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History and Motivation

Extensions of classical logic by means of new logical operators

Modal logic

- modal operators 2,3

meaning of 2A meaning of 3A

A is necessarily true A is possibly true

An agent believes A An agent thinks A is possible

A is always true A is sometimes true

A should be the case A is allowed

A is provable A is not contradictory
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History and Motivation

Logics related to modal logic

Dynamic logic of programs

Operators:

α A: A holds after every run of the (non-deterministic) process α

3α A: A holds after some run of the (non-deterministic) process α
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History and Motivation

Logics related to modal logic

Temporal logic

2A: A holds always (in the future)

3A: A holds at some point (in the future)

◦A: A holds at the next time point (in the future)

A until B A must remain true at all following time points

until B becomes true

4



History and Motivation

Extensions of classical logic: Modal logic and related logics

Very rich history.
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Antiquity and middle ages

John Duns Scotus (1266 - 1308)

Reasoned informally in a modal manner, mainly to analyze

statements about possibility and necessity.

William of Ockham (1288 - 1348)

In addition to his work on De Morgan’s Laws and ternary logic,

he also analyzed statements about possibility and necessity.
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Beginning of modern modal logic

Clarence Irving Lewis (1883-1964)

founded modern modal logic in his 1910 Harvard thesis.

Saul Kripke (1940-)

In 1959, Saul Kripke (then a 19-year old Harvard student)

introduced the possible-worlds semantics for modal logics.

Ruth C. Barcan, later Ruth Barcan Marcus (1921-2012)

Developed the first axiomatic systems

of quantified modal logic.
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Temporal logic and dynamic logic

Arthur Norman Prior (1914-1969)
Created modern temporal logic in 1957

Vaughan Pratt (1944- )

Introduced dynamic logic in 1976.

Amir Pnueli (1941-2009)

In 1977, proposed using temporal logic to

formalise the behaviour of continually operating

concurrent programs.
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Modal logic

In classical logic, it is only important whether a formula is true In modal

logic, it is also important in which

• way

• mode

• state

a formula is true
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Modal logic

A formula (a proposition) is

• necessarily / possibly true

• true today / tomorrow

• believed / known

• true before / after an action / the execution of a program

New operator 2 / 3

(or families of such operators)
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Propositional modal logic

• Syntax

• Inference systems and proofs

• Semantics

Soundness and completeness

Decidability
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Syntax

• propositional variables

• logical symbols: {∨,∧,¬,→,↔,2,3}
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Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.
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Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| 2F

| 3F
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Informal Interpretations of 2

2F can mean:

• F is necessarily true

• F is always true (in future states/words)

• an agent a believes F

• an agent a knows F

• F is true after all possible executions of a program p
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Informal Interpretations of 2

2F can mean

• F is necessarily true

• F is always true (in future states/words)

• an agent a believes F

• an agent a knows F

• F is true after all possible executions of a program p

Notation: If necessary write

2aF ,2pF , [a]F , [p]F

instead of 2F .
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Informal Interpretations of 2, 3

meaning of 2A meaning of 3A = ¬2¬A

A is necessarily true A is possibly true

A is always true A is sometimes true

Agent a believes A Agent A thinks A is possible

Agent a believes A A is consistent with a’s beliefs

Agent a knows A a does not know ¬A

A should be the case A is allowed

A is provable A is not contradictory

A holds after every run of the A is true after at least one

(non-deterministic) program p possible execution of program p
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The Wise-Men Puzzle

There are three wise men, three red hats, and two white hats. The king

puts a hat on each of the wise men in such a way that they are not able to

see their own hat.

He then asks each one in turn whether he knows the color of his hat.

The first man says he does not know.

The second man says he does not know either.

What does the third man say?
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The Wise-Men Puzzle

There are three wise men, three red hats, and two white hats. The king

puts a hat on each of the wise men in such a way that they are not able to

see their own hat.

He then asks each one in turn whether he knows the color of his hat.

The first man says he does not know.

The second man says he does not know either.

What does the third man say?

• if there is only one red hat, he will answer “red”

• if there are two red hats, the wearers will know this after the question is repeated

• if there are three red hats, the question has to be is repeated once more
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The Muddy-Children Puzzle

Three children are playing in the garden and some of the children get mud

on their foreheads.

Each child can see the mud on others only.

Now consider two scenarios:

• The father repeatedly asks “Does any of you know whether you have

mud on your forehead?”.

All children answer “no” the first time, and continue to answer “no”

to repetitions of the same question.

• The father tells the children that at least one of them is muddy and

repeatedly asks “Does any of you know whether you have mud on your

forehead?”. After the question has been asked ≤ 3 times, the muddy

children will answer “yes.”
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The Muddy-Children Puzzle

Consider the second scenario.

k = 1. There is only one muddy child, which will answer “yes” because of

the father’s statement.

k = 2. If two children, call them a and b, are muddy, they both answer

“no” the first time. But both a and b then reason that the other

muddy child must have seen someone with mud on his forehead, and

hence answer “yes” the second time.

k = 3. Let a, b, and c be the muddy children. Everybody answers “no” the

first two times. But then a reasons that if b and c are the only muddy

children they would have answered “yes” the second time (based on

the argument for the case k = 2). Since they answered “no,” a further

reasons, they must have seen a third child with mud, which must be

me. Children b and c reason in the same way, and all three children

answer “yes” the third time.
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The Muddy-Children Puzzle

Note that the father’s announcement makes it common knowledge among

the children that at least one child is muddy.
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Generalization

A group of children is playing in the garden and some of the children, say k

of them, get mud on their foreheads. Each child can see the mud on others

only. Note that if k > 1, then every child can see another with mud on its

forehead.

The father tells the children that at least one of them is muddy and

repeatedly asks “Does any of you know whether you have mud on your

forehead?”.

After the question has been asked k times, the k muddy children will answer

“yes”.
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Formalizing the Wise-Men Puzzle

Notation:

ri means “man i wears a red hat”

wi means “man i wears a white hat”

The situation can be described by the following formulae:

{(r1 ∨ r2 ∨ r3),¬(r1 ∧ w1),¬(r2 ∧ w2),¬(r3 ∧ w3),¬w1 ↔ r1,¬w2 ↔ r2,¬w3 ↔ r3

(r1 → 22r1), (w1 → 22w1), (r1 → 23r1), (w1 → 23w1),

(r2 → 21r2), (w2 → 21w2), (r2 → 23r2), (w2 → 23w2),

(r3 → 21r3), (w3 → 21w3), (r3 → 22r3), (w3 → 22w3)}

Facts:

¬21r1,¬22r2
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Formalization

• Formalize the properties of 2i

• Entail the truth of certain formulae
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Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷

F1 . . . Fn

Fn+1
︸︷︷︸

conclusion

.

Inferences with 0 premises are also called axioms.
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Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference

(Fi1 , . . . , Fini
, Fi ) in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .
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Provability

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.
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Inference system for modal logic

Acceptable axioms:

• All axioms of propositional logic (e.g. p ∨ ¬p)

• (2A ∧ 2(A→ B))→ 2B

• 2(A→ B)→ (2A→ 2B)
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Inference system for modal logics

Acceptable axioms:

• All axioms of propositional logic (e.g. p ∨ ¬p)

• (2A ∧ 2(A→ B))→ 2B

• 2(A→ B)→ (2A→ 2B)

Acceptable inference rules

A A→ B

B
[Modus ponens]

A

2A
[Necessitation]

Remark: Accepting the last inference rule is not the same with accepting

A→ 2A as an axiom!
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Example of proof

Task: Check whether the following can be proved the inference system of

modal logic indicated on page 33:

{2(A ∧ B)} ⊢ 2A ∧ 2B
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Example of proof

Task: Check whether {2(A ∧ B)} ⊢ 2A ∧ 2B

1. 2(A ∧ B) premise

2. A ∧ B → A theorem prop. logic

3. A ∧ B → B theorem prop. logic

4. 2(A ∧ B → A) necessitation 2.

5. 2(A ∧ B → B) necessitation 3.

6. 2(A ∧ B) ∧ 2(A ∧ B → A) theorem prop. logic (1, 5)

7. 2(A ∧ B) ∧ 2(A ∧ B → B) theorem prop. logic (1, 6)

8. 2(A ∧ B) ∧ 2(A ∧ B → A) → 2A Ax1

9. 2A MP (6, 8)

10 2(A ∧ B) ∧ 2(A ∧ B → B) → 2B Ax1

11 2B MP (7, 9)

12 2A ∧ 2B theorem prop. logic
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The modal system K

Axioms:

• All axioms of propositional logic (e.g. p ∨ ¬p)

• 2(A→ B)→ (2A→ 2B) (K)

Inference rules

A A→ B

B
[Modus ponens]

A

2A
[G]
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Some systems of modal logic

System Description

T K + 2A→ A

D K + 2A→ 3A

B T + ¬A→ 2¬2A

S4 T + 2A→ 22A

S5 T + ¬2A→ 2¬2A

S4.2 S4 + ⋄2A→ 23A

S4.3 S4 + 2(2(A→ B)) ∨ 2(2(B → A))

C K + A→B
2(A→B)

instead of (G).
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Semantics of modal logic

Two classes of models have been studied so far.

• Modal algebras

• Kripke models
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Semantics of modal logic

Modal algebras (B,∨,∧,¬,→,↔, 0, 1,2,3) where

• (B,∨,∧,¬, 0, 1) Boolean algebra, i.e. satisfies the following conditions:

x ∧ y = y ∧ x x ∨ y = y ∨ x

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ x = x x ∨ x = x

x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x

x ∧ 1 = x x ∨ 0 = x

x ∧ 0 = 0 x ∨ 1 = 1

x ∨ ¬x = 1 x ∧ ¬x = 0

• →,← derived operations: x→y := ¬x∨y ; x↔y := (x→y) ∧ (y→x)

3x = ¬2¬x

• 2 has additional properties e.g. 2(x ∧ y) = 2x ∧ 2y
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Kripke Frames and Kripke Structures

Introduced by Saul Aaron Kripke in 1959.

Much less complicated and better suited to automated reasoning than

modal algebras.
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Saul Aaron Kripke

Born 1940 in Omaha (US)

First A Completeness Theorem in Modal Logic

publication: The Journal of Symbolic Logic, 1959

Studied at: Harvard, Princeton, Oxford

and Rockefeller University

Positions: Harvard, Rockefeller, Columbia,

Cornell, Berkeley, UCLA, Oxford

since 1977 Professor at Princeton University

since 1998 Emeritus at Princeton University
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Kripke Frames and Kripke Structures

Definition. A Kripke frame F = (S ,R) consists of

• a non-empty set S (of possible worlds / states)

• an accessibility relation R ⊆ S × S
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Kripke Frames and Kripke Structures

Definition. A Kripke frame F = (S ,R) consists of

• a non-empty set S (of possible worlds / states)

• an accessibility relation R ⊆ S × S

Definition. A Kripke structure K = (S ,R, I) consists of

• a Kripke frame F = (S ,R)

• an interpretation I : Π× S → {1, 0}
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Example of Kripke frame

A B

CD
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Example of Kripke frame

A B

CD

Set of possible worlds (states): S = {A,B,C ,D}
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Example of Kripke frame

A B

CD

Set of possible worlds (states): S = {A,B,C ,D}

Accessibility relation: R = {(A,B), (B,C), (C ,A), (D,A), (D,C)}
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Example of Kripke structure

A B

CD

P ~P

P
~P

Set of possible worlds (states): S = {A,B,C ,D}

Accessibility relation: R = {(A,B), (B,C), (C ,A), (D,A), (D,C)}

Interpretation: I : Π× S → {0, 1}

I(P,A) = 1, I(P,B) = 0, I(P,C) = 1, I(P,D) = 0

Notation Instead of (A,B) ∈ R we will sometimes write ARB.
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Notation

K = (S ,R, I )

Instead of writing (s, t) ∈ R we will sometimes write sRt.
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Modal logic: Semantics

Given: Kripke structure K = (S ,R, I )

Valuation:

valK (p)(s) = I (p, s) for p ∈ Π

valK defined for propositional operators in the same way as in classical logic

valK (2A)(s) =







1 if valK (A)(s
′) = 1 for all s′ ∈ S with sRs′

0 otherwise

valK (3A)(s) =







1 if valK (A)(s
′) = 1 for at least one s′ ∈ S with sRs′

0 otherwise
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Models, Validity, and Satisfiability

F = (S ,R), K = (S ,R, I )

F is true in K at a world s ∈ S :

(K, s) |= F :⇔ valK(F )(s) = 1

F is true in K

K |= F :⇔ (K, s) |= F for all s ∈ S

F is true in the frame F = (S ,R)

F |= F :⇔ (KF ) |= F for all Kripke structures KF = (S ,R, I ′)

defined on frame F

If Φ is a class of frames, F is true (valid) in Φ

Φ |= F :⇔ F |= F for all F ∈ Φ.
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Example for evaluation

A B

CD

P ~P

P
~P

(K,A) |= P (K,B) |= ¬P (K,C) |= P (K,D) |= ¬P

(K,A) |= 2¬P (K,B) |= 2P (K,C) |= 2P (K,D) |= 2P

(K,A) |= 22P (K,B) |= 22P (K,C) |= 22¬P ...
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Entailment and Equivalence

In classical logic we proved:

Proposition:

F entails G iff (F → G) is valid

Does such a result hold in modal logic?
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Entailment

In classical logic we proved:

Proposition:

F |= G iff (F → G) is valid

Does such a result hold in modal logic?

Need to define what F |= G means
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