## Universität Koblenz-Landau

## FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
November 26, 2014

## Exercises for "Non-Classical Logics" <br> Exercise sheet 5

Exercise 5.1: (3 P)
Consider the first-order many-valued logic defined as follows:
Syntax: The signature is $\Sigma=(\Omega, \Pi)$, where $\Omega=\{0 / 0, m / 0, M / 0,+/ 2\}, \Pi=\{$ large $/ 1, \leq / 2\}$; $X$ is a set of variables.

## Semantics:

- The set of truth values is $M=\{0, u, 1\}$.
- The logical operations are $\mathcal{F}=\{\top / 0, \perp / 0, \neg / 1, \sim / 1, \vee / 2, \wedge / 2\}$ with the following truth tables: $\top_{M}=1, \perp_{M}=0$ and:

| A | $\neg \mathrm{A}$ | $\sim \mathrm{A}$ |
| :--- | :--- | :--- |
| 1 | 0 | 0 |
| u | u | 1 |
| 0 | 1 | 1 |


| $\mathrm{V}_{M}$ | 0 | u | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | u | 1 |
| u | u | u | 1 |
| 1 | 1 | 1 | 1 |


| $\wedge_{M}$ | 0 | u | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| u | 0 | u | u |
| 1 | 0 | u | 1 |

- The set of quantifiers is $\mathcal{Q}=\{\forall, \exists, Q\}$ where the truth tables of the quantifiers are:

| $S \subseteq M$ | $\forall_{M}(S)$ | $\exists_{M}(S)$ | $Q_{M}(S)$ |
| :--- | :--- | :--- | :--- |
| $\{0\}$ | 0 | 0 | 0 |
| $\{u\}$ | $u$ | $u$ | 0 |
| $\{1\}$ | 1 | 1 | 1 |
| $\{0, u\}$ | 0 | $u$ | 0 |
| $\{0,1\}$ | 0 | 1 | 0 |
| $\{u, 1\}$ | $u$ | 1 | 1 |
| $\{0, u, 1\}$ | 0 | 1 | 0 |

In other words, if we assume that $0<u<1$ then: $\forall_{M}(S)=\min (S), \exists_{M}(S)=$ $\max (S), Q_{M}(S)=\left\{\begin{array}{ll}1 & \text { if } S=\{1\} \text { or } S=\{u, 1\} \\ 0 & \text { otherwise }\end{array}\right.$.

Consider the following many-valued $\Sigma$-structure:
$\mathcal{A}=\left(\mathbb{N},\left\{0_{\mathcal{A}}, m_{\mathcal{A}}, M_{\mathcal{A}},+_{\mathcal{A}}: \mathbb{N}^{2} \rightarrow \mathbb{N}\right\},\left\{\operatorname{large}_{\mathcal{A}}: \mathbb{N} \rightarrow\{0, u, 1\}, \leq: \mathbb{N}^{2} \rightarrow\{0, u, 1\}\right\}\right)$, where:

- $0_{\mathcal{A}}=0, m_{\mathcal{A}}=50, M_{\mathcal{A}}=100,+_{\mathcal{A}}$ is normal addition;
- $\operatorname{large}_{\mathcal{A}}(n)= \begin{cases}0 & \text { if } n<50 \\ u & \text { if } 50 \leq n<100 \\ 1 & \text { if } n \geq 100\end{cases}$
- $\leq(n, m)$ is 1 if $n$ is smaller than or equal to $m$ and 0 otherwise.

Let $\beta: X \rightarrow \mathbb{N}$ with $\beta(x)=100, \beta(y)=1000$. Compute:

- $\mathcal{A}(\beta)(\operatorname{large}(x+y))$.
- $\mathcal{A}(\beta)(\operatorname{large}(m) \vee(x \leq m))$.
- $\mathcal{A}(\beta)(\forall x(\neg(M \leq x) \vee \operatorname{large}(x)))$.
- $\mathcal{A}(\beta)(\forall x(\neg(m \leq x) \vee \operatorname{large}(x)))$.
- $\mathcal{A}(\beta)(\exists x((m \leq x) \wedge \operatorname{large}(x)))$.
- $\mathcal{A}(\beta)(\exists x((x \leq m) \wedge \operatorname{large}(x)))$.
- $\mathcal{A}(\beta)(Q x(\neg(M \leq x) \vee \operatorname{large}(x)))$.
- $\mathcal{A}(\beta)(Q x(\neg(m \leq x) \vee \operatorname{large}(x)))$.


## Exercise 5.2: (3 P)

We say that an $\mathcal{L}_{3}$-formula $F$ is a non-tautology iff for every 3 -valued structure, $\mathcal{A}$ and every valuation $\beta: X \rightarrow \mathcal{A}$, we have $\mathcal{A}(\beta)(F) \neq 1$. We say that an $\mathcal{L}_{3}$-formula $F$ is two-valued iff for every 3 -valued structure, $\mathcal{A}$ and every valuation $\beta, \mathcal{A}(\beta)(F) \in\{0,1\}$.

Which of the following statements are true? Justify your answer.
(a) If $F \equiv G$ is a tautology and $F$ is a tautology then $G$ is a tautology.
(b) If $F$ id $G$ is a tautology and $F$ is a tautology then $G$ is a tautology.
(c) If $F \approx G$ is a tautology and $F$ is a tautology then $G$ is a tautology.
(d) If $F \equiv G$ is a tautology and $F$ is satisfiable then $G$ is satisfiable.
(e) If $F$ id $G$ is a tautology and $F$ is satisfiable then $G$ is satisfiable.
(f) If $F \approx G$ is a tautology and $F$ is satisfiable then $G$ is satisfiable.
(g) If $F \equiv G$ is a tautology and $F$ is a non-tautology then $G$ is a non-tautology.
(h) If $F$ id $G$ is a tautology and $F$ is a non-tautology then $G$ is a non-tautology.
(i) If $F \approx G$ is a tautology and $F$ is a non-tautology then $G$ is a non-tautology.
(j) If $F \equiv G$ is a tautology and $F$ is two-valued then $G$ is two-valued.
(k) If $F$ id $G$ is a tautology and $F$ is two-valued then $G$ is two-valued.
(l) If $F \approx G$ is a tautology and $F$ is two-valued then $G$ is two-valued.

Exercise 5.3: (2 P)
Prove that the following formulae are $\mathcal{L}_{3}$ tautologies:
(a) $(\forall x q(x)) \supset q(x)[t / x] \quad$ (for every term $t)$.
(b) $\neg(\exists x F)$ id $\forall x(\neg F)$.
where the truth table of id is presented in the slides of lecture from 26.11.2014.
Please submit your solution until Monday, December 1, 2014, at 18:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name(s) on your solution.

Submission possibilities:

- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.
- Put it in the box in front of Room B 222.

