Non-classical logics

Lecture 2: Classical logic, Part 2 5.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Winter Semester 2014/2015

Last time

- Propositional logic (Syntax, Semantics)
- Problems: Checking unsatisfiability

NP complete

PTIME for certain fragments of propositional logic

- Normal forms (CNF/DNF)
- \bullet Translations to CNF/DNF

Decision Procedures for Satisfiability

• Simple Decision Procedures truth table method

- The Resolution Procedure
- Tableaux
- . . .

Today

• Methods for checking satisfiability

The Resolution Procedure

Semantic Tableaux

The Propositional Resolution Calculus

Resolution inference rule:

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

(Positive) factorisation inference rule:

$$\frac{C \lor A \lor A}{C \lor A}$$

These are schematic inference rules; for each substitution of the schematic variables C, D, and A, respectively, by propositional clauses and atoms we obtain an inference rule.

As " \lor " is considered associative and commutative, we assume that A and $\neg A$ can occur anywhere in their respective clauses.

1.	$ eg P \lor eg P \lor Q$	(given)
2.	$P \lor Q$	(given)
3.	$ eg R \lor eg Q$	(given)
4.	R	(given)
5.	$ eg P \lor Q \lor Q$	(Res. 2. into 1.)
6.	$ eg P \lor Q$	(Fact. 5.)
7.	$Q \lor Q$	(Res. 2. into 6.)
8.	Q	(Fact. 7.)
9.	$\neg R$	(Res. 8. into 3.)
10.	\perp	(Res. 4. into 9.)

Theorem 1.6. Propositional resolution is sound.

- for both the resolution rule and the positive factorization rule the conclusion of the inference is entailed by the premises. If *N* is satisfiable, we cannot deduce \perp from *N* using the inference rules of the propositional resolution calculus.
- If we can deduce \perp from N using the inference rules of the propositional resolution calculus then N is unsatisfiable

Theorem 1.7. Propositional resolution is refutationally complete. If $N \models \bot$ we can deduce \bot starting from N and using the inference rules of the propositional resolution calculus.

Notation

 $N \vdash_{Res} \bot$: we can deduce \bot starting from N and using the inference rules of the propositional resolution calculus.

How to show refutational completeness of propositional resolution:

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\vdash_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \perp).

Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of valuations.

• The limit valuation can be shown to be a model of N.

Clause Orderings

- 1. We assume that \succ is any fixed ordering on propositional variables that is *total* and well-founded.
- 2. Extend \succ to an ordering \succ_L on literals:

$$[\neg]P \succ_L [\neg]Q$$
, if $P \succ Q$
 $\neg P \succ_L P$

3. Extend \succ_L to an ordering \succ_C on clauses: $\succ_C = (\succ_L)_{mul}$, the multi-set extension of \succ_L . *Notation:* \succ also for \succ_L and \succ_C .

(well-founded)

Let (M, \succ) be a partial ordering. The multi-set extension of \succ to multi-sets over M is defined by

$$\begin{array}{l} S_1 \succ_{\mathsf{mul}} S_2 :\Leftrightarrow S_1 \neq S_2 \\ \text{and } \forall m \in M : [S_2(m) > S_1(m) \\ \Rightarrow \quad \exists m' \in M : (m' \succ m \text{ and } S_1(m') > S_2(m'))] \end{array}$$

Theorem 1.11:

a) ≻_{mul} is a partial ordering.
b) ≻ well-founded ⇒ ≻_{mul} well-founded
c) ≻ total ⇒ ≻_{mul} total
Proof:

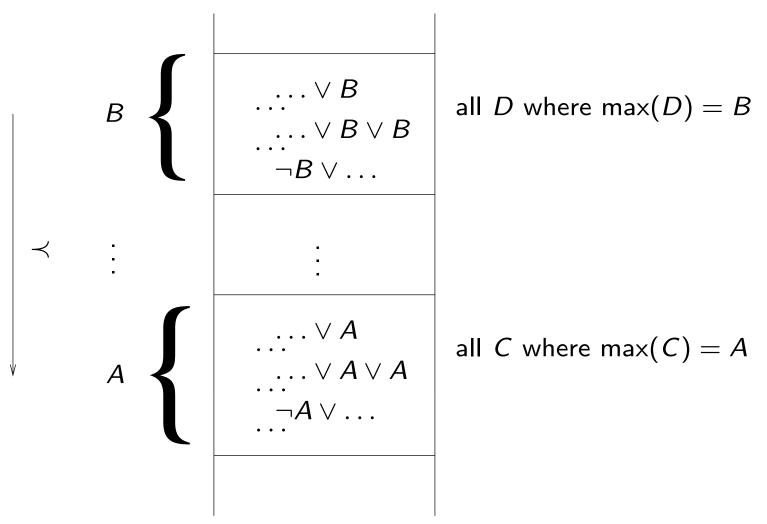
see Baader and Nipkow, page 22-24.

Suppose $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$. Then:

 $P_{0} \lor P_{1}$ $\prec P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{2}$ $\prec \neg P_{1} \lor P_{4} \lor P_{3}$ $\prec \neg P_{1} \lor \neg P_{4} \lor P_{3}$ $\prec \neg P_{5} \lor P_{5}$

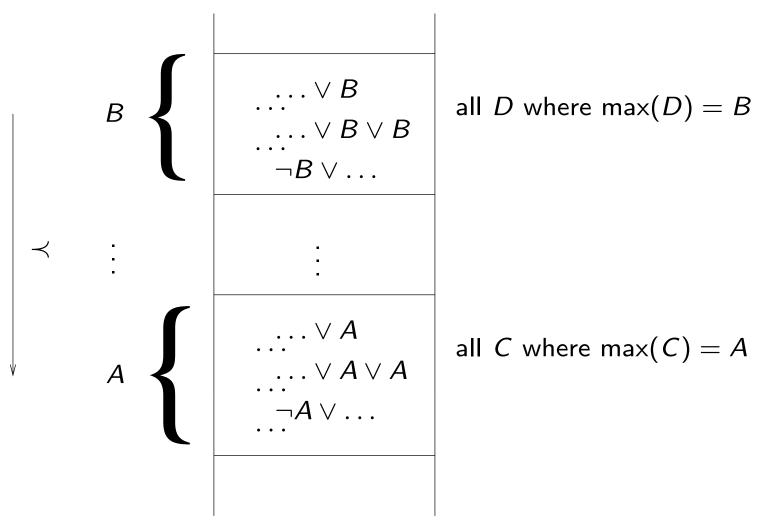
Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:



Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:



Closure of Clause Sets under *Res*

$$Res(N) = \{C \mid C \text{ is concl. of a rule in } Res w/ \text{ premises in } N\}$$

 $Res^{0}(N) = N$
 $Res^{n+1}(N) = Res(Res^{n}(N)) \cup Res^{n}(N), \text{ for } n \ge 0$
 $Res^{*}(N) = \bigcup_{n \ge 0} Res^{n}(N)$

N is called saturated (wrt. resolution), if $Res(N) \subseteq N$.

Proposition 1.12

- (i) $Res^*(N)$ is saturated.
- (ii) *Res* is refutationally complete, iff for each set *N* of ground clauses:

$$N \models \bot \Leftrightarrow \bot \in \operatorname{Res}^*(N)$$

Construction of Interpretations

Given: set N of clauses, atom ordering \succ . Wanted: Valuation \mathcal{A} such that

- "many" clauses from N are valid in A;
- $\mathcal{A} \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ , starting with the minimal clause.

Main Ideas of the Construction

- Clauses are considered in the order given by ≺. We construct a model for N incrementally.
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.

In what follows, instead of referring to partial valuations \mathcal{A}_{C} we will refer to partial interpretations I_{C} (the set of atoms which are true in the valuation \mathcal{A}_{C}).

- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If C is false, one would like to change I_C such that C becomes true.

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$			
2	$P_0 ee P_1$			
3	$P_1 ee P_2$			
4	$ eg P_1 ee P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_{\mathcal{C}}=\mathcal{A}_{\mathcal{C}}^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 ee P_1$			
3	$P_1 ee P_2$			
4	$ eg P_1 ee P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$ eg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$			
4	$ eg P_1 \lor P_2$			
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$			
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$			
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 ee P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$\neg P_1 \lor \neg P_4 \lor P_3$			
7	$ eg P_1 \lor P_5$			

Let $P_5 \succ P_4 \succ P_3 \succ P_2 \succ P_1 \succ P_0$ (max. literals in red)

	clauses C	$I_C = \mathcal{A}_C^{-1}(1)$	Δ_{C}	Remarks
1	$\neg P_0$	Ø	Ø	true in $\mathcal{A}_{\mathcal{C}}$
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	P_1 maximal
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	P_2 maximal
5	$\neg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1,P_2\}$	$\{P_4\}$	P ₄ maximal
6	$\neg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	P_3 not maximal;
				min. counter-ex.
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	
$I = \{P_1, P_2, P_4, P_5\} = \mathcal{A}^{-1}(1)$: \mathcal{A} is not a model of the clause set				

 \Rightarrow there exists a counterexample.

Main Ideas of the Construction

- Clauses are considered in the order given by \prec .
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If C is true in the partial interpretation I_C , nothing is done. $(\Delta_C = \emptyset).$
- If C is false, one would like to change I_C such that C becomes true.

Main Ideas of the Construction

- Changes should, however, be *monotone*. One never deletes anything from I_C and the truth value of clauses smaller than C should be maintained the way it was in I_C .
- Hence, one chooses Δ_C = {A} if, and only if, C is false in I_C, if A occurs positively in C (adding A will make C become true) and if this occurrence in C is strictly maximal in the ordering on literals (changing the truth value of A has no effect on smaller clauses).

Resolution Reduces Counterexamples

$$\frac{\neg P_1 \lor P_4 \lor P_3 \lor P_0 \quad \neg P_1 \lor \neg P_4 \lor P_3}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}$$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 \lor P_1$	Ø	$\{P_1\}$	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	Ø	P_3 occurs twice
				minimal counter-ex.
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_4\}$	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_4\}$	Ø	counterexample
7	$ eg P_1 \lor P_5$	$\{P_1, P_2, P_4\}$	$\{P_5\}$	

The same *I*, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

 $\frac{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0}{\neg P_1 \lor \neg P_1 \lor P_3 \lor P_0}$

Construction of *I* for the extended clause set:

	clauses C	Ι _C	Δ_C	Remarks
1	$\neg P_0$	Ø	Ø	
2	$P_0 ee P_1$	Ø	$\{P_1\}$	
3	$P_1 \lor P_2$	$\{P_1\}$	Ø	
4	$ eg P_1 \lor P_2$	$\{P_1\}$	$\{P_2\}$	
9	$ eg P_1 \lor eg P_1 \lor P_3 \lor P_0$	$\{P_1, P_2\}$	$\{P_3\}$	
8	$ eg P_1 \lor \neg P_1 \lor P_3 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
5	$ eg P_1 \lor P_4 \lor P_3 \lor P_0$	$\{P_1, P_2, P_3\}$	Ø	
6	$ eg P_1 \lor \neg P_4 \lor P_3$	$\{P_1, P_2, P_3\}$	Ø	true in $\mathcal{A}_{\mathcal{C}}$
7	$\neg P_3 \lor P_5$	$\{P_1, P_2, P_3\}$	$\{P_5\}$	

The resulting $I = \{P_1, P_2, P_3, P_5\}$ is a model of the clause set.

Construction of Candidate Models Formally

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_C \not\models C \\ & \emptyset, & \text{otherwise} \end{cases} \end{split}$$

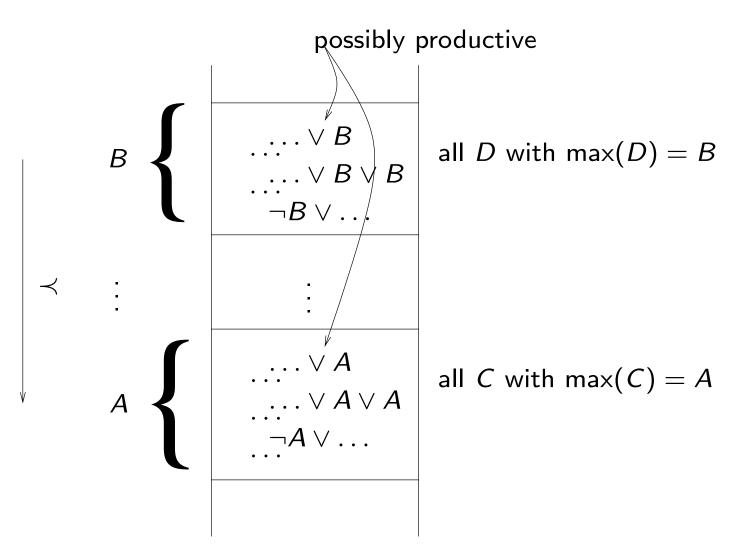
We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$.

We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.



Theorem 1.14 (Bachmair & Ganzinger): Let \succ be a clause ordering, let N be saturated wrt. *Res*, and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Corollary 1.15:

Let *N* be saturated wrt. *Res*. Then $N \models \bot \Leftrightarrow \bot \in N$.

Proof:

Suppose $\perp \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively) $\Rightarrow I_N \models A \text{ and } I_N \not\models C'$ $\Rightarrow \text{ some } D = D' \lor A \in N \text{ produces A. As } \frac{D' \lor A}{D' \lor C'}, \text{ we infer}$ that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$ $\Rightarrow \text{ contradicts minimality of } C.$

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.

Ordered Resolution with Selection

Ideas for improvement:

- In the completeness proof (Model Existence Theorem) one only needs to resolve and factor maximal atoms
 ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 ⇒ order restrictions
- 2. In the proof, it does not really matter with which negative literal an inference is performed
 - \Rightarrow choose a negative literal don't-care-nondeterministically
 - \Rightarrow selection

A selection function is a mapping

 $S: C \mapsto$ set of occurrences of *negative* literals in C

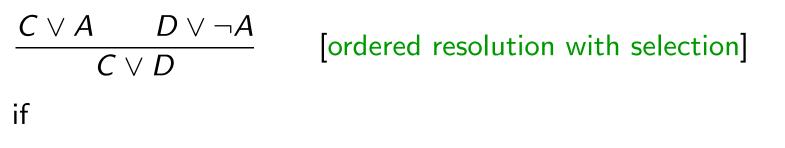
Example of selection with selected literals indicated as X:

$$\neg A \lor \neg A \lor B$$

$$\Box B_0 \lor \Box B_1 \lor A$$

In the completeness proof, we talk about (strictly) maximal literals of clauses.

Resolution Calculus Res_S^{\succ}



- (i) $A \succ C$;
- (ii) nothing is selected in C by S;

```
(iii) \neg A is selected in D \lor \neg A,
or else nothing is selected in D \lor \neg A and \neg A \succeq \max(D).
```

Note: For positive literals, $A \succ C$ is the same as $A \succ \max(C)$.

Resolution Calculus Res_S^{\succ}

$\frac{C \lor A \lor A}{(C \lor A)}$ [ordered factoring] if A is maximal in C and nothing is selected in C.

Search Spaces Become Smaller

1	$A \lor B$	
2	$A \lor \neg B$	
3	$\neg A \lor B$	
4	$\neg A \lor \neg B$	
5	$B \lor B$	Res 1, 3
6	В	Fact 5
7	$\neg A$	Res 6, 4
8	A	Res 6, 2
9	\perp	Res 8, 7

we assume $A \succ B$ and S as indicated by X. The maximal literal in a clause is depicted in red.

With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Res[≻]_S: Construction of Candidate Models

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$I_{C} := \bigcup_{C \succ D} \Delta_{D}$$

$$\Delta_{C} := \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C', \ I_{C} \not\models C \\ & \text{and nothing is selected in } C \end{cases}$$

$$\emptyset, & \text{otherwise}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$.

We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Theorem 1.14^s (Bachmair & Ganzinger): Let \succ be a clause ordering, let N be saturated wrt. Res_S^{\succ} , and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Corollary 1.15^{*s*}:

Let *N* be saturated wrt. Res_S^{\succ} . Then $N \models \bot \Leftrightarrow \bot \in N$.

Proof:

Suppose $\perp \notin N$, but $I_N^{\succ} \not\models N$. Let $C \in N$ minimal (in \succ) such that $I_N^{\succ} \not\models C$. Since C is false in I_N , C is not productive. As $C \neq \bot$ there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively or $\neg A$ is selected in C) $\Rightarrow I_N \models A$ and $I_N \nvDash C'$ \Rightarrow some $D = D' \lor A \in N$ produces A. As $\frac{D' \lor A}{D' \lor C'}$, we infer that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \nvDash D' \lor C'$ \Rightarrow contradicts minimality of C.

Case 2: $C = C' \lor A \lor A$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller counterexample $C' \lor A \in N$. \Rightarrow contradicts minimality of C.