
Non-classical logics

Lecture 21: Modal logics (Part 7)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Until now

• History and Motivation

• Propositional modal logic

Syntax/Semantics

Correspondence theory; First-order definability

Proof Systems (Inference system; Tableau calculi; Resolution)

Decidability

• Description logics

• Propositional dynamic logic

2

Dynamic Logic

• Motivation

• Syntax/Semantics

• Proof theory

3

PDL: Syntax
Formulae:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| p p ∈ Π0 (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| [α]F if α ∈ Prog

| 〈α〉 F if α ∈ Prog

Programs:

α, β, γ ::= α0 α0 ∈ Prog0 (atomic program)

| F? F formula (test)

| α; β (sequential composition)

| α ∪ β (non-deterministic choice)

| α∗ (non-deterministic repetition)

4

Semantics

A PDL structure K = (S ,R(), I) is a multimodal Kripke structure with an

accessibility relation for each atomic program. That is it consists of:

• a non-empty set S of states

• an interpretation R() : Prog0 → P(S × S) of atomic programs that

assigns a transition relation R(α) ⊆ S × S to each atomic program α

• an interpretation I : Π× S → {0, 1}

5

PDL: Semantics

The interpretation of PDL relative to a PDL structure K = (S ,R(), I)

is defined by extending R() to Prog and extensing I to FmaPDL
Prop0

by the

following simultaneously inductive definition:

6

Interpretation of formulae/programs

valK(p, s) = I (p, s)

valK(¬F , s) = ¬BoolvalK(F , s)

valK(F ∧ G , s) = valK(F , s) ∧Bool valK(G , s)

valK(F ∨ G , s) = valK(F , s) ∨Bool valK(G , s)

valK([α]F , s) = 1 iff for all t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

valK(〈α〉 F , s) = 1 iff for some t ∈ S with (s, t) ∈ R(α), valK(F , t) = 1

R([F?]) = {(s, s) | valK(F , s) = 1}

(F? has the same meaning as: if F then skip else do not terminate)

R(α ∪ β) = R(α) ∪ R(β)

R(α; β) = {(s, t) | there exists u ∈ S s.t.(s, u) ∈ R(α) and (u, t) ∈ R(β)}

R(α∗) = {(s, t) | there exists n ≥ 0 and there exist u0, . . . , un ∈ S with

s = u0, y = un, (u0, u1), . . . , (un−1, un) ∈ R(α)}

7

Interpretation of formulae/programs

• (K, s) satisfies F (notation (K, s) |= F) iff valK(F , s) = 1.

• F is valid in K (notation K |= F) iff (K, s) |= F for all s ∈ S .

• F is valid (notation |= F) iff K |= F for all PDL-structures K.

8

Axiom system for PDL
Axioms

(D1) All propositional logic tautologies

(D2) [α](A → B) → ([α]A → [α]B)

(D3) [α](A ∧ B) ↔ [α]A ∧ [α]B

(D4) [α; β]A ↔ [α][β]A

(D5) [α ∪ β]A ↔ [α]A ∧ [β]A

(D6) [A?]B ↔ (A → B)

(D7) [α∗]A ↔ A ∧ [α][α∗]A,

(D8) [α∗](A → [α]A) → (A → [α∗]A]

Inference rules

MP P, P→Q
Q

Gen F
[α]F

We will show that PDL is determined by PDL structures, and has the finite model

property.

9

Soundness and Completeness of PDL

Proof similar to the proof in the case of the modal system K (with small

differences)

Theorem. If the formula F is provable in the inference system for PDL then

F is valid in all PDL structures.

Proof: The axioms are valid in every PDL structure. Easy computation

(examples on the blackboard).

The inference rules MP and Gen preserve validity.

(proof as for the modal logic K)

10

Soundness and Completeness of PDL

Theorem. If the formula F is is valid in all PDL structures then F is

provable in the inference system for PDL.

Proof

Idea:

Assume that F is not provable in the inference system for PDL.

We show that:

(1) ¬F is consistent with the set L of all theorems of PDL

(2) We can construct a “canonical” PDL structure KL and a state w

in this PDL structure such that (K,w) |= ¬F .

Contradiction!

11

Consistent sets of formulae

Let L be a set of PDL formulae which:

(1) contains all propositional tautologies

(2) contains axiom PDL

(3) is closed under modus ponens and generalization

(4) is closed under instantiation

Definition. A subset F ⊆ L is called L-inconsistent iff there exist formulae

A1, . . . ,An ∈ F such that

(¬A1 ∨ · · · ∨ ¬An) ∈ L

F is called L-consistent iff it is not L-inconsistent.

Definition. A consistent set F of PDL formulae is called maximal

L-consistent if for every formula A wither A ∈ F or ¬A ∈ F .

12

Consistent sets of formulae

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let F be a maximal L-consistent set of formulae. Then:

(1) For every formula A, either A ∈ F or ¬A ∈ F , but not both.

(2) A ∨ B ∈ F iff A ∈ F or B ∈ F

(3) A ∧ B ∈ F iff A ∈ F and B ∈ F

(4) L ⊆ F

(5) F is closed under Modus Ponens

Theorem. Every consistent set F of formulae is contained in a maximally

consistent set of formulae.

Proofs: As for modal logic.

13

Canonical models

Goal: Assume F is not a theorem. Construct a PDL structure K and a

state w of K such that (K,w) |= ¬F .

States:

State of K: maximal consistent set of formulae.

Intuition: (K,W) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W) |= [α]F iff for all W ′, ((W ,W ′) ∈ R(α) → (K,W ′) |= F)

14

Canonical models

Goal: Assume F is not a PDL theorem. Construct a PDL structure K and

a state w of K such that (K,w) |= ¬F .

States:

State of K: maximal consistent set of formulae.

Intuition: (K,W) |= F iff F ∈ W .

Accessibility relation:

Intuition:

(K,W) |= [α]F iff for all W ′, ((W ,W ′) ∈ R(α) → (K,W ′) |= F

[α]F ∈ W iff for all W ′, ((W ,W ′) ∈ R(α) → F ∈ W ′)

(W ,W ′) ∈ R(α) iff W ′ ⊇ {F | [α]F ∈ W }

15

Canonical models

Theorem. K satisfies all PDL structure conditions except R(α∗) ⊆ (R(α))∗.

Proof: By direct checking.

Example: R(α; β) ⊆ R(α) ◦ R(β)

Assume (W ,W ′) ∈ R(α; β). Then W ′ ⊆ {F | [α; β]F ∈ W}.

We want to show that there exists W0 with (W ,W0) ∈ R(α) and (W0,W
′) ∈ R(β).

It is not difficult to show that W0 = {B | [α]B ∈ W} ∪ {¬[β]D | D 6∈ W ′} is

PDL-consistent. For this, the PDL-theorem [α; β]A ↔ [α][β]A is used.

16

Canonical models

Theorem. Assume F is not a PDL theorem. We can construct a PDL

structure K′ and a state w of K′ such that (K′,w) |= ¬F .

Proof. To obtain a PDL structure that falsifies F we will collapse K by a

suitable Γ that contains F . The closure rules for Γ that will be needed are:

• Γ is closed under subformulae;

• [B?]D ∈ Γ implies B ∈ Γ;

• [α;β]B ∈ Γ implies [α][β]B ∈ Γ;

• [α ∪ β]B ∈ Γ implies [α]B, [β]B ∈ Γ;

• [α∗]B ∈ Γ implies [α][α∗]B ∈ Γ

A set Γ satisfying these conditions will be called closed.

17

Completeness/Decidability of PDL

Theorem. If Γ is the smallest closed set containing a given formula F , then

Γ is finite.

Proof. The point is to show that closing Subformulae(F) under the above

rules produces only finitely many new formulae.

Define a formula to be boxed if it is prefixed by a modal connective, i.e. is

of the form [α]B for some α and B. Each time we apply a closure rule, new

boxed formulae appear on the right side of the rule, and further rules may

apply to these new formulae.

But observe that the programs α indexing prefixes [α] on the right side are

in all cases shorter in length than those indexing the prefix on the left of

the rule in question. Hence we will eventually produce only atomic prefixes

on the right, and run out of rules to apply.

18

Completeness/Decidability of PDL

Having determined that Γ, the smallest closed set containing F , is finite,

we perform a Γ- filtration of K.

19

Completeness/Decidability of PDL

Reminder (modal logic K):

Fix a model K = (S,R, I) and a set Γ ⊆ FmaΣ that is closed under subformulae, i.e.

B ∈ Γ implies Subformulae(B) ⊆ Γ.

For each s ∈ S, define

Γs = {B ∈ Γ | (K, s) |= B}

and put s ∼Γ t iff Γs = Γt ,

Then s ∼Γ t iff for all B ∈ Γ, (K, s) |= B iff (K, t) |= B.

Fact: ∼Γ is an equivalence relation on S.

Let [s] = {t | s ∼Γ t} be the ∼Γ-equivalence class of s.

Let SΓ := {[s] | s ∈ S} be the set of all such equivalence classes.

20

Decidability/Completeness

Goal: (K, s) |= A 7→ (K′, s′) |= A, K′ = (S′,R′, I ′).

Step 1: S′ := SΓ, where Γ = Subformulae(S)

Step 2: I ′ : (Π ∩ Γ) × S′ → {0, 1} def. by I ′(P, [s]) = I (P, s)

Step 3: R′ def. e.g. by: ([s], [t]) ∈ R′ iff ∃s′ ∈ [s],∃t′ ∈ [t]: (s′, t′) ∈ R

Same construction for PDL (only we need to define a relation for each program).

Theorem: K′ is a PDL structure (and a filtration of K.

If (K, s) 6|= F then (K′, [s]) |= ¬F .

7→ completeness.

Lemma. If Γ is finite, then SΓ is finite and has at most 2n elements, where n is the

number of elements of Γ.

7→ decidability

21

Conclusions

Although PDL appears to be more expressive than modal logic, it is still

decidable (it has the finite model propety).

Proof calculi for PDL exist.

For really reasoning about programs, often first order dynamic logic is

needed (undecidable)

22

First-Order Modal Logics

23

First-order modal logic

We introduce first-order modal logic and consider its relationship

to classical first-order logic.

24

First-order modal logic

Syntax

Semantics

25

Syntax

Given:

A signature Σ = (Ω,Π),

A set X of variables

26

Syntax

Given:

A signature Σ = (Ω,Π),

A set X of variables

Terms are defined as for classical logic

Atomic formulae are defined as for classical logic

27

General first-order formulae

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| 2F

| 3F

| ∀x F (universal quantification)

| ∃x F (existential quantification)

28

Semantics

A Kripke structure K = (S ,R, I) consists of Kripke frame F = (S ,R) and a

mapping I that assigns to each world s ∈ S a first-order structure

I (s) = (UI (s), {fI (s)}f∈Ω, {pI (s)}p∈Π)

such that, for each s, t ∈ S with sRt, I (s) is a substructure of I (t), i.e.:

• the universe of I (s) is a subset of the universe of I (t) (monotonicity),

and

• the structures I (s) and I (t) agree on the interpretation of all function

symbols on the (smaller) universe of I (s).

A Kripke structure (S ,R, I) is called Kripke structure with constant domain

if all the models {I (s) | s ∈ S} are required to have the same universe.

29

Semantics

Interpretation of quantified modal formulae

(K, s) |= p(t1, . . . , tk) iff I (s) |= p(t1, . . . , tk) for atomic formulae p(t1, . . . , tk)

(K, s) |= F ∧ G iff (K, s) |= F and (K, s) |= G

(K, s) |= F ∨ G iff (K, s) |= F or (K, s) |= G

(K, s) |= F → G iff (K, s) 6|= F or (K, s) |= G

(K, s) |= ¬F iff (K, s) 6|= F

(K, s) |= 2F iff for all t with R(s, t), (K, s) |= F

(K, s) |= 3F iff there exists t with R(s, t) and (K, s) |= F

(K, s) |= ∀xF (x) iff for all d ∈ UI (s), (K, s) |= F (d)

(K, s) |= ∃xF (x) iff there exists d ∈ UI (s), (K, s) |= F (d)

30

Semantics

Interpretation of quantified modal formulae

(K, s) |= p(t1, . . . , tk) iff I (s) |= p(t1, . . . , tk) for atomic formulae p(t1, . . . , tk)

(K, s) |= F ∧ G iff (K, s) |= F and (K, s) |= G

(K, s) |= F ∨ G iff (K, s) |= F or (K, s) |= G

(K, s) |= F → G iff (K, s) 6|= F or (K, s) |= G

(K, s) |= ¬F iff (K, s) 6|= F

(K, s) |= 2F iff for all t with R(s, t), (K, s) |= F

(K, s) |= 3F iff there exists t with R(s, t) and (K, s) |= F

(K, s) |= ∀xF (x) iff for all d ∈ UI (s), (K, s) |= F (d)

(K, s) |= ∃xF (x) iff there exists d ∈ UI (s), (K, s) |= F (d)

31

Semantics

Goal: formalize the last statements using variable assignments,

as for first-order logic

A (variable) assignment, also called a valuation (over a given

Σ-algebra A), is a map β : X → A.

32

Semantics

Goal: formalize the last statements using variable assignments,

as for first-order logic

A (variable) assignment, also called a valuation (over a given

Σ-algebra A), is a map β : X → A.

Difficulty: the domains of the structures are different from world

to world.

33

Semantics

In varying domain semantics, quantifiers may possibly refer to a different

set of objects, depending on the world.

In constant domain semantics, quantifiers refer to the same set of objects

(same universe U) in all worlds.

Variable assignment: β : X → U.

Evaluation of quantified formulae as in classical first-order logic.

34

Proof calculi

Tableau calculi

Translation to first-order logic and resolution

35

Proof calculi

Tableau calculi

need to take into account γ and δ rules

(as for classical first-order logic)

Translation to first-order logic and resolution

out of the scope of this lecture

36

First-order Dynamic Logic

First-order dynamic logic (DL) extends PDL (although DL had been

developed first) to a first-order logic and gives concrete atomic programs

with specific effects, as opposed to abstract atomic programs with unknown

effects as in PDL.

37

First-order Dynamic Logic

Definition. Let X be a set of variables. The set FmaDL of formulas of

dynamic logic and the set of programs Prog are defined by simultaneous

induction as:

• ⊥,⊤ ∈ FmaDL (propositional constants)

• All instances of formulas of first-order logic are in FmaDL

• If F ,G ∈ FmaDL then ¬F , (F ∧ G), (F ∨ G) ∈ FmaDL

• If F ∈ FmaDL and x ∈ X is a variable then ∀xF , ∃xF ∈ FmaDL

• If F ∈ FmaDL, α ∈ Prog then [α]F , 〈α〉F ∈ FmaDL

• (x := t) ∈ Prog are atomic programs for variables x ∈ X and terms t.

• If F ∈ FmaDL then F? ∈ Prog.

• If α,β ∈ Prog then α;β,α ∪ β,α∗ ∈ Prog.

38

First-order Dynamic Logic

The semantics of DL is extended from that of PDL in the obvious way where

the set of states is chosen to be W := DX , i.e., the set of assignments

s : X → D of elements of the domain D (of the first-order structure) to the

variables X.

Predicate symbols, function symbols, and terms are interpreted as usual in

first-order logic.

Because there are no other atomic programs, we only need to specify the

accessibility relation belonging to an assignment x := t:

R(x := t) = {(s, s′) | s′(x) = s(t) and s′(z) = s(z) for all z 6= x}

39

First-order Dynamic Logic

DL can inherit the axioms of first-order logic and of PDL. One typical

axiom that DL needs in addition is an axiom that relates assignment to

substitution:

(D15) 〈x := t〉F ↔ F t
x

It says that formula F is true after assigning t to x if and only if F is true

after substituting the new value t for x .

40

First-order Dynamic Logic

DL cannot be decidable because it includes first-order logic, where validity

is only semidecidable.

But DL does not have a sound and complete effective calculus. Note

here that DL formulas can state the halting problem for Turing machines.

Nevertheless, there are proofs showing that DL has a relatively complete or

arithmetically complete proof calculus.

41

