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Until now

• History and Motivation

• Propositional modal logic

Syntax

Inference systems and proofs

Semantics
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Semantics of modal logic

Two classes of models have been studied so far.

• Modal algebras

• Kripke models
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Kripke Frames and Kripke Structures

Introduced by Saul Aaron Kripke in 1959.

Much less complicated and better suited to automated reasoning than

modal algebras.
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Kripke Frames and Kripke Structures

Definition. A Kripke frame F = (S ,R) consists of

• a non-empty set S (of possible worlds / states)

• an accessibility relation R ⊆ S × S

Definition. A Kripke structure K = (S ,R, I) consists of

• a Kripke frame F = (S ,R)

• an interpretation I : Π× S → {1, 0}
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Example of Kripke structure

A B

CD

P ~P

P
~P

Set of possible worlds (states): S = {A,B,C ,D}

Accessibility relation: R = {(A,B), (B,C), (C ,A), (D,A), (D,C)}

Interpretation: I : Π× S → {0, 1}

I(P,A) = 1, I(P,B) = 0, I(P,C) = 1, I(P,D) = 0

Notation Instead of (A,B) ∈ R we will sometimes write ARB.
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Modal logic: Semantics

Given: Kripke structure K = (S ,R, I )

Valuation:

valK (p)(s) = I (p, s) for p ∈ Π

valK defined for propositional operators in the same way as in classical logic

valK (2A)(s) =







1 if valK (A)(s
′) = 1 for all s′ ∈ S with sRs′

0 otherwise

valK (3A)(s) =







1 if valK (A)(s
′) = 1 for at least one s′ ∈ S with sRs′

0 otherwise
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Models, Validity, and Satisfiability

F = (S ,R), K = (S ,R, I )

F is true in K at a world s ∈ S :

(K, s) |= F :⇔ valK(F )(s) = 1

F is true in K

K |= F :⇔ (K, s) |= F for all s ∈ S

F is true in the frame F = (S ,R)

F |= F :⇔ (KF ) |= F for all Kripke structures KF = (S ,R, I ′)

defined on frame F

If Φ is a class of frames, F is true (valid) in Φ

Φ |= F :⇔ F |= F for all F ∈ Φ.
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Entailment and Equivalence

In classical logic we proved:

Proposition:

F entails G iff (F → G) is valid

Does such a result hold in modal logic?
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Entailment

In classical logic we proved:

Proposition:

F |= G iff (F → G) is valid

Does such a result hold in modal logic?

Need to define what F |= G means
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Entailment

Goal: definition for N |= F , where N is a family of modal formulae
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Entailment

Goal: definition for N |= F , where N is a family of modal formulae

Tentative 1:

N |=G F iff for every Kripke structure K = (S ,R, I ):

If K |= G for every G ∈ N then K |= F
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Entailment

Goal: definition for N |= F , where N is a family of modal formulae

Tentative 1:

N |=G F iff for every Kripke structure K = (S ,R, I ):

If K |= G for every G ∈ N then K |= F

“global entailment”
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Example

N |=G F iff for every Kripke structure K = (S ,R, I ):

If K |= G for every G ∈ N then K |= F

Task: Show that P |=G 2P

Proof: Let K = (S ,R, I ) be a Kripke structure.

Assume that K |= P, i.e. for every s ∈ S we have (K, s) |= P.

Then it follows that for every s ∈ S we have (K, s) |= 2P.

By the definition of |=G it follows that P |=G 2P.
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Example

N |=G F iff for every Kripke structure K = (S ,R, I ):

If K |= G for every G ∈ N then K |= F

Proved: P |=G 2P

Question: Is it true that P → 2P is true in all Kripke structures?

Answer: Let K = (S ,R, I ), where

S = {s1, s2}, R = {(s1, s2)}, I (P, s1) = 1, I (P, s2) = 0.

Then (K, s1) |= P, (K, s1) 6|= 2p.

Hence (K, s1) 6|= P → 2P.
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Entailment

Goal: definition for N |= F , where N is a family of modal formulae

Tentative 2:

N |=L F iff for every Kripke structure K = (S ,R, I ) and every s ∈ S :

If (K, s) |= G for every G ∈ N then (K, s) |= F
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Entailment

Goal: definition for N |= F , where N is a family of modal formulae

Tentative 2:

N |=L F iff for every Kripke structure K = (S ,R, I ) and every s ∈ S :

If (K, s) |= G for every G ∈ N then (K, s) |= F

“local entailment”
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Entailment

N |=G F iff for every Kripke structure K = (S ,R, I ):

If K |= G for every G ∈ N then K |= F

N |=L F iff for every Kripke structure K = (S ,R, I ) and every s ∈ S :

If (K, s) |= G for every G ∈ N then (K, s) |= F

Remark: The two entailment relations are different

P |=G 2P (was shown before)

P 6|=L 2P
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Entailment

N |=G F iff for every Kripke structure K = (S ,R, I ):

If K |= G for every G ∈ N then K |= F

N |=L F iff for every Kripke structure K = (S ,R, I ) and every s ∈ S :

If (K, s) |= G for every G ∈ N then (K, s) |= F

Remark: The two entailment relations are different

P |=G 2P (was shown before)

P 6|=L 2P

Proof: Let K = (S ,R, I ), where

S = {s1, s2}, R = {(s1, s2)}, I (P, s1) = 1, I (P, s2) = 0.

Then (K, s1) |= P, but (K, s1) 6|= 2P. Hence, P 6|=L 2P.
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Entailment

Theorem (The deduction theorem) The following are equivalent:

(1) F |=L G

(2) {F ,¬G} is unsatisfiable

(3) |= (F → G)

(4) |=L (F → G)

Proof. F |=L G iff for every Kripke structure K = (S ,R, I ) and every s ∈ S :

If (K, s) |= F then (K, s) |= G

iff there is no Kripke structure K = (S ,R, I ) and no s ∈ S with

(K, s) |= F ∧ ¬G

iff {F ,¬G} is unsatisfiable

From propositional logic we know that {F ,¬G} is unsatisfiable iff F → G

is valid. This happens iff |=L F → G
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Modal Logic: Valid Formulae

Valid:

• 2(P → Q) → (2P → 2Q)

• (2P ∧ 2(P → Q)) → 2Q

• (2P ∨ 2Q) → 2(P ∨ Q)

• (2P ∧ 2Q) ↔ 2(P ∧ Q)

• 2P ↔ ¬3¬P

• 3(P ∨ Q) ↔ (3P ∨3Q)

• 3(P ∧ Q) → (3P ∧3Q)
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Modal Logic: Valid Formulae

Valid:

• 2(P → Q) → (2P → 2Q)

• (2P ∧ 2(P → Q)) → 2Q

• (2P ∨ 2Q) → 2(P ∨ Q)

• (2P ∧ 2Q) ↔ 2(P ∧ Q)

• 2P ↔ ¬3¬P

• 3(P ∨ Q) ↔ (3P ∨3Q)

• 3(P ∧ Q) → (3P ∧3Q)

Not valid:

• 2(P ∨ Q) → (2P ∨ 2Q)

• (3P ∧3Q) → 3(P ∧ Q)
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Modal Logic: Valid Formulae

Not valid: 2(P ∨ Q) → (2P ∨ 2Q)

[explanations on the blackboard]
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Exercises

1. Show that 3T and the schema 2A → 3A have exactly the same

models.

2. Exhibit a frame in which 2 ⊥ is valid.

3. In any model K,

(i) if A is a tautology then K |= A;

(ii) if K |= A and K |= A → B, then K |= B;

(iii) if K |= A then K |= 2A.
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Correspondence Theory
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Correspondence Theory

Main questions:

Assume that we consider a set of frames for which the accessibility relation

has certain properties. Is it the case that in all frames in this class a certain

modal formula holds?

Given a modal formula. Can we describe the frames in which the formula

holds, e.g. by specifying certain properties of the accessibility relation?
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Example

Let ReflFrames be the class of all frames F = (S ,R) in which R is reflexive.

Theorem. For every formula A, the formula 2A → A is true in all frames

F = (S ,R) ∈ ReflFrames (i.e. in all frames F = (S ,R) with R reflexive).

[Proof on the blackboard]
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Example

Let ReflFrames be the class of all frames F = (S ,R) in which R is reflexive.

Theorem. For every formula A, the formula 2A → A is true in all frames

in ReflFrames.

Theorem. If the formula 2A → A is true in a frame F = (S ,R) for every

formula A, then R must be reflexive.

[Proof on the blackboard]
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Conditions on R

The following is a list of properties of a binary relation R that are denned

by first-order sentences.

1. Reflexive: ∀s (sRs)

2. Symmetric: ∀s∀t (sRt → tRs)

3. Serial: ∀s∃t (sRt)

4. Transitive: ∀s∀t∀u (sRt ∧ tRu → sRu)

5. Euclidean: ∀s∀t∀u (sRt ∧ sRu → tRu)

6. Partially functional: ∀s∀t∀u (sRt ∧ sRu → t = u)

7. Functional: part. functional + ∀s∃t(sRt)

8. Weakly dense: ∀s∀t(sRt → ∃u (sRu ∧ uRt))

9. Weakly connected: ∀s∀t∀u (sRt ∧ sRu → tRu ∨ t = u ∨ uRt)

10. Weakly directed: ∀s∀t∀u (sRt ∧ sRu → ∃v(tRv ∧ uRv))
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List of schemata of modal formulae

Corresponding to the list of properties of R is a list of schemata:

1. 2A → A

2. A → 23A

3. 2A → 3A

4. 2A → 22A

5. 3A → 23A

6. 3A → 2A

7. 3A ↔ 2A

8. 22A → 2A

9. 2(A ∧ 2A → B) ∨ 2(B ∧ 2B → A)

10. 32A → 23A
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Correspondence theorems

Properties of R Axioms

1. Reflexive: ∀s (sRs) 2A → A

2. Symmetric: ∀s∀t (sRt → tRs) A → 23A

3. Serial: ∀s∃t (sRt) 2A → 3A

4. Transitive: ∀s∀t∀u (sRt ∧ tRu → sRu) 2A → 22A

5. Euclidean: ∀s∀t∀u (sRt ∧ sRu → tRu) 3A → 23A

6. Partially functional: ∀s∀t∀u (sRt ∧ sRu → t = u) 3A → 2A

7. Functional: part. functional + ∀s∃t(sRt) 3A ↔ 2A

8. Weakly dense: ∀s∀t(sRt → ∃u (sRu ∧ uRt)) 22A → 2A

9. Weakly connected: ∀s∀t∀u (sRt ∧ sRu → tRu ∨ t = u ∨ uRt) 2(A ∧ 2A → B) ∨ 2(B ∧ 2B → A)

10. Weakly directed: ∀s∀t∀u (sRt ∧ sRu → ∃v(tRv ∧ uRv)) 32A → 23A

Theorem. Let F = (S ,R) be a frame.

Then for each of the properties 1-10, if R satisfies the property, then the

corresponding schema is valid in F .

Theorem. If a frame F = (S ,R) validates any one of the schemata 1-10,

then R satisfies the corresponding property.
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Correspondence theorems

Theorem. Let F = (S ,R) be a frame.

Then for each of the properties 1-10, if R satisfies the property, then the

corresponding schema is valid in F .

Proof. We illustrate with the case of transitivity. Suppose that R is

transitive. Let K be any model on F .

To show that K |= 2A → 22A, take any s ∈ S with (K, s) |= 2A.

We have to prove that (K, s) |= 22A, i.e. we have to show that sRt implies

(K, t) |= 2A, or, in other words,

sRt implies (tRu implies (K, u) |= A).

Suppose sRt. If tRu, we have sRu by transitivity, so (K, u) |= A since

(K, s) |= 2A by hypothesis.

The other cases are left as exercises.
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Correspondence theorems

Theorem. If a frame F = (S ,R) validates any one of the schemata 1-10,

then R satisfies the corresponding property.

Proof. Consider schema 10. To show that R is weakly directed, suppose

sRt and sRu.

Let K be any model on F in which I (p)(v) = 1 iff uRv .

Then by definition, uRv implies (K, v) |= p, so (K, u) |= 2p, and hence, as

sRu, (K, s) |= 32p. But then as schema 10 is valid in F , (K, s) |= 23p,

so as sRt, (K, t) |= 3p. This implies that there exists a v with tRv and

(K, v) |= p, i.e. V (p)(v) = 1, so uRv ; as desired.
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Correspondence theorems

Theorem. If a frame F = (S ,R) validates any one of the schemata 1-10,

then R satisfies the corresponding property.

Proof. Consider now schema 8. Suppose sRt. Let K be a Kripke model on

F with I (p)(v) = 1 iff t 6= v .

Then (K, t) 6|= p, so (K, s) 6|= 2p.

Hence by validity of schema 8, (K, s) 6|= 22p, so there exists a u with sRu

and (K, u) 6|= 2p.

Then for some v , uRv and (K, v) 6|= p, i.e. v = t, so that uRt, as needed

to show that R is weakly dense.
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A general result

Property of R:

C(m, n, j , k) : ∀s1∀s2∀s3((Rm(s1, s2) ∧ R j (s1, s3) → ∃s4(Rn(s2, s4) ∧ Rk (s3, s4)))
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A general result

Property of R:

C(m, n, j , k) : ∀s1∀s2∀s3((Rm(s1, s2) ∧ R j (s1, s3) → ∃s4(Rn(s2, s4) ∧ Rk (s3, s4)))

where R0(x , y) := x = y

R1(x , y) := R(x , y)

R2(x , y) = ∃u(R(x , u) ∧ R(u, y))

Rm(x , y) = ∃u1 . . . um−1(R(x , u1) ∧ · · · ∧ R(um−1, y))
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom

3
m
2

nP → 2
j
3

kP

characterizes the class of all frames in which

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

is true.

We use the abbreviations

2
nP = 2 . . .2

︸ ︷︷ ︸

n times

P

3
nP = 3 . . .3

︸ ︷︷ ︸

n times

P
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom

3
m
2

nP → 2
j
3

kP

characterizes the class of all frames in which

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

is true.

We use the abbreviations

2
nP = 2 . . .2

︸ ︷︷ ︸

n times

P

3
nP = 3 . . .3

︸ ︷︷ ︸

n times

P

In particular, 20P and 3
0P stand for P
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom 3
m
2

nP → 2
j
3

kP

characterizes the class of all frames in which C(m, n, j , k) is true, where:

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

Proof “⇒” Let (S,R) be s.t. for every I (S,R, I ) |= 3
m
2

nP → 2
j
3

kP. We show

that R has property C(m, n, j , k).

Let s1, s2, s3 ∈ S be such that Rm(s1, s2) ∧ R j (s1, s3).

Let I with I (w ,P) = 1 if Rn(s2,w) and I (w ,P) = 0 otherwise.

Then, for K = (S,R, I ) we have (K, s2) |= 2
nP, hence (K, s1) |= 3

m
2

nP.

Then, by assumption, (K, s1) |= 2
j
3

kP.

Since R j (s1, s3), it follows that there exists s ∈ S such that Rk (s3, s) and I (s,P) = 1,

hence by the definition of I , Rn(s2, s).
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A general result

Theorem. For every m, n, j , k ∈ N, the axiom 3
m
2

nP → 2
j
3

kP

characterizes the class of all frames in which C(m, n, j , k) is true, where:

C(m, n, j , k) : ∀s1∀s2∀s3((R
m(s1, s2)∧R j (s1, s3) → ∃s4(R

n(s2, s4)∧Rk (s3, s4)))

Proof “⇐” Assume R ⊆ S × S has the property C(m, n, j , k).

Let K = (S,R, I ) and s1 ∈ S. We show that (K, s1) |= 3
m
2

nP → 2
j
3

kP.

Assume that (K, s1) |= 3
m
2

nP.

Then there exists s2 ∈ S such that Rm(s1, s2) and (K, s2) |= 2
nP.

We want to show that (K, s1) |= 2
j
3

kP. Let s3 ∈ S be such that R j (s1, s3).

Since we assumed that R has property C(m, n, j , k), there exists s4 ∈ S such that

Rn(s2, s4) ∧ Rk (s3, s4).

From Rn(s2, s4) and (K, s2) |= 2
nP we infer that I (P, s4) = 1.

From this and the fact that Rk (s3, s4) it follows that (K, s3) |= 3
kP.

It follows therefore that (K, s1) |= 2
j
3

kP. QED
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Exercise

(1) Complete the proofs of the correspondence theorems.

(2) Give a property of R that is necessary and sufficient for F to validate

the schema A → 2A. Do the same for 2 ⊥.
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