for one $S^3 \in \mathcal{M}_{k-1}$, $\forall s(\neg is(s))$ evaluated to 0 then our conjecture was false.

If for one $S^3 \in \mathcal{M}_{k-1}$, $\forall s(\neg is(s))$ evaluated to $\frac{1}{2}$ then this result is inconclusive. Should this happen we need to iterate the procedure with a larger set \mathcal{M}'_{k-1} .

There is, unfortunately, no guarantee that this iteration will come to a conclusive end in the general case. [Example on the blackboard]

cf. also P.H. Schmidt's lecture notes, Section 2.4.4 (pages 91-100).

Conclusions

- Finitely-valued logics: natural generalization of classical logic
- Tableau calculi
- Resolution

extend in a natural way

• Applications

Similar results also for logics with infinitely many truth values?

Infinitely-Valued Logics

Łukasiewicz logics

Łukasiewicz logics

$$\begin{aligned} \mathcal{L}_n, \ n \in \mathbb{N} & W_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, 1\} \\ \mathcal{L}_{\aleph_0} & W_{\aleph_0} = [0, 1] \cap \mathbb{Q} \\ \mathcal{L}_{\aleph_1} & W_{\aleph_1} = [0, 1] \end{aligned}$$

Logical operations: \lor , \land , \neg , \Rightarrow

- $\vee = \max$
- $\wedge = \min$
- $\neg x = 1 x$
- $x \Rightarrow y = \min(1, 1 x + y)$

Łukasiewicz logics

Lukasiewicz implication $x \Rightarrow_{L_n} y = \min(1, 1 - x + y)$

$$\mathcal{L}_n$$

\Rightarrow	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	•••	$\frac{n-2}{n-1}$	1
0	1	1	1	• • •	1	1
$\frac{1}{n-1}$	$\frac{n-2}{n-1}$	1	1	•••	1	1
$\frac{2}{n-1}$	$\frac{n-3}{n-1}$	$\frac{n-2}{n-1}$	1	•••	1	1
1	0	$\frac{1}{n-1}$	$\frac{2}{n-1}$	•••	$\frac{n-2}{n-1}$	1

Łukasiewicz logics

Theorems.

- 1. For $n, m \in \mathbb{N}$, s.t. (m-1)|(n-1), we have Tautologies $(\mathcal{L}_n) \subseteq \text{Tautologies}(\mathcal{L}_m)$
- 2. Tautologies(\mathcal{L}_{\aleph_0}) = Tautologies(\mathcal{L}_{\aleph_1})
- 3. Tautologies(\mathcal{L}_{\aleph_0}) = \bigcap {Tautologies(\mathcal{L}_n) | $n \ge 2, n \in \mathbb{N}$ }

Theorem. For $n, m \in \mathbb{N}$, s.t. (m-1)|(n-1), we have Tautologies $(\mathcal{L}_n) \subseteq \text{Tautologies}(\mathcal{L}_m)$

Proof

Assume (m-1)|(n-1). Then $W_m \subseteq W_n$. Assume $F \in \text{Tautologies}(\mathcal{L}_n)$. Then F evaluates to 1 under every valuation into W_n , hence also under every valuation into W_m , so $F \in \text{Tautologies}(\mathcal{L}_m)$

Theorem. For $n, m \in \mathbb{N}$, s.t. (m-1)|(n-1), we have Tautologies $(\mathcal{L}_n) \subseteq \text{Tautologies}(\mathcal{L}_m)$

Remark: the converse also holds

```
If Tautologies(\mathcal{L}_n) \subseteq \text{Tautologies}(\mathcal{L}_m) then (m-1)|(n-1).
```

(This will be discussed in the next exercise session.)

Theorem.

```
\mathsf{Tautologies}(\mathcal{L}_{\aleph_0}) = \mathsf{Tautologies}(\mathcal{L}_{\aleph_1})
```

Proof.

" \supseteq " : Since $[0, 1] \cap \mathbb{Q} \subseteq [0, 1]$, it is clear that Tautologies(\mathcal{L}_{\aleph_1}) \subseteq Tautologies(\mathcal{L}_{\aleph_0})

Theorem.

 $\mathsf{Tautologies}(\mathcal{L}_{\aleph_0}) = \mathsf{Tautologies}(\mathcal{L}_{\aleph_1})$

Proof.

" \subseteq ": Let $F \in \text{Tautologies}(\mathcal{L}_{\aleph_0})$. Then for every assignment of values in $[0, 1] \cap \mathbb{Q}$ to the propositional variables $\{P_1, \ldots, P_n\}$ of F evaluates to 1.

We can associate a function $f_F : [0, 1]^n \to [0, 1]$ with F which is defined as follows: For all $(x_1, \ldots, x_n) \in [0, 1]^n$ let $\mathcal{A} : \{P_1, \ldots, P_n\} \to [0, 1]$ be defined by $\mathcal{A}(P_i) = x_i$. We define $f_F(x_1, \ldots, x_n) := \mathcal{A}(F)$

It can be proved by structural induction that f_F is a continuous function.

Let $(a_1, \ldots, a_n) \in [0, 1]^n$. It is now sufficient to choose sequences of rational numbers converging to a_1, \ldots, a_n respectively. $f_F(a_1, \ldots, a_n)$ is the limit of the sequence defined this way, hence its value is 1.

 $\mathsf{Tautologies}(\mathcal{L}_{\aleph_0}) = \bigcap\{\mathsf{Tautologies}(\mathcal{L}_n) \mid n \geq 2, n \in \mathbb{N}\}$

Proof.

" \subseteq " : Follows from the fact that $W_n \subseteq [0, 1] \cap \mathbb{Q}$ for every $n \in \mathbb{N}$.

 $\mathsf{Tautologies}(\mathcal{L}_{\aleph_0}) = \bigcap \{\mathsf{Tautologies}(\mathcal{L}_n) \mid n \geq 2, n \in \mathbb{N} \}$

Proof. " \supseteq "

Let F be a formula with prop. variables $\{P_1, \ldots, P_k\}$ s.t. $F \notin \text{Tautologies}(\mathcal{L}_{\aleph_0})$. Then there exists $\mathcal{A} : \{P_1, \ldots, P_k\} \rightarrow [0, 1] \cap \mathbb{Q}$ s.t. $\mathcal{A}(F) \neq 1$.

Assume that $\mathcal{A}(P_1) = \frac{q_1}{p_1}, \ldots, \mathcal{A}(P_k) = \frac{q_k}{p_k}$

Let $m = \operatorname{lcm}(p_1, \ldots, p_k)$. Then it is easy to see that $\mathcal{A}(P_i) \in W_{m+1}$ for all $1 \leq i \leq k$.

We thus constructed a valuation $\mathcal{A} : \{P_1, \ldots, P_k\} \to W_m$ such that $\mathcal{A}(F) \neq 1$. Hence, $F \notin \text{Tautologies}(\mathcal{L}_m)$, so

$$F \not\in \bigcap \{ \mathsf{Tautologies}(\mathcal{L}_n) \mid n \geq 2, n \in \mathbb{N} \}$$

"Fuzzy" logics

W = [0, 1]

Question: How to define conjunction?

Answer: Desired conditions

- $f: [0,1]^2 \rightarrow [0,1]$ such that:
 - *f* associative and commutative
 - for all $0 \le A \le B \le 1$ and all $0 \le C \le 1$ we have $f(A, C) \le f(B, C)$
 - for all $0 \le C \le 1$ we have f(C, 1) = C.

Definition A function with the properties above is called a t-norm.

Examples of t-norms

Gödel t-norm $f_G(x, y) = \min(x, y)$ Łukasiewicz t-norm $f_L(x, y) = \max(0, x + y - 1)$ Product t-norm $f_P(x, y) = x \cdot y$

Definition. A t-norm f is left-continuous if for every $x, y \in [0, 1]$ and every sequence $\{x_n\}_{n \in \mathbb{N}}$ with $0 \le x_n \le x$ and $\lim_{n \to \infty} x_n = x$ we have $\lim_{n \to \infty} f(x_n, y) = f(x, y)$. **Definition.** A t-norm f is left-continuous if for every $x, y \in [0, 1]$ and every sequence $\{x_n\}_{n \in \mathbb{N}}$ with $0 \le x_n \le x$ and $\lim_{n \to \infty} x_n = x$ we have $\lim_{n \to \infty} f(x_n, y) = f(x, y)$.

The following t-norms are left continuous:

Gödel t-norm $f_G(x, y) = \min(x, y)$ Łukasiewicz t-norm $f_L(x, y) = \max(0, x + y - 1)$ Product t-norm $f_P(x, y) = x \cdot y$

- $x \circ_f y = f(x, y)$
- $x \oplus_f y = 1 f(1 x, 1 y)$
- $x \Rightarrow_f y = \max\{z \mid f(x, z) \le y\}$
- $\neg_f x = x \Rightarrow_f 0$

Remark: Left continuity ensures that $\max\{z \mid f(x, z) \le y\}$ exists. Validity: $D = \{1\}$

- $x \circ_f y = f(x, y)$
- $x \oplus_f y = 1 f(1 x, 1 y)$
- $x \Rightarrow_f y = \max\{z \mid f(x, z) \le y\}$
- $\neg_f x = x \Rightarrow_f 0$

Łukasiewicz t-norm

$$x \circ_{\mathbf{L}} y = \max(0, x + y - 1)$$
$$x \oplus_{\mathbf{L}} y = 1 - \max(0, 1 - x - y)$$
$$x \Rightarrow_{f} y = \min(1, 1 - x + y)$$
$$\neg x = \min(1, 1 - x) = 1 - x$$

- $x \circ_f y = f(x, y)$
- $x \oplus_f y = 1 f(1 x, 1 y)$
- $x \Rightarrow_f y = \max\{z \mid f(x, z) \le y\}$
- $\neg_f x = x \Rightarrow_f 0$

Łukasiewicz t-norm

$$x \circ_{\underline{i}} y = \max(0, x + y - 1) \qquad x \wedge_{\underline{i}} y = x \circ_{\underline{i}} (x \Rightarrow y)$$

$$x \oplus_{\underline{i}} y = 1 - \max(0, 1 - x - y) \qquad x \vee_{\underline{i}} y = \neg_{\underline{i}} ((\neg_{\underline{i}} x) \wedge_{\underline{i}} (\neg_{\underline{i}} y))$$

$$x \Rightarrow_{f} y = \min(1, 1 - x + y)$$

$$\neg x = \min(1, 1 - x) = 1 - x$$

- $x \circ_f y = f(x, y)$
- $x \oplus_f y = 1 f(1 x, 1 y)$
- $x \Rightarrow_f y = \max\{z \mid f(x, z) \le y\}$
- $\neg_f x = x \Rightarrow_f 0$

Gödel t-norm

$$x \circ_{G} y = \min(x, y)$$

$$x \oplus_{G} y = \max\{x, y\}$$

$$x \Rightarrow_{G} y = \max\{z \mid x \land z \le y\} = \begin{cases} 1 & \text{if } x \le y \\ y & \text{if } x > y \end{cases}$$

$$\neg_{G} x = \max\{z \mid x \land z = 0\} = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x > 0 \end{cases}$$

Checking validity of formulae in fuzzy logics

Given: *F* formula in a t-norm based fuzzy logic formed with the operations $\{\circ, \oplus, \neg, \Rightarrow\}$ (and also \lor, \land if definable)

Task:Check whether F is valid (a tautology)i.e. whether for all $\mathcal{A} : X \rightarrow [0, 1], \ \mathcal{A}(F) = 1$

Idea:

Assume that there exists $\mathcal{A} : X \to [0, 1]$ such that $\mathcal{A}(F) \neq 1$. Derive a contradiction.

Let P_1, \ldots, P_n be the propositional variables which occur in F. Check whether $\exists x_1, \ldots, x_n F(x_1, \ldots, x_m) \neq 1$ is satisfiable in $\mathcal{A} = ([0, 1], \{\circ_f, \oplus_f, \neg_f, \rightarrow_f, \leftrightarrow_f\}).$

Example 1: Łukasiewicz logic $\mathbf{L} = \mathcal{L}_{\alpha_1}$

F \mathcal{F} -formula, where $\mathcal{F} = \{ \lor, \land, \circ, \neg, \rightarrow, \leftrightarrow \}$.

Let P_1, \ldots, P_n be the propositional variables which occur in F. Check whether $\exists x_1, \ldots, x_n F(x_1, \ldots, x_m) \neq 1$ is satisfiable in

 $[0,1]_{\mathsf{L}}=([0,1],\{\vee,\wedge,\circ,\neg,\rightarrow\})$

where $\forall, \land, \neg, \rightarrow, \leftrightarrow$ are the operations induced by the t-norm $f_{L}(x, y) = \max(0, x + y - 1)$, i.e.:

$$\begin{array}{ll} (\mathsf{Def}_{\circ_{\underbrace{}}}) & x+y < 1 \to x \circ y = 0 & x+y \ge 1 \to x \circ y = x+y-1 \\ (\mathsf{Def}_{\vee}) & x \le y \to x \lor y = y & x > y \to x \lor y = x \\ (\mathsf{Def}_{\wedge}) & x \le y \to x \land y = x & x > y \to x \land y = y \\ (\mathsf{Def}_{\Rightarrow_{\underbrace{}}}) & x \le y \to x \Rightarrow y = 1 & x > y \to x \Rightarrow y = 1-x+y \\ (\mathsf{Def}_{\neg_{\underbrace{}}}) & \neg x = 1-x \end{array}$$

Example 1: Łukasiewicz logic $\mathbf{L} = \mathcal{L}_{\alpha_1}$

F
$$\mathcal{F}$$
-formula, where $\mathcal{F} = \{ \lor, \land, \circ, \neg, \rightarrow, \leftrightarrow \}$.

Remark: The following are equivalent:

F(x₁,...,x_m) ≠ 1 is satisfiable in [0, 1]_L = ([0, 1], {∨, ∧, ∘, ¬, →}), where ∨, ∧, ¬, →, ↔ are the operations induced by the t-norm f_L
 Def_L ∧ F(x₁,...,x_m) ≠ 1 satisfiable in [0, 1].

$$\begin{array}{lll} (\mathsf{Def}_{\circ_{\overset{}{\mathsf{L}}}}) & x+y < 1 \to x \circ y = 0 & x+y \geq 1 \to x \circ y = x + y - 1 \\ (\mathsf{Def}_{\vee}) & x \leq y \to x \lor y = y & x > y \to x \lor y = x \\ (\mathsf{Def}_{\wedge}) & x \leq y \to x \land y = x & x > y \to x \land y = y \\ (\mathsf{Def}_{\Rightarrow_{\overset{}{\mathsf{L}}}}) & x \leq y \to x \Rightarrow y = 1 & x > y \to x \Rightarrow y = 1 - x + y \\ (\mathsf{Def}_{\neg_{\overset{}{\mathsf{L}}}}) & \neg x = 1 - x \end{array}$$

To show:
$$((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y)$$
 is a tautology
New task: $Def_{L} \land \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y) \neq 1}_{G_{1}}$ unsatisfiable

where

$$\begin{array}{ll} (\mathsf{Def}_{\vee}) & x \leq y \to x \lor y = y & x > y \to x \lor y = x \\ (\mathsf{Def}_{\wedge}) & x \leq y \to x \land y = x & x > y \to x \land y = y \\ (\mathsf{Def}_{\circ_{\underline{\mathsf{L}}}}) & x + y < 1 \to x \circ y = 0 & x + y \geq 1 \to x \circ y = x + y - 1 \\ (\mathsf{Def}_{\Rightarrow_{\underline{\mathsf{L}}}}) & x \leq y \to x \Rightarrow y = 1 & x > y \to x \Rightarrow y = 1 - x + y \end{array}$$

New task:
$$Def_{L} \land \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y) \neq 1}_{G_{1}}$$
 unsatisfiable

$$\begin{array}{lll} \textit{where} & (\mathsf{Def}_{\vee}) & x \leq y \to x \lor y = y & x > y \to x \lor y = x \\ & (\mathsf{Def}_{\wedge}) & x \leq y \to x \land y = x & x > y \to x \land y = y \\ & (\mathsf{Def}_{\circ_{\underline{\mathsf{L}}}}) & x + y < 1 \to x \circ y = 0 & x + y \geq 1 \to x \circ y = x + y - 1 \\ & (\mathsf{Def}_{\Rightarrow_{\underline{\mathsf{L}}}}) & x \leq y \to x \Rightarrow y = 1 & x > y \to x \Rightarrow y = 1 - x + y \end{array}$$

1. Rename subterms starting with Ł-operators and expand definitions:

New task:
$$Def_{L} \land \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y) \neq 1}_{G_{1}}$$
 unsatisfiable

$$\begin{array}{lll} \textit{where} & (\mathsf{Def}_{\vee}) & x \leq y \to x \lor y = y & x > y \to x \lor y = x \\ & (\mathsf{Def}_{\wedge}) & x \leq y \to x \land y = x & x > y \to x \land y = y \\ & (\mathsf{Def}_{\circ_{\underline{\mathsf{L}}}}) & x + y < 1 \to x \circ y = 0 & x + y \geq 1 \to x \circ y = x + y - 1 \\ & (\mathsf{Def}_{\Rightarrow_{\underline{\mathsf{L}}}}) & x \leq y \to x \Rightarrow y = 1 & x > y \to x \Rightarrow y = 1 - x + y \end{array}$$

2. Replace terms starting with Ł-operations; SAT checking in [0, 1]

Reduction to checking constraints over [0, 1]

Reduction to checking satisfiability in [0, 1] of constraints in linear arithmetic (implications of LA expressions).

NP complete [Sonntag'85]

Similar techniques can be used also for Gödel logics (with the Gödel t-norm).

This method was first described (in a slightly more general context) in:

Viorica Sofronie-Stokkermans and Carsten Ihlemann, "Automated reasoning in some local extensions of ordered structures." Proceedings of ISMVL'07, IEEE Press, paper 1, 2007.

```
and (with full proofs) in
```

Viorica Sofronie-Stokkermans and Carsten Ihlemann, "Automated reasoning in some local extensions of ordered structures." Journal of Multiple-Valued Logics and Soft Computing (Special issue dedicated to ISMVL'07) 13 (4-6), 397-414, 2007.

Example 1: Gödel logic

F \mathcal{F} -formula, where $\mathcal{F} = \{ \lor, \land, \neg, \rightarrow, \leftrightarrow \}$.

Let P_1, \ldots, P_n be the propositional variables which occur in F. Check whether $\exists x_1, \ldots, x_n F(x_1, \ldots, x_m) \neq 1$ is satisfiable in

 $[0,1]_{\mathcal{G}} = ([0,1], \{ \lor, \land, \circ, \neg, \rightarrow \})$

where $\forall, \land, \neg, \rightarrow, \leftrightarrow$ are the operations induced by the t-norm $f_{G}(x, y) = \min(x, y)$, i.e.:

Check whether $((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y)$ is a tautology in the Gödel logic. New task: $\operatorname{Def}_G \land \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y) \neq 1}_{G_1}$ satisfiable? where $(\operatorname{Def}_\circ) = (\operatorname{Def}_\land)$ $x \le y \to x \land y = x$ $x > y \to x \land y = y$

New task:
$$\operatorname{Def}_G \land \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y) \neq 1}_{G_1}$$
 satisfiable?

where
$$(Def_{\circ}) = (Def_{\wedge})$$
 $x \leq y \to x \wedge y = x$ $x > y \to x \wedge y = y$ (Def_{\vee}) $x \leq y \to x \vee y = y$ $x > y \to x \vee y = x$ (Def_{\Rightarrow}) $x \leq y \to x \Rightarrow y = 1$ $x > y \to x \Rightarrow y = y$ (Def_{\neg}) $x = 0 \to \neg x = 1$ $x > 0 \to \neg x = 0$

1. Rename subterms starting with Ł-operators and expand definitions:

New task:
$$\operatorname{Def}_G \land \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y) \neq 1}_{G_1}$$
 satisfiable?
where $(\operatorname{Def}_\circ) = (\operatorname{Def}_\wedge)$ $x \leq y \to x \land y = x$ $x > y \to x \land y = y$

$$\begin{array}{ll} (\mathsf{Def}_{\vee}) & x \leq y \to x \lor y = y & x > y \to x \lor y = x \\ (\mathsf{Def}_{\Rightarrow}) & x \leq y \to x \Rightarrow y = 1 & x > y \to x \Rightarrow y = y \\ (\mathsf{Def}_{\neg}) & x = 0 \to \neg x = 1 & x > 0 \to \neg x = 0 \end{array}$$

2. Replace terms starting with Ł-operations; SAT checking in [0, 1]

$p = x \Rightarrow 0$	s eq 1	$x \leq 0 \rightarrow p = 1$	$x > 0 \rightarrow p = 0$
$q = p \Rightarrow 0$		$p \leq 0 ightarrow oldsymbol{q} = 1$	p > 0 ightarrow q = 0
$r = x \vee y$		$q \leq r ightarrow s = 1$	$q > r \rightarrow s = r$
$s = q \Rightarrow r$		$x \leq y \rightarrow r = y$	$x > y \rightarrow r = x$

Satisfiable (e.g. by $\beta(x) = \beta(y) = \frac{1}{2}$), so $((x \Rightarrow 0) \Rightarrow 0) \Rightarrow (x \lor y)$ not tautology in Gödel logic.

Product logic

Similar techniques can be used also for the product logic (with the product t-norm)

 \mapsto non-linearity (hence higher complexity)

Many-Valued Logics

• Many-valued logics (finitely-valued)

History and Motivation

Syntax /Semantics

Functional completeness

Automated reasoning: Tableaux, Resolution

Applications: logic; verification

• Infinitely-valued logics

Examples: Łukasiewics logics \mathcal{L}_{\aleph_0} , \mathcal{L}_{\aleph_1} description of the tautologies

Fuzzy logics:

- t-norms, Łukasiewics, Gödel, Product t-norm
- Łukasiewics logic, Gödel logic, Product logic
- Automated methods for checking validity