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Last time

e Propositional logic (Syntax, Semantics)
e Problems: Checking unsatisfiability
NP complete
PTIME for certain fragments of propositional logic
e Normal forms (CNF/DNF)
e Translations to CNF/DNF



Decision Procedures for Satisfiability

e Simple Decision Procedures
truth table method

e [ he Resolution Procedure

e [ableaux



Today

e Methods for checking satisfiability
The Resolution Procedure

Semantic Tableaux



The Propositional Resolution Calculus

Resolution inference rule:
CVA -AvV D

cvD
Terminology: C V D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

CVAVA
CVA

These are schematic inference rules; for each substitution of the schematic variables
C, D, and A, respectively, by propositional clauses and atoms we obtain an inference
rule.

As “V" is considered associative and commutative, we assume that A and —A can

occur anywhere in their respective clauses.



Sample Refutation

1. -PV-PVQ (given)
2. PVQ@ (given)
3. -RV-Q (given)
4. R (given)
5. " PVQRV QK (Res. 2. into1l.)
6. - PVQ (Fact. 5.)
7. QVQ (Res. 2. into 6.)
8. @ (Fact. 7.)
9. -R (Res. 8. into 3.)
10. L (Res. 4. into 9.)



Soundness and Completeness

Theorem 1.6. Propositional resolution is sound.
for both the resolution rule and the positive factorization rule
the conclusion of the inference is entailed by the premises.

If N is satisfiable, we cannot deduce L from N using the
inference rules of the propositional resolution calculus.

If we can deduce L from N using the inference rules of the
propositional resolution calculus then N is unsatisfiable

Theorem 1.7. Propositional resolution is refutationally complete.

If N =1 we can deduce | starting from N and using the
inference rules of the propositional resolution calculus.



Notation

N Fpes L: we can deduce L starting from N and using the inference
rules of the propositional resolution calculus.



Completeness of Resolution

How to show refutational completeness of propositional resolution:

e We have to show: N1 = Ntge L,
or equivalently: If N ges L, then N has a model.

e |dea: Suppose that we have computed sufficiently many
inferences (and not derived 1).

Now order the clauses in N according to some appropriate
ordering, inspect the clauses in ascending order, and construct a

series of valuations.

e [he limit valuation can be shown to be a model of N.



Clause Orderings

1. We assume that > is any fixed ordering on propositional
variables that is total and well-founded.

2. Extend > to an ordering >; on literals:

P =1 []Q ,ifP>=Q
- P ~ P

3. Extend >, to an ordering > on clauses:
~c = (> )mul, the multi-set extension of .

Notation: = also for =; and =.

(well-founded)

10



Multi-Set Orderings

Let (M, >) be a partial ordering. The multi-set extension of > to
multi-sets over M is defined by

S51 >=mul S2 1 51 £ S
and Vm € M : [Sa(m) > S1(m)

= dm' e M- (m' >~ m and 51('77’) > 52(”7,))]

Theorem 1.11:
a) >=mul is a partial ordering.

b) > well-founded = >, well-founded
c) > total = »>pu total

Proof:
see Baader and Nipkow, page 22-24.
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Example

Suppose Ps = P, = P3 = P> = P; = Py. Then:

PoV Py
PV P
—Py V P

~PyV Py V Ps

—P1V =Py V Py
~Ps V Py

A A A A A
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Stratified Structure of Clause Sets

Let A > B. Clause sets are then stratified in this form:

..V B
...VBVEB
-BV...

all D where max(D) = B

.. VA
A ...VAVA
—-AV...

all C where max(C) = A




Stratified Structure of Clause Sets

Let A > B. Clause sets are then stratified in this form:

..V B
...VBVEB
-BV...

all D where max(D) = B

.. VA
A ...VAVA
—-AV...

all C where max(C) = A




Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res’(N) = N
Res"™(N) = Res(Res"(N)) U Res"(N), for n >0
Res™(N) = U,>q Res"(N)

N is called saturated (wrt. resolution), if Res(N) C N.

Proposition 1.12
(i) Res™(N) is saturated.

(ii)) Res is refutationally complete, iff for each set N of ground
clauses:
NE1 & 1 € Res"(N)
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Construction of Interpretations

Given: set N of clauses, atom ordering >.
Wanted: Valuation A such that

e “many"” clauses from N are valid in A;
e AEN, if N is saturated and L ¢ N.

Construction according to >, starting with the minimal clause.
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Main ldeas of the Construction

e Clauses are considered in the order given by <. We construct a
model for N incrementally.

e When considering C, one already has a partial interpretation /¢
(initially Ic = @) available.

In what follows, instead of referring to partial valuations
Ac we will refer to partial interpretations /¢ (the set of
atoms which are true in the valuation Ac).

e If C is true in the partial interpretation /¢, nothing is done.

(Ac =0).

o If C is false, one would like to change I such that C becomes

true.
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C

le = Ac'(1)

Ac

Remarks

S 61 &~ W N -

- P,

PoV Py

PV P,

~P1 Vv P
~PyV Py V P3 V P
~PyV =Py V P

P11V Ps
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C

le = Ac'(1)

Ac

Remarks

S 61 &~ W N -

- P,

PoV Py

PV P,

~P1 Vv P
~PyV Py V P3 V P
~PyV =Py V P

P11V Ps

0

0

true in Ac
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C

le = Ac'(1)

Ac

Remarks

S 61 &~ W N -

- P,

PoV Py

PV P,

~P1 Vv P
~PyV Py V P3 V P
~PyV =Py V P

P11V Ps

0
0

0
{P1}

true in Ac

P; maximal
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | Ic = Agl(l) Ac Remarks
1 —-Py 0 ) true in Ac
2 Po V P 0 {P:} | P1 maximal
3 PV P> {Pl} ] true in Ac
4 =PV P
5 -P1V PsV P3V Py
6 —P;V =Py V P;
! —-P1 V Ps
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | Ic = Agl(l) Ac Remarks
1 —-Py 0 ) true in Ac
2 Po VvV Py 0 {P1} | P1 maximal
3 PV P> {Pl} ] true in Ac
4 =PV P {Pl} {PQ} P> maximal
5 -P1V PsV P3V Py
6 —PyV =P,V P3
! —-P1 V Ps
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | Ic = Agl(l) Ac Remarks

1 —-Py 0 ) true in Ac
2 Po VvV Py 0 {P1} | P1 maximal
3 PV P> {Pl} ] true in Ac
4 =PV P {Pl} {PQ} P> maximal
5| =P1V PsV PV Py {P1, P2} {Ps} | Ps maximal
6 —-P; V=P,V P;

! —-P1 V Ps
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Example

Let Ps = Py > P3 = P> = P1 > Py (max. literals in red)

clauses C | Ic = Agl(l) Ac Remarks

1 -Pg 0 ) true in Ac

2 Po VvV Py 0 {P1} | P1 maximal

3 PV P; {P:} 0 true in Ac

4 -P1V P, {P:} {P>} | P> maximal

5| =P1V PsV PV Py {P1, P2} {Ps} | Ps maximal

6 —P1V=PsV Ps | {P1, P2, Ps} 0 Ps not maximal;
min. counter-ex.

7 —P1V Ps | {P1,P2,Ps} | {Ps}

| = {P1, Py, Py, Ps} = A *(1): Ais not a model of the clause set
= there exists a counterexample.
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Main ldeas of the Construction

Clauses are considered in the order given by <.

When considering C, one already has a partial interpretation /¢

(initially Ic = @) available.

If C is true in the partial interpretation /¢, nothing is done.

(Ac =0).

If C is false, one would like to change /¢ such that C becomes

true.
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Main ldeas of the Construction

e Changes should, however, be monotone. One never deletes
anything from I and the truth value of clauses smaller than C

should be maintained the way it was in /c.

e Hence, one chooses Ac = {A} if, and only if, C is false in I¢, if
A occurs positively in C (adding A will make C become true)
and if this occurrence in C is strictly maximal in the ordering on
literals (changing the truth value of A has no effect on smaller
clauses).
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Resolution Reduces Counterexamples

P11V PV P3NPy —P1V-PyVP3
-P1V-P1V PV PV P

Construction of | for the extended clause set:

clauses C Ic Ac Remarks

1 - Py 0 0

2 PoV P 0 {Pl}

3 PV P> {Pl} )

4 —P1V P; {P1} {P>}

8 P11V -P1V P33V P3V P {Pl, PQ} 0 P3 occurs twice

minimal counter-ex.

5 -P1V Py V P33V Py {P1, P2} {P4}

6 P11V =Py NV P3| {P1, P>, Py} ] counterexample

/ —P1V Ps {P1, P2, Py} {Ps}

The same [, but smaller counterexample, hence some progress was made.
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Factorization Reduces Counterexamples

-P1V-P1V PV PV P

-P1V-P1V P33V Py

Construction of | for the extended clause set:

clauses C Ic Ac Remarks

1 - Py 0 0

2 Po \V Py 0 {P1}

3 PV Py {P1} 0

4 —P1V P {P1} {P>}

0 -P1V-P1VvV P33V P {Pl,Pz} {P3}

8 | =PV —-P1VP3VP3VPy | {P1,P, P3} 0 true in Ac
5 -P1V PyVP3V Py | {P1, P> P3} 0

6 =PV —PsV P3 {Pl, P>, P3} ) true in Ac
7 —P3V Ps | {P1,P2,P3} | {Ps}

The resulting | = {P1, P>, P3, Ps} is a model of the clause set.
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Construction of Candidate Models Formally

Let N, > be given. We define sets Ic and Ac¢ for all ground clauses
C over the given signature inductively over >:

Ic = UC>D Ap

( {A}, fCEN, C=CVA A=C IcltC
Ac = K

\ 0, otherwise

We say that C produces A, if Ac = {A}.

The candidate model for N (wrt. >) is given as Iy; := |J. Ac.

We also simply write Iy, or I, for I if = is either irrelevant or known

from the context.
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Structure of N, >~

Let A > B; producing a new atom does not affect smaller clauses.

pﬁsibly productive

y
....\/B

...VB\B
-BV..|

y
. VA

) AV A
”—.lA\/...

all D with max(D) = B

all C with max(C) = A




Model Existence Theorem

Theorem 1.14 (Bachmair & Ganzinger):
Let > be a clause ordering, let N be saturated wrt. Res, and suppose

that L ¢ N. Then I = N.

Corollary 1.15:
Let N be saturated wrt. Res. Then N =1 < 1 € N.
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Model Existence Theorem

Proof:
Suppose L &€ N, but I [~ N. Let C € N minimal (in =) such that
I; = C. Since C is false in Iy, C is not productive. As C # L there

exists a maximal atom A in C.

Case 1: C = -AV C’ (i.e., the maximal atom occurs negatively)

= Iy EAand Iy £ C’

= some D = D’ V A € N produces A. As D’vA D,VCTAVC’, we infer
that D’V C' € N,and C = D'V C" and Iy £ D" v C’

= contradicts minimality of C.

Case 2: C = C'"VAV A Then C,CV,\A/XA yields a smaller

counterexample C’V A € N. = contradicts minimality of C.
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Ordered Resolution with Selection

|deas for improvement:

1.

In the completeness proof (Model Existence Theorem) one only
needs to resolve and factor maximal atoms

= if the calculus is restricted to inferences involving maximal
atoms, the proof remains correct

=> order restrictions

In the proof, it does not really matter with which negative literal

an inference is performed
= choose a negative literal don't-care-nondeterministically

= selection
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Selection Functions

A selection function is a mapping

S:C +— set of occurrences of negative literals in C

Example of selection with selected literals indicated as | X |:

—-A|V-AV B

By |V|—B1|V A




Ordered resolution

In the completeness proof, we talk about (strictly) maximal literals of

clauses.
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Resolution Calculus ResZ

CVA DV —-A
cCvD

[ordered resolution with selection]
if

(i) A= C;

(ii) nothing is selected in C by S;

(iii) —A is selected in DV —A,

or else nothing is selected in DV —A and —=A > max(D).

Note: For positive literals, A > C is the same as A > max(C).
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Resolution Calculus ResZ

CVAVA
(CVA)

if Ais maximal in C and nothing is selected in C.

[ordered factoring]
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Search Spaces Become Smaller

1 AVB we assume A > B and S as in-
2 AvV|—-B dicated by | X || The maximal
3 —-AVB literal in a clause is depicted
4 —=AV|-=B in red.

5 BVBEB Res 1, 3

6 B Fact 5

7 —A Res 6, 4

8 A Res 6, 2

9 L Res 8, 7

With this ordering and selection function the refutation proceeds
strictly deterministically in this example. Generally, proof search will
still be non-deterministic but the search space will be much smaller
than with unrestricted resolution.
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Ress: Construction of Candidate Models

Let N, > be given. We define sets I and A for all ground clauses C over
the given signature inductively over >:

Ic = Ucwp b

[ {A}, fCEN,C=C'VAA-C' Icl-C
Ac = ¢ and nothing is selected in C

0 otherwise

We say that C produces A, if Ac = {A}.

The candidate model for N (wrt. ) is given as I,\T = U Ac.

We also simply write Iy, or I, for I,\T If > is either irrelevant or known from

the context.
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Model Existence Theorem

Theorem 1.14° (Bachmair & Ganzinger):
Let > be a clause ordering, let N be saturated wrt. Res?, and
suppose that | ¢ N. Then I = N.

Corollary 1.15°:
Let N be saturated wrt. ResZ. Then N = L < 1 € N.
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Model Existence Theorem

Proof:

Suppose L ¢ N, but I £ N. Let C € N minimal (in =) such that
I 1~ C. Since C is false in Iy, C is not productive. As C # 1 there
exists a maximal atom A in C.

Case 1: C=-AvV ('

(i.e., the maximal atom occurs negatively or —A is selected in C)
= Iy }:Aand //\/I#C’

= some D = D’V A € N produces A. As D’vA D,vCTAVC’, we infer
that D'V C' € N, and C > D'V C" and Iy £ D" v C’

= contradicts minimality of C.

Case 2: C = C'"VAV A. Then % yields a smaller
counterexample C’V A € N. = contradicts minimality of C.
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