Universität Koblenz-Landau

FB 4 Informatik

Prof. Dr. Viorica Sofronie-Stokkermans
December 3, 2014

Exercises for "Non-Classical Logics"
 Exercise sheet 6

Exercise 6.1: (4 P)
Let $g:\{0, u, 1\} \times\{0, u, 1\} \rightarrow\{0, u, 1\}$ be the function defined as described in the table:

g	0	u	1
0	1	0	u
u	0	u	0
1	u	0	1

Construct a formula F with propositional variables P_{1}, P_{2} in the (functionally complete) propositional logic \mathcal{L}_{3}^{+}defined in the lecture from 3.12 .2014 which "has the same truth table as $g "$, i.e. has the property that for every $\mathcal{A}:\left\{P_{1}, P_{2}\right\} \rightarrow\{0, u, 1\}:$

$$
g\left(\mathcal{A}\left(P_{1}\right), \mathcal{A}\left(P_{2}\right)\right)=\mathcal{A}(F)
$$

Exercise 6.2: (6 P)
Use the semantic tableau calculus for the many-valued logic \mathcal{L}_{3} to prove that the following formulae are \mathcal{L}_{3} tautologies:
(1) $\neg \neg A$ id A
(2) $\neg(A \vee B)$ id $(\neg A \wedge \neg B)$
(3) $\sim(\exists x F(x))$ id $\forall x(\sim F(x))$
(Hint: To avoid the problem of having to use the definition of the operator id the truth table of id can be used for devising suitable expansion rules for the tableau calculus.)

[^0]- By e-mail to sofronie@uni-koblenz.de with the keyword "Homework Non-Classical Logics" in the subject.
- Put it in the box in front of Room B 222.

[^0]: Please submit your solution until Monday, December 8, 2014, at 18:00. Joint solutions prepared by up to three persons are allowed. Please do not forget to write your name(s) on your solution.

 Submission possibilities:

