Non-classical logics

Lecture 1: Classical logic

29.10.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Winter Semester 2014/2015

Part 1: Propositional Logic

Literature (also for first-order logic)

Schöning: Logik für Informatiker, Spektrum

Fitting: First-Order Logic and Automated Theorem Proving, Springer

1.1 Syntax

- propositional variables
- logical symbols
 - ⇒ Boolean combinations

Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

Propositional Formulas

 F_{Π} is the set of propositional formulas over Π defined as follows:

$$F,G,H$$
 ::= \bot (falsum)

 $| \quad \top$ (verum)

 $| \quad P, \quad P \in \Pi$ (atomic formula)

 $| \quad \neg F$ (negation)

 $| \quad (F \land G)$ (conjunction)

 $| \quad (F \lor G)$ (disjunction)

 $| \quad (F \to G)$ (implication)

 $| \quad (F \leftrightarrow G)$ (equivalence)

Notational Conventions

- We omit brackets according to the following rules:
 - $-\neg >_p \land >_p \lor >_p \lor >_p \leftrightarrow$ (binding precedences
 - \vee and \wedge are associative and commutative

1.2 Semantics

In classical logic (dating back to Aristoteles) there are "only" two truth values "true" and "false" which we shall denote, respectively, by 1 and 0.

There are multi-valued logics having more than two truth values.

Valuations

A propositional variable has no intrinsic meaning. The meaning of a propositional variable has to be defined by a valuation.

A Π-valuation is a map

$$\mathcal{A}:\Pi\rightarrow\{0,1\}.$$

where $\{0, 1\}$ is the set of truth values.

Truth Value of a Formula in A

Given a Π -valuation \mathcal{A} , the function \mathcal{A}^* : Σ -formulas $\to \{0,1\}$ is defined inductively over the structure of F as follows:

$$\mathcal{A}^*(\bot)=0$$

$$\mathcal{A}^*(\top)=1$$

$$\mathcal{A}^*(P)=\mathcal{A}(P)$$

$$\mathcal{A}^*(\lnot F)=1-\mathcal{A}^*(F)$$

$$\mathcal{A}^*(F\rho G)=\mathsf{B}_{\rho}(\mathcal{A}^*(F),\mathcal{A}^*(G))$$
 with B_{ρ} the Boolean function associated with ρ

For simplicity, we write A instead of A^* .

Truth Value of a Formula in A

Example: Let's evaluate the formula

$$(P \rightarrow Q) \land (P \land Q \rightarrow R) \rightarrow (P \rightarrow R)$$

w.r.t. the valuation \mathcal{A} with

$$\mathcal{A}(P)=1$$
, $\mathcal{A}(Q)=0$, $\mathcal{A}(R)=1$

(On the blackboard)

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F; F holds under A):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}(F) = 1$$

F is valid (or is a tautology):

$$\models F : \Leftrightarrow \mathcal{A} \models F$$
 for all Π -valuations \mathcal{A}

F is called satisfiable iff there exists an A such that $A \models F$.

Otherwise F is called unsatisfiable (or contradictory).

1.3 Models, Validity, and Satisfiability

Examples:

 $F \rightarrow F$ and $F \vee \neg F$ are valid for all formulae F.

Obviously, every valid formula is also satisfiable

 $F \wedge \neg F$ is unsatisfiable

The formula P is satisfiable, but not valid

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all Π -valuations A, whenever $A \models F$ then $A \models G$.

F and G are called equivalent if for all Π -valuations \mathcal{A} we have $\mathcal{A} \models F \Leftrightarrow \mathcal{A} \models G$.

Proposition 1.1:

F entails G iff $(F \rightarrow G)$ is valid

Proposition 1.2:

F and G are equivalent iff $(F \leftrightarrow G)$ is valid.

Entailment and Equivalence

Extension to sets of formulas N in the "natural way", e.g., $N \models F$ if for all Π -valuations A: if $A \models G$ for all $G \in N$, then $A \models F$.

Definition A set N of formulae is satisfiable if there exists a Π -valuation \mathcal{A} which makes true all formulae in N.

If there is no Π -valuation $\mathcal A$ which makes true all formulae in $\mathcal N$ we say that $\mathcal N$ is unsatisfiable

Remark: N unsatisfiable iff $N \models \perp$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 1.3:

$$F$$
 valid $\Leftrightarrow \neg F$ unsatisfiable $N \models F \Leftrightarrow N \cup \neg F$ unsatisfiable

Hence in order to design a theorem prover (validity/entailment checker) it is sufficient to design a checker for unsatisfiability.

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables. Obviously, $\mathcal{A}(F)$ depends only on the values of those finitely many variables in F under \mathcal{A} .

If F contains n distinct propositional variables, then it is sufficient to check 2^n valuations to see whether F is satisfiable or not.

 \Rightarrow truth table.

So the satisfiability problem is clearly decidable (but, by Cook's Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than truth tables to check the satisfiability of a formula. (later more)

Some Important Equivalences

The following equivalences are valid for all formulas F, G, H:

$$(F \wedge F) \leftrightarrow F$$

$$(F \vee F) \leftrightarrow F$$

$$(F \wedge G) \leftrightarrow (G \wedge F)$$

$$(F \vee G) \leftrightarrow (G \vee F)$$

$$(F \wedge (G \wedge H)) \leftrightarrow ((F \wedge G) \wedge H)$$

$$(F \vee (G \vee H)) \leftrightarrow ((F \vee G) \vee H)$$

$$(F \wedge (G \vee H)) \leftrightarrow ((F \wedge G) \vee (F \wedge H))$$

$$(F \vee (G \wedge H)) \leftrightarrow ((F \vee G) \wedge (F \vee H))$$

$$(F \vee (G \wedge H)) \leftrightarrow ((F \vee G) \wedge (F \vee H))$$

$$(Distributivity)$$

Some Important Equivalences

The following equivalences are valid for all formulas F, G, H:

$$(F \land (F \lor G)) \leftrightarrow F$$

$$(F \lor (F \land G)) \leftrightarrow F$$

$$(\neg \neg F) \leftrightarrow F$$

$$\neg (F \land G) \leftrightarrow (\neg F \lor \neg G)$$

$$\neg (F \lor G) \leftrightarrow (\neg F \land \neg G)$$

$$(F \land G) \leftrightarrow F, \text{ if } G \text{ is a tautology}$$

$$(F \land G) \leftrightarrow T, \text{ if } G \text{ is unsatisfiable}$$

$$(F \lor G) \leftrightarrow F, \text{ if } G \text{ is unsatisfiable}$$

$$(F \lor G) \leftrightarrow F, \text{ if } G \text{ is unsatisfiable}$$

$$(F \lor G) \leftrightarrow F, \text{ if } G \text{ is unsatisfiable}$$

$$(Tautology Laws)$$

1.4 Normal Forms

We define conjunctions of formulas as follows:

$$igwedge_{i=1}^0 F_i = ot.$$
 $igwedge_{i=1}^1 F_i = F_1.$
 $igwedge_{i=1}^{n+1} F_i = igwedge_{i=1}^n F_i \wedge F_{n+1}.$

and analogously disjunctions:

$$\bigvee_{i=1}^{0} F_{i} = \bot.$$
 $\bigvee_{i=1}^{1} F_{i} = F_{1}.$
 $\bigvee_{i=1}^{n+1} F_{i} = \bigvee_{i=1}^{n} F_{i} \vee F_{n+1}.$

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Literals and Clauses

A literal is either a propositional variable P or a negated propositional variable $\neg P$.

A clause is a (possibly empty) disjunction of literals.

Example of clauses:

\perp	the empty clause
P	positive unit clause
$\neg P$	negative unit clause
$P \lor Q \lor R$	positive clause
$P \lor \neg Q \lor \neg R$	clause
$P \lor P \lor \neg Q \lor \neg R \lor R$	allow repetitions/complementary literals

CNF and **DNF**

A formula is in conjunctive normal form (CNF, clause normal form), if it is a conjunction of disjunctions of literals (or in other words, a conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?
are duplicated literals permitted?
are empty disjunctions/conjunctions permitted?

Proposition 1.4:

For every formula there is an equivalent formula in CNF (and also an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity and commutativity of \land and \lor):

Step 1: Eliminate equivalences:

$$(F \leftrightarrow G) \Rightarrow_{K} (F \rightarrow G) \land (G \rightarrow F)$$

Step 2: Eliminate implications:

$$(F \rightarrow G) \Rightarrow_{K} (\neg F \lor G)$$

Step 3: Push negations downward:

$$\neg (F \lor G) \Rightarrow_{\kappa} (\neg F \land \neg G)$$

$$\neg (F \land G) \Rightarrow_{\kappa} (\neg F \lor \neg G)$$

Step 4: Eliminate multiple negations:

$$\neg \neg F \Rightarrow_{\kappa} F$$

The formula obtained from a formula F after applying steps 1-4 is called the negation normal form (NNF) of F

Step 5: Push disjunctions downward:

$$(F \wedge G) \vee H \Rightarrow_{\kappa} (F \vee H) \wedge (G \vee H)$$

Step 6: Eliminate \top and \bot :

$$(F \wedge \top) \Rightarrow_{K} F$$

$$(F \wedge \bot) \Rightarrow_{K} \bot$$

$$(F \vee \top) \Rightarrow_{K} \top$$

$$(F \vee \bot) \Rightarrow_{K} F$$

$$\neg \bot \Rightarrow_{K} \top$$

$$\neg \top \Rightarrow_{K} \bot$$

Proving termination is easy for most of the steps; only step 3 and step 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except that disjunctions have to be pushed downward in step 5.

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is exponential in the size of the original one.

Satisfiability-preserving Transformations

The goal

"find a formula G in CNF such that $\models F \leftrightarrow G$ " is unpractical.

But if we relax the requirement to

"find a formula G in CNF such that $F \models \bot$ iff $G \models \bot$ " we can get an efficient transformation.

Satisfiability-preserving Transformations

Idea:

A formula F[F'] is satisfiable iff $F[P] \land (P \leftrightarrow F')$ is satisfiable (where P new propositional variable that works as abbreviation for F').

We can use this rule recursively for all subformulas in the original formula (this introduces a linear number of new propositional variables).

Conversion of the resulting formula to CNF increases the size only by an additional factor (each formula $P \leftrightarrow F'$ gives rise to at most one application of the distributivity law).

Optimized Transformations

A further improvement is possible by taking the polarity of the subformula F into account.

Assume that F contains neither \rightarrow nor \leftrightarrow . A subformula F' of F has positive polarity in F, if it occurs below an even number of negation signs; it has negative polarity in F, if it occurs below an odd number of negation signs.

Optimized Transformations

Proposition 1.5:

Let F[F'] be a formula containing neither \rightarrow nor \leftrightarrow ; let P be a propositional variable not occurring in F[F'].

If F' has positive polarity in F, then F[F'] is satisfiable if and only if $F[P] \wedge (P \rightarrow F')$ is satisfiable.

If F' has negative polarity in F, then F[F'] is satisfiable if and only if $F[P] \wedge (F' \rightarrow P)$ is satisfiable.

Proof:

Exercise.

This satisfiability-preserving transformation to clause form is also called structure-preserving transformation to clause form.

Optimized Transformations

Example: Let
$$F = (Q_1 \wedge Q_2) \vee (R_1 \wedge R_2)$$
.

The following are equivalent:

$$\bullet$$
 $F \models \perp$

$$ullet P_F \wedge (P_F \leftrightarrow (P_{Q_1 \wedge Q_2} \lor P_{R_1 \wedge R_2}) \wedge (P_{Q_1 \wedge Q_2} \leftrightarrow (Q_1 \wedge Q_2)) \ \wedge (P_{R_1 \wedge R_2} \leftrightarrow (R_1 \wedge R_2)) \models oxday$$

$$ullet P_F \wedge (P_F
ightarrow (P_{Q_1 \wedge Q_2} ee P_{R_1 \wedge R_2}) \wedge (P_{Q_1 \wedge Q_2}
ightarrow (Q_1 \wedge Q_2)) \ \wedge (P_{R_1 \wedge R_2}
ightarrow (R_1 \wedge R_2)) \models oxed$$

$$\bullet \ P_F \ \land \ (\neg P_F \lor P_{Q_1 \land Q_2} \lor P_{R_1 \land R_2}) \ \land \ (\neg P_{Q_1 \land Q_2} \lor Q_1) \land (\neg P_{Q_1 \land Q_2} \lor Q_2)$$

$$\land \ (\neg P_{R_1 \land R_2} \lor R_1) \land (\neg P_{R_1 \land R_2} \lor R_2)) \models$$

Overview

Propositional Logic

- Syntax
- Semantics

Validity, Satisfiability, Entailment, Equivalence

Conjunctive and Disjunctive Normal Forms

Transformation to CNF

- Using distributivity
- Structure-preserving transformation + optimization