Non-classical logics

Lecture 9 + 10:

— Many-valued logics: Applications in verification

— Infinitely-valued logics

4.12.2013

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Until now

e Many-valued logic (finitely-valued)

History and Motivation
Syntax /Semantics

Functional completeness

Automated reasoning: Tableaux, Resolution

Applications: logic

Applications of many-valued logic

e independence proofs

e modeling undefined function and predicate values (program

verification)
e semantic of natural languages

e theory of logic programming: declarative description of

operational semantics of negation
e modeling of electronic circuits
e modeling vagueness and uncertainly

e shape analysis (program verification)

Applications of many-valued logic

e independence proofs last time

e modeling undefined function and predicate values (program

verification)
e semantic of natural languages

e theory of logic programming: declarative description of

operational semantics of negation
e modeling of electronic circuits
e modeling vagueness and uncertainly

e shape analysis (program verification) today

Shape analysis

Shape Analysis is an important and well covered part of static program

analysis.

The central role in shape analysis is played by the set U of abstract stores.

U is perceived as the abstraction of the locations program variables can

point to.

In an object-oriented context U can be viewed as an abstraction of the set
of all objects existing at a snapshot during program execution

Shape analysis

U set of abstract stores.

X set of program variables.

Abstract state of a program at a given snapshot:
e Structure S = (U, {x : U — {0, 1} }xcx U Additional predicates)

x(v) =1 (also denoted S |= x[v]) iff variable x points to store v.

For any abstract state S and any program variable x we require that the
unary predicate x holds true of at most one store, i.e. we require

S |: \V/51V52((X(51) A\ X(Sz)) — 51 = 52).

It is possible that x does not point to any store, i.e. § = Vs(—x(s)).

Shape analysis

Additional predicates on S depend on the specific program /task

Example: next: U? — {0,1}

Examples of properties:

Js x(s) x does not point to null
Vs(—(x(s) AN t(s))) x and t do not point to the same store

Js is(s) the list defined by next contains a shared node

We have used the abbreviation
is(s) = dsydsp(next(s1, s) A next(sp,s) A sy # sp)

Goal: prove for a given program, or a given program part, that a certain
property holds at every program state, or every stable program state.

Example: List reversing

Goal: Cycle-freeness of a list pointer structure is preserved by the algorithm

reversing the list.

Describing cycle-freeness
1. —3Jv(next(v, n) nis the store representing the head of the list

2. VYvVw(next(m, v) A next(m,w) — v = w) for all stores m reachable

from n,

3. —is(m) for all stores m reachable from n.

Remark:
If conditions 1.—3. hold then the list with entry point n cannot be cyclic.

We concentrate here on showing the preservation of the formula is(s).

Example: List reversing

Algorithm for list reversing:

class ReverselList {
int value;

ReverselList next;

public ReverseList reverse() {
Reverselist t, y= null, x = this;
while (x !'= null) {
stl: t=y;
st2: y=x;
st3: x=x.next;
st4: y.next = t;}
return y;r}

Example: List reversing

Task:

Assume that at the beginning of the while loop S |= —is(n) is true for all

stores n in the list.

Show that in the state Se after execution of the while loop again

Se = —is(n) holds true for all n.

Problem: Since we cannot make any assumptions on the set of stores U at
the start of the while-loop we need to investigate infinitely many structures,

which obviously is not possible.

10

Shape analysis

Idea [Mooly Sagiv, Thomas Reps and Reinhard Wilhelm|]

Use of three-valued structures to approximate two-valued structures.

More precisely, we try to find finitely many three-valued structures S3, ..., S,‘:’
such that for an arbitrary two-valued abstract state S that may be possible

before the while-loop starts there is a surjective mapping F from S onto
one of the S,.3 for 1 < i< k with S CF SI?’, l.e.

e for all n-ary predicate symbols p and all by, ..., b, € Us we have:

pS?(F(bl), c .oy F(bn)) S,’ pg(bl, c .oy bn)

bb where a <; biffa=bor a=

N

(every possible initial state has an abstraction among S3, ..., S,‘:’)

11

Shape analysis

Plan:
Step 1:

For every three-valued structure SI-3 we will define an algorithm to compute
a three-valued structure Sl?’e.

We think of Si31e as the three-valued state reached after execution of «,
(the body of the while-loop) when started in S?.

If S is a two-valued state it is fairly straight forward to compute the
two-valued state Se that is reached after executing «, starting with S, since

the commands in «, are so simple.

The construction of S?e will be done such that S CF SI-3 implies Se CF S?e.

12

Shape analysis

Plan:
Step 2:

Determine a set M of abstract three-valued states to start with.

13

Shape analysis

Plan:
Step 3:

At iteration k(k > 1) we are dealing with a set M,_; of abstract
three-valued states.

We try to prove for every S3 € M, _; that if S® | Vs(—is(s))) then
S¢ [(Vs(—is(s))).

It will then follow that for any two-valued state S that is reachable with
k — 1 iterations of «;:

S = Vis(s) = Se = Vs—is(s)

If we succeed we set

My = {82|8> € My_1}

14

Shape analysis

Plan:

Step 3 (continued)

If M, C M,_1 we are finished and the claim is positively established.
Otherwise we repeat step 3 with M.

If for one S3 € M _1, Vs(—is(s))) evaluated to 0 then our conjecture was
false.

If for one S3 € M_1, Vs(—is(s))) evaluated to % then this result is
inconclusive. Should this happen we need to iterate the procedure with a

/
larger set M .

There is, unfortunately, no guarantee that this iteration will come to a con-
clusive end in the general case.

15

Shape analysis

|[Example on the blackboard]

cf. also P.H. Schmidt's lecture notes, Section 2.4.4 (pages
91-100).

16

Conclusions

e Finitely-valued logics: natural generalization of classical logic

e [ableau calculi
e Resolution
extend in a natural way

e Applications

Similar results also for logics with infinitely many truth values?

17

Infinitely-Valued Logics

18

tukasiewicz logics

tukasiewicz logics
Ln,”EN Wn:{o, nil, 2

1

Wy, =10,1]NQ
Wy, = [0, 1]

Logical operations: V, A, =, =
e V = max
e A =min
o x=1—x

e x=y=min(l,1 —x+y)

L1

19

tukasiewicz logics

tukasiewicz implication x =1 Y= min(1l,1 — x + y)
L

1 2 n—2
= 0 n—1 n—1 n—1 1
0 1 1 1 1 1
1 n—2
— || =7 | 1 1 1 1
2 n—3 n—?2
n—1 n—1 n—1 1 1 1
1 2 n—2
1 0 n—1 n—1 n—1 1

tukasiewicz logics

Theorems.

1. Forn,méeN, s.t. (m—1)[(n—1), we have
Tautologies(L,) C Tautologies(Lnm)

2. Tautologies(Ly,) = Tautologies(Ly;)
3. Tautologies(Ly,) = ({ Tautologies(L,) | n > 2,n € N}

21

Proofs

Theorem. For n,m € N, s.t. (m—1)|(n— 1), we have
Tautologies(L,) C Tautologies(L)

Proof

Assume (m — 1)[(n —1). Then W, C W,,. Assume F € Tautologies(L).
Then F evaluates to 1 under every valuation into W), hence also under
every valuation into Wy, so F € Tautologies(Ln)

22

Proofs

Theorem. For n,m € N, s.t. (m—1)|(n— 1), we have
Tautologies(L,) C Tautologies(L)

Remark: the converse also holds

If Tautologies(£L,) C Tautologies(L,) then (m — 1)|(n — 1).

(This will be discussed in the next exercise session.)

23

Proofs

Theorem.
Taut0|0gies(£No) = Ta utologies(ﬁNl)

Proof.
" D" :Since [0,1] N Q C [0, 1], it is clear that
Tautologies(Ly,) € Tautologies(Lxy,)

24

Proofs

Theorem.
Taut0|0gies(£No) = Ta utologies(ﬁNl)

Proof.
" C" :Let F € Tautologies(Ly,). Then for every assignment of values in [0,1] N Q
to the propositional variables {P, ..., P,} of F evaluates to 1.

We can associate a function fg : [0, 1]" — [0, 1] with F which is defined as follows:
For all (x1,...,x,) €[0,1]" let A: {P1,...,P,} — [0, 1] be defined by A(P;) = x;.
We define fr(xq, ..., xn) := A(F)

It can be proved by structural induction that fF is a continuous function.

Let (a1,...,an) € [0,1]". It is now sufficient to choose sequences of rational numbers
converging to ai, ..., a, respectively. fg(a1, ..., an) is the limit of the sequence

defined this way, hence its value is 1.

25

Proofs

Tautologies(Ly,) = (){ Tautologies(Ln) | n > 2,n € N}

Proof.

" C" : Follows from the fact that W, C [0,1] N Q for every n € N.

26

Proofs

Tautologies(Ly,) = (){ Tautologies(Ln) | n > 2,n € N}

Proof. " D"

Let F be a formula with prop. variables {P1, ..., Pc} s.t. F & Tautologies(Lx,).
Then there exists A : {Py,..., P} = [0,1]NQ s.t. A(F) # 1.

Assume that A(P;) = %, .o A(P) = Z—:

Let m = lcm(p1, ..., px). Then it is easy to see that A(P;) € W41 forall 1 < i < k.
We thus constructed a valuation A : {Py,..., Pk} — W, such that A(F) # 1.

Hence, F ¢ Tautologies(L,,), so

F & m{TautoIogies(Ln) | n>2,n € N}

27

“Fuzzy” logics

W = [0,1]

Question: How to define conjunction?

Answer: Desired conditions

f : [0,1]> — [0, 1] such that:
e f associative and commutative
o foral 0 <A< B<1landall0< C<1wehave f(A C) < f(B,C)
e forall0 < C <1 wehave f(C,1) =C.

Definition A function with the properties above is called a t-norm.

28

Examples of t-norms

Godel t-norm fe(x,y) = min(x, y)
Lukasiewicz t-norm fi (x,y) = max(0,x +y — 1)
Product t-norm fp(x,y) =x-y

29

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every x,y € [0, 1] and

every sequence {xp},en with 0 < x, < x and lim,—c0Xn = x we have

Iimn—)oof(Xan) — f(X'y)'

30

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every x,y € [0, 1] and
every sequence {xp},en with 0 < x, < x and lim,—c0Xn = x we have

limn—)oof(Xnv)/) — f(X'y)'

The following t-norms are left continuous:

Godel t-norm fe(x,y) = min(x, y)
Lukasiewicz t-norm fi (x,y) = max(0,x +y — 1)
Product t-norm fp(x,y) =x-y

31

Left continuous t-norms

With every left continuous t-norm f we can associate the following
operations:

oXOfy:f(XJ/)
o x=>ry=max{z | f(x,z) <y}

[_IfX:X:>fO

Remark: Left continuity ensures that max{z | f(x, z) < y} exists.

Validity: D = {1}

32

Left continuous t-norms

With every left continuous t-norm f we can associate the following
operations:

e xory ="1(x,y)
o x=>ry=max{z | f(x,z) <y}

o —IfX:X=>fO

tukasiewicz t-norm
xop y =max(0,x+y—1)
x@p y=1—-max(0,1—-x—y)
x=ry=min(l,1—x+4+y)

—x =min(l,1 —x)=1—x

33

Left continuous t-norms

With every left continuous t-norm f we can associate the following
operations:

e xory ="1(x,y)
o x=>ry=max{z | f(x,z) <y}

o —IfX:X=>fO

tukasiewicz t-norm
xop y =max(0,x+y—1) XNApy=xo0p (x=y)
x@py=1-max(0,1-x—y) xVpy=-4((-x)Ap (—py))
x=ry=min(l,1—x+y)

—x =min(l,1 —x)=1—x

34

Left continuous t-norms

With every left continuous t-norm f we can associate the following
operations:

e xory ="1(x,y)
e xPry=1—f(1l—x,1—y)
o x=>ry=max{z | f(x,z) <y}
o " x=x=¢0

Godel t-norm

x og y = min(x, y)

x ®c y = max(x, y)

1 if x <
x=>cy=max{z | xANz<y}= =Y
y if x >y
1 if x=20
—gx =max{z | x Az=0) =
0 ifx>0

35

Checking validity of formulae in fuzzy logics

Given: F formula in a t-norm based fuzzy logic formed with the
operations {o, ®, =, =} (and also V, A if definable)
Task: Check whether F is valid (a tautology)
i.e. whether for all A: X — [0,1], A(F) =1
Idea:

Assume that there exists A : X — [0, 1] such that A(F) # 1.
Derive a contradiction.

Let Pq, ..., P, be the propositional variables which occur in F.

Check whether 3xq, ..., x,F(x1,...,Xxm) # 1 is satisfiable in
A = ([0,1], {or, ®f, 7r, =¢, ¢ }).

36

Example 1: tukasiewicz logic £t = £,

F F-formula, where F = {V, A, 0,—, =, <}

Let Pq, ..., P, be the propositional variables which occur in F.

Check whether 3x1, ..., xpF(x1,...,xm) # 1 is satisfiable in
[0, 1]y = ([0, 1], {V,. A, 0,—~,—1})

where V, A, -, —, <> are the operations induced by the t-norm
fL(XJ/) = max(O,x +y — 1), l.e.:

(DefoL) x+y<1l — xoy=0 x+y>1 — xoy=x+y—1
(Def\,) x<y = xVy=y x>y — xVy=x

(Def A) x<y = xA\y = x X>y = xA\y =y
(Def:>L) x<y = x=y=1 x>y = x=y = 1—x+y
(DefﬁL) x=1-—x

37

Example 1: tukasiewicz logic £t = £,

F F-formula, where F = {V, A\, 0,—, =, <>}

f

Remark: The following are equivalent:

(1) F(xi,...,xm) # 1 is satisfiable in [0, 1]y = ([0, 1], {V, A, 0,—, —1}),
where V, A, =, —, <> are the operations induced by the t-norm f

(2) Defy A F(x1,...,xm) # 1 satisfiable in [0, 1].

_

(DefoL) x+y<1l — xoy=0 x+y>1 — xoy=x+y—1
(Def\,) x<y — xVy=y x>y — xVy=x

(Def A) x<y — xAy = X X>y — XAy =y
(Def:>L) x<y — x=>y=1 x>y = x=y =1—x+y
(DefﬁL) -x =1—x

Example

To show: ((x = 0) = 0) = (x V y) is a tautology
New task: Defy A ((x = 0) = 0) = (x V y) # 1 unsatisfiable

Gy

where (Defv/) x<y — xVy=y x>y — xVy=x
(Def) x<y — XAy = x X>y — XAy =y
(DefoL) x+y<1l — xoy=0 x+y>1 — xoy=x+y—1

(Defj,‘_) x<y = x=>y=1 x>y — x=y =1—x+y

39

Example

New task: Defy A ((x = 0) = 0) = (x V y) # 1 unsatisfiable

Gy

where (Defy/) x<y — xVy=y
(DefA) x<y = XAy = x
(Defo,) x+y<1 — xoy=0
(Def=,) x<y — x=y=1

X>y — xXVy=x

X>y — XA\y =y
Xx+y>1 — xoy=x+y—1
x>y =+ x=>y =1—-x+4y

1. Rename subterms starting with t-operators and expand definitions:

p=x=0 #1 x<0—-x=0=1
q=p=0 p<0—=p=0=1
r=xVy g<r— =1

— x<y—-xVy=y

Xx>0—=>x=0=1—-—x+4+0
p>0—p=0=1—-—p+4+0
q>r— =1—qg+r
X>y —-xVy=X

40

Example

New task: Defy A ((x = 0) = 0) = (x V y) # 1 unsatisfiable

Gy

where (Defy/) x<y — xVy=y

x>y — XVy=x

(Def) x<y — XAy = x X>y — XA\y =y
(DefoL) x+y<1l — xoy=0 x+y>1 — xoy=x+y—1

(Def=,) x<y — x=y=1

x>y =& x=>y =1—-x+4y

2. Replace terms starting with t-operations; SAT checking in [0, 1]

p=x=20 #1 x<0—p=1
qg=p=0 p<0—qg=1
r=xVy g<r—s=1
= x<y—=r=y

x>0—p=1—x+0
p>0—-qg=1—p+0
q>r—s=1—qg+r
X>y —r=xX

41

Reduction to checking constraints over [0, 1]

Reduction to checking satisfiability in [0, 1] of constraints in linear arithmetic
(implications of LA expressions).

NP complete [Sonntag'85]

Similar techniques can be used also for Godel logics (with the Godel
t-norm).

This method was first described (in a slightly more general context) in:

Viorica Sofronie-Stokkermans and Carsten lhlemann,
" Automated reasoning in some local extensions of ordered structures.”
Proceedings of ISMVL'07, IEEE Press, paper 1, 2007.

and (with full proofs) in

Viorica Sofronie-Stokkermans and Carsten lhlemann,

" Automated reasoning in some local extensions of ordered structures.”
Journal of Multiple-Valued Logics and Soft Computing

(Special issue dedicated to ISMVL'07) 13 (4-6), 397-414, 2007.

42

Example 1: Godel logic

F F-formula, where F = {V, A, =, =, & 1.

Let P1,..., Py be the propositional variables which occur in F.

Check whether 3x1, ..., xpF(x1,...,xm) # 1 is satisfiable in
[0,1]¢ = ([0, 1], {V, A, 0, =, —=})

where V, A, 7, —, <> are the operations induced by the t-norm
fo(x,y) = min(x, y), i.e.:

(Defy) = (Defp) x<y — xAy = x X>y — XAy =y
(Defy) x<y — xVy=y x>y — xVy=x
(Defs) x<y = x=y=1 X>y = x=y =y

(Def-) x=0— —-x=1 x>0—-x=0

43

Example

r

Check whether ((x = 0) = 0) = (x V y) is a tautology in the Godel logic.
New task: Defg A ((x = 0) = 0) = (x V y) # 1 satisfiable?

Gy
\
where (Def,) = (Defpr) x<y — xAy = x X>y = XAy =y
(Defy) x<y — xVy=y x>y — xVy=x
(Def=) x<y — x=y=1 X>y = x=y =y

(Def) x=0— —-x=1 x>0—-x=0

44

Example

Gy

New task: Defg A ((x = 0) = 0) = (x V y) # 1 satisfiable?

where (Defy) = (Defp) x<y — xAy = x
(Defy) x<y — xVy=y
(Def=) x<y — x=y=1
(Def) x=0— —-x=1

X>y — XAy =y
x>y — XVy=x
X>y > X=>y =Yy

Xx>0——x=0

1. Rename subterms starting with t-operators and expand definitions:

p=x=0 #1 x<0—-x=0=1
q=p=0 p<0—=p=0=1
r=xVy qg<r— =1
= x<y—=+xVy=y

x>0—=x=0=0
p>0—p=0=0
q>r— =r
X>y —>xVy=X

45

Example

New task: Defg A ((x = 0) = 0) = (x V y) # 1 satisfiable?

Gy
where (Def,) = (Defr) x<y — xAy = x X>y — XAy =y
(Defy) x<y — xVy=y x>y — xVy=x
(Def=) x<y — x=y=1 XSy = X=>y =y
(Def) x=0— —-x=1 x>0—-x=0

2. Replace terms starting with t-operations; SAT checking in [0, 1]

p=x=20 #1 x<0—p=1 x>0—p=0
gq=p=0 p<0—-qg=1 p>0—qg=0
r=xVy q<r—s=1 qgq>r—=s=r
= X<y—=r=y X>y—r=Xx

Satisfiable (e.g. by B(x)=8(y)=12), so ((x = 0) = 0) = (x V y) not tautology
in Godel logic.

46

Product logic

Similar techniques can be used also for the product logic

(with the product t-norm)

— non-linearity (hence higher complexity)

47

Many-Valued Logics

e Many-valued logics (finitely-valued)

History and Motivation
Syntax /Semantics

Functional completeness
Automated reasoning: Tableaux, Resolution
Applications: logic; verification

e Infinitely-valued logics

Examples: tukasiewics logics Ly, Ly,
description of the tautologies

Fuzzy logics:
— t-norms, tukasiewics, Godel, Product t-norm

— Lukasiewics logic, Godel logic, Product logic
— Automated methods for checking validity

48

