
Non-classical logics

Lecture 4: Classical logic, Part 4

19.11.2014

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

Winter Semester 2014/2015

1

Last time

• Propositional logic

Syntax, Semantics

Decision procedures for satisfiability (resolution, tableaux)

• First-order logic

Syntax, Semantics

Bound/free Variables; Substitutions

2

Structures

A Σ-structure (also called Σ-interpretation or sometimes Σ-algebra)

is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA ⊆ U
m)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Remark: Instead of writing pA ⊆ Um we can also us the characteristic

function and write:

pA : Um → {0, 1}.

Normally, by abuse of notation, we will have A denote both the

structure and its universe.

By Σ-Str we denote the class of all Σ-structures.

2

Assignments

A variable has no intrinsic meaning. The meaning of a variable

has to be defined externally (explicitly or implicitly in a given

context) by an assignment.

A (variable) assignment, also called a valuation (over a given

Σ-structure A), is a map β : X → A.

3

Value of a term in A with respect to β

By structural induction we define

A(β) : TΣ(X) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

4

Value of a term in A with respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → A, for x ∈ X and

a ∈ A, denote the assignment

β[x 7→ a](y) :=







a if x = y

β(y) otherwise

5

Truth value of a formula in A with respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

6

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

7

Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

8

2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-Str

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

9

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written

F |= G

:⇔ for all A ∈ Σ-Str and β ∈ X → UA,

whenever A,β |= F then A,β |= G .

F and G are called equivalent

:⇔ for all A ∈ Σ-Str und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

10

Entailment and Equivalence

Proposition 2.6:

F entails G iff (F → G) is valid

Proposition 2.7:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g.,

N |= F

:⇔ for all A ∈ Σ-Str and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A,β |= F .

11

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal

as explained by the following proposition.

Proposition 2.8:

F valid ⇔ ¬F unsatisfiable

N |= F ⇔ N ∪ {¬F} unsatisfiable

Hence in order to design a theorem prover (validity checker) it

is sufficient to design a checker for unsatisfiability.

12

2.4 Algorithmic Problems

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A,β |= F

Solve(F): find a substitution σ such that |= Fσ

Abduce(F): find G with “certain properties” such that G

entails F

13

Gödel’s Famous Theorems

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. For each signature Σ, the set of valid Σ-formulas is

recursively enumerable.

(We will prove this by giving complete deduction systems.)

3. For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is

not recursively enumerable.

14

2.5 Normal Forms and Skolemization

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of

quantifiers. The subsequent normal form transformations are

intended to eliminate many of them.

15

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀,∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of

the formula.

16

Prenex Normal Form

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G → F)

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF → G) ⇒P Qy(F [y/x] → G), y fresh

(F ρ QxG) ⇒P Qy(F ρ G [y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

17

Example

F :=

(

∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))

)

→

(

(p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y)

)

18

Example

F :=

(

∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))

)

→

(

(p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y)

)

⇒P ∃x′ [((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

19

Example

F :=

(

∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))

)

→

(

(p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y)

)

⇒P ∃x′[((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′[(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

20

Example

F := (∀x

(

(p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))

)

→

(

(p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y)

)

⇒P ∃x′[((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′[(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′
∀z′ [(((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

21

Example

F :=

(

∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))

)

→

(

(p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y)

)

⇒P ∃x′[((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′[(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′
∀z′ [((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′
∀z′ [((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y))]

22

Example

F :=

(

∀x((p(x) ∨ q(x , y)) ∧ ∃z r(x , y , z))

)

→

(

(p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y)

)

⇒P ∃x′[((p(x′) ∨ q(x′, y)) ∧ ∃z r(x′, y , z))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′[(∃z′((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′))) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′
∀z′ [((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ ∀z r(z , x , y))]

⇒P ∃x′
∀z′ [((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ∀z′′((p(z) ∧ q(x , z)) ∧ r(z′′, x , y))]

⇒P ∃x′
∀z′∀z′′[(((p(x′) ∨ q(x′, y)) ∧ r(x′, y , z′)) → ((p(z) ∧ q(x , z)) ∧ r(z′′, x , y)))]

23

Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in

subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y]

where f /n is a new function symbol (Skolem function).

Goal: check satisfiability

All free variables in F are replaced by new Skolem constants.

24

Skolemization

Together: F
∗

⇒P G
︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem 2.9:

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (wrt. Σ-Str) ⇔ H satisfiable (wrt. Σ′-Str)

where Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).

25

Example

Formula in Prenex form:

F : ∃z∃x∀y∃x′(¬p(z, x) ∨ (q(z, y) ∧ r(y , x′)))

Skolemization: z 7→ sk1; x 7→ sk2; x′ 7→ sk3(y)

⇒∗
S

∀y(¬p(sk1, sk2) ∨ (q(sk1, y) ∧ r(y , sk3(y))))

26

Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G → F)

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity

of ∧ and ∨. The first five rules, plus the rule (¬Q), compute the

negation normal form (NNF) of a formula.

27

Example

Formula in Prenex form:

F : ∃z∃x∀y∃x′(¬p(z, x) ∨ (q(z, y) ∧ r(y , x′)))

Skolemization: z 7→ sk1; x 7→ sk2; x′ 7→ sk3(y)

⇒∗
S

∀y(¬p(sk1, sk2) ∨ (q(sk1, y) ∧ r(y , sk3(y))))

Clause normal form:

⇒∗
K

∀y((¬p(sk1, sk2) ∨ q(sk1, y)) ∧ (¬p(sk1, sk2) ∨ r(y , sk3(y))))

28

The Complete Picture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally

quantified.

29

The Complete Picture

Theorem 2.10:

Let F be closed. Then F ′ |= F .

(The converse is not true in general.)

Theorem 2.11:

Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff

N is satisfiable

30

Optimization

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions.

31

Part 3: Automated reasoning

3.1: Resolution

3.2: Tableaux

32

3.1 Resolution

Propositional resolution:

Resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

33

Refinements of resolution

1. We assume that ≻ is any fixed ordering on propositional variables that

is total and well-founded.

2. Extend ≻ to an ordering ≻L on literals:

[¬]P ≻L [¬]Q , if P ≻ Q

¬P ≻L P

3. Extend ≻L to an ordering ≻C on clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

(well-founded)

34

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

35

Resolution Calculus Res
≻
S

C ∨ A D ∨ ¬A

C ∨ D
[ordered resolution with selection]

if

(i) A ≻ C ;

(ii) nothing is selected in C by S;

(iii) ¬A is selected in D ∨ ¬A,

or else nothing is selected in D ∨ ¬A and ¬A � max(D).

Note: For positive literals, A ≻ C is the same as A ≻ max(C).

36

Resolution Calculus Res
≻
S

C ∨ A ∨ A

(C ∨ A)
[ordered factoring]

if A is maximal in C and nothing is selected in C .

37

Resolution for ground clauses

• Exactly the same as for propositional clauses

Ground atoms 7→ propositional variables

Theorem

• Res is sound and refutationally complete

(for all sets of ground clauses)

• Res≻S is sound and refutationally complete

(for all sets of ground clauses)

38

Sample Refutation

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)

2. P(f (a)) ∨Q(b) (given)

3. ¬P(g(b, a)) ∨ ¬Q(b) (given)

4. P(g(b, a)) (given)

5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

39

General Resolution through Instantiation

Idea: instantiate clauses appropriately:

40

General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary

literals.

41

General Resolution through Instantiation

Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y] [b/y] [a/x ′]

[f (a, x)/z]

42

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they

arise from taking the (ground) instances of finitely many

general clauses (with variables) effective and efficient.

Idea (Robinson 65):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of

general atoms;

• Only compute most general (minimal) unifiers.

43

Lifting Principle

Significance: The advantage of the method in (Robinson 65)

compared with (Gilmore 60) is that unification enumerates

only those instances of clauses that participate in an

inference. Moreover, clauses are not right away instantiated

into ground clauses. Rather they are instantiated only as

far as required for an inference. Inferences with non-ground

clauses in general represent infinite sets of ground inferences

which are computed simultaneously in a single step.

44

Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

45

Resolution for General Clauses

For inferences with more than one premise, we assume that the

variables in the premises are (bijectively) renamed such that

they become different to any variable in the other premises.

We do not formalize this. Which names one uses for variables is

otherwise irrelevant.

Refutational Completeness of General Resolution

Theorem:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

46

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set

of equality problems. A substitution σ is called a unifier of E if

siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

47

Unification

A substitution σ is called more general than a substitution τ ,

denoted by σ ≤ τ , if there exists a substitution ρ such that

ρ ◦ σ = τ , where (ρ ◦ σ)(x) := (xσ)ρ is the composition of σ

and ρ as mappings.

(Note that ρ ◦ σ has a finite domain as required for a

substitution.)

If a unifier of E is more general than any other unifier of E , then

we speak of a most general unifier of E , denoted by mgu(E).

48

Unification after Martelli/Montanari

t
.
= t,E ⇒MM E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒MM s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒MM ⊥

x
.
= t,E ⇒MM x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t,E ⇒MM ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒MM x

.
= t,E

if t 6∈ X

49

Example 1

{f (g(a, x), g(y , b))
.
= f (x , g(v ,w)), f (x , g(v ,w))

.
= f (g(x , a), g(v , b))}

(2)
⇒MM {g(a, x)

.
= x , g(y , b)

.
= g(v ,w), x

.
= g(x , a), g(v ,w)

.
= g(v , b)}

(5)
⇒MM ⊥

50

Example 2

{f (g(a, x), g(y , b))
.
= g(x , g(v ,w)), f (x , g(v ,w))

.
= f (g(x , a), g(v , b)}

(3)
⇒MM ⊥

51

Example 3

{f (g(a, x), g(y , b))
.
= f (z, g(v ,w)), f (z, g(v ,w))

.
= f (g(x , a), g(v , b)}

(2)
⇒MM {g(a, x)

.
= z , g(y , b)

.
= g(v ,w), z

.
= g(x , a), g(v ,w)

.
= g(v , b)}

(4)
⇒MM {z

.
= g(a, x), g(y , b)

.
= g(v ,w), g(a, x)

.
= g(x , a), g(v ,w)

.
= g(v , b)}

52

Example 3

{f (g(a, x), g(y , b))
.
= f (z, g(v ,w)), f (z, g(v ,w))

.
= f (g(x , a), g(v , b)}

(2)
⇒MM {g(a, x)

.
= z , g(y , b)

.
= g(v ,w), z

.
= g(x , a), g(v ,w)

.
= g(v , b)}

(4)
⇒MM {z

.
= g(a, x), g(y , b)

.
= g(v ,w), g(a, x)

.
= g(x , a), g(v ,w)

.
= g(v , b)}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a, v

.
= v ,w

.
= b}

53

Example 3

{f (g(a, x), g(y , b))
.
= f (z, g(v ,w)), f (z, g(v ,w))

.
= f (g(x , a), g(v , b)}

(2)
⇒MM {g(a, x)

.
= z , g(y , b)

.
= g(v ,w), z

.
= g(x , a), g(v ,w)

.
= g(v , b)}

(4)
⇒MM {z

.
= g(a, x), g(y , b)

.
= g(v ,w), g(a, x)

.
= g(x , a), g(v ,w)

.
= g(v , b)}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a, v

.
= v ,w

.
= b}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a,w

.
= b}

54

Example 3

{f (g(a, x), g(y , b))
.
= f (z, g(v ,w)), f (z, g(v ,w))

.
= f (g(x , a), g(v , b)}

(2)
⇒MM {g(a, x)

.
= z , g(y , b)

.
= g(v ,w), z

.
= g(x , a), g(v ,w)

.
= g(v , b)}

(4)
⇒MM {z

.
= g(a, x), g(y , b)

.
= g(v ,w), g(a, x)

.
= g(x , a), g(v ,w)

.
= g(v , b)}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a, v

.
= v ,w

.
= b}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a,w

.
= b}

⇒∗
MM

{z
.
= g(a, a), y

.
= v , b

.
= b, a

.
= a, x

.
= a,w

.
= b}

⇒∗
MM

{z
.
= g(a, a), y

.
= v , x

.
= a,w

.
= b}

55

Example 3

{f (g(a, x), g(y , b))
.
= f (z, g(v ,w)), f (z, g(v ,w))

.
= f (g(x , a), g(v , b)}

(2)
⇒MM {g(a, x)

.
= z , g(y , b)

.
= g(v ,w), z

.
= g(x , a), g(v ,w)

.
= g(v , b)}

(4)
⇒MM {z

.
= g(a, x), g(y , b)

.
= g(v ,w), g(a, x)

.
= g(x , a), g(v ,w)

.
= g(v , b)}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a, v

.
= v ,w

.
= b}

⇒∗
MM {z

.
= g(a, x), y

.
= v , b

.
= w , a

.
= x , x

.
= a,w

.
= b}

⇒∗
MM

{z
.
= g(a, a), y

.
= v , b

.
= b, a

.
= a, x

.
= a,w

.
= b}

⇒∗
MM

{z
.
= g(a, a), y

.
= v , x

.
= a,w

.
= b}

Most general unifier (m.g.u):

[g(a, a)/z, v/y , a/x , b/w]

56

MM: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct,

xi 6∈ var(uj), then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 2.28:

If E is a solved form then σE is am mgu of E .

57

MM: Main Properties

Theorem 2.29:

1. If E ⇒MM E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒MM ⊥ then E is not unifiable.

3. If E
∗

⇒MM E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Theorem 2.30:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Problem: exponential growth of terms possible

58

Example of resolution step

C1 ∨ L = p(x , x) ∨ p(a, x)
︸ ︷︷ ︸

L

D1 ∨ ¬L′ = ¬p(y , y)
︸ ︷︷ ︸

¬L′

Most general unifier of L, L′:

{p(a, x)
.
= p(y , y)} ⇒MM {a

.
= y , x

.
= y}

⇒MM {y
.
= a, x

.
= a}

σ = mgu(L,L′) = [a/y , a/x]

C1 ∨ L C2 ∨ ¬L′

C1σ ∪ C2σ

Resolvent: p(x , x)σ = p(a, a)

59

Example

1. P(x) ∨ P(f (x)) ∨ ¬Q(x)

2. ¬P(y)

3. P(g(x′, x)) ∨ Q(x)

60

Example

1. P(x) ∨ P(f (x)) ∨ ¬Q(x) [Given]

2. ¬P(y) [Given]

3. P(g(x ′, x ′′)) ∨Q(x ′′) [Given; Rename variables]

4. P(f (x)) ∨ ¬Q(x) [Res. 1, 2]; σ1 = [x/y]

5. ¬Q(x) [Res. 4, 2]; σ2 = [f (x)/y]

6. Q(x ′′) [Res. 3, 2]; σ3 = [g(x ′, x ′′)/y]

7. ⊥ [res. 5, 6]; σ4 = [x/x ′′]

61

Ordered Resolution with Selection

Motivation: Search space for Res very large.

• Ordering on literals

• Selection function

62

Resolution Calculus Res
≻
S

In the completeness proof, we talk about (strictly) maximal

literals of ground clauses.

In the non-ground calculus, we have to consider those literals

that correspond to (strictly) maximal literals of ground instances:

Let ≻ be a total and well-founded ordering on ground atoms.

A literal L is called [strictly] maximal in a clause C if and only

if there exists a ground substitution σ such that for all L′ in C :

Lσ � L′σ [Lσ ≻ L′σ].

63

Resolution Calculus Res
≻
S

Let ≻ be an atom ordering and S a selection function.

C ∨ A ¬B ∨ D

(C ∨ D)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Aσ strictly maximal wrt. Cσ;

(ii) nothing is selected in C by S ;

(iii) either ¬B is selected,

or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal

in Dσ.

64

Resolution Calculus Res
≻
S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is

selected in C .

65

2.3 Semantic Tableaux

Properties of tableau calculi:

analytic: inferences according to the logical content of the

symbols.

goal oriented: inferences operate directly on the goal to be

proved (unlike, e. g., ordered resolution).

global: some inferences affect the entire proof state (set of

formulas), as we will see later.

66

Propositional Expansion Rules

Expansion rules are applied to the formulas in a tableau and

expand the tableau at a leaf. We append the conclusions of a

rule (horizontally or vertically) at a leaf, whenever the premise

of the expansion rule matches a formula appearing anywhere on

the path from the root to that leaf.

Negation Elimination

¬¬F
F

¬⊤
⊥

¬⊥
⊤

67

Propositional Expansion Rules

α-Expansion

(for formulas that are essentially conjunctions: append

subformulas α1 and α2 one on top of the other)

α

α1

α2

β-Expansion

(for formulas that are essentially disjunctions:

append β1 and β2 horizontally, i. e., branch into β1 and β2)

β

β1 | β2

68

Classification of Formulas

conjunctive disjunctive

α α1 α2 β β1 β2

X ∧ Y X Y ¬(X ∧ Y) ¬X ¬Y

¬(X ∨ Y) ¬X ¬Y X ∨ Y X Y

¬(X → Y) X ¬Y X → Y ¬X Y

We assume that the binary connective ↔ has been eliminated in

advance.

69

Tableaux: Notions

A semantic tableau is a marked (by formulas), finite, unordered tree and

inductively defined as follows: Let {F1, . . . ,Fn} be a set of formulas.

(i) The tree consisting of a single path

F1

..

.

Fn

is a tableau for {F1, . . . ,Fn}.

(We do not draw edges if nodes have only one successor.)

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results from T by applying

an expansion rule then T ′ is also a tableau for {F1, . . . ,Fn}.

70

A Sample Proof

One starts out from the negation of the formula to be proved.

10. P [41] 11. S [42]

✘
✘
✘
✘
✘

❳
❳
❳
❳
❳

8. ¬P [21] 9. Q → R [22]

✘
✘
✘
✘
✘

❤❤❤❤❤❤❤❤

1. ¬[(P → (Q → R)) → ((P ∨ S) → ((Q → R) ∨ S))]

2. (P → (Q → R)) [11]

3. ¬((P ∨ S) → ((Q → R) ∨ S)) [12]

4. P ∨ S [31]

5. ¬((Q → R) ∨ S)) [32]

6. ¬(Q → R) [51]

7. ¬S [52]

There are three paths, each of them closed.

71

Properties of Propositional Tableaux

We assume that T is a tableau for {F1, . . . ,Fn}.

Theorem. {F1, . . . ,Fn} satisfiable ⇔ some path (i.e., the set of its

formulas) in T is satisfiable.

Corollary. T closed ⇒ {F1, . . . ,Fn} unsatisfiable

Theorem. Let T be a strict propositional tableau. Then T is finite.

Conclusion: Strict and maximal tableaux can be effectively constructed.

72

Refutational Completeness

Theorem {F1, . . . ,Fn} satisfiable ⇔ there exists no closed strict tableau for

{F1, . . . ,Fn}.

Consequences The validity of a propositional formula F can be established

by constructing a strict, maximal tableau for {¬F}:

• T closed ⇔ F valid.

• It suffices to test complementarity of paths wrt. atomic formulas.

• Which of the potentially many strict, maximal tableaux one computes

does not matter. In other words, tableau expansion rules can be

applied don’t-care non-deterministically (“proof confluence”).

• The expansion strategy can have a dramatic impact on tableau size.

• Since it is sufficient to saturate paths wrt. ordered resolution (up to

redundancy), tableau expansion rules can be even more restricted, in

particular by certain ordering constraints.

73

Semantic Tableaux for First-Order Logic

Additional classification of quantified formulas:

universal existential

γ γ(t) δ δ(t)

∀xF F [t/x] ∃xF F [t/x]

¬∃xF ¬F [t/x] ¬∀xF ¬F [t/x]

Moreover we assume that the set of variables X is partitioned into 2 disjoint

infinite subsets Xg and Xf , so that bound [free] variables variables can be

chosen from Xg [Xf]. (This avoids the variable capturing problem.)

74

Additional Expansion Rules

γ-expansion
γ

γ(x)
where x is a variable in Xf

δ-expansion
δ

δ(f (x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in

δ

75

Additional Expansion Rules

Skolemization becomes part of the calculus and needs not necessarily be

applied in a preprocessing step. Of course, one could do Skolemization

beforehand, and then the δ-rule would not be needed.

Note that the rules are parametric, instantiated by the choices for x and

f , respectively. Strictness here means that only one instance of the rule is

applied on each path to any formula on the path.

In this form the rules go back to Hähnle and Schmitt: The liberalized δ-rule

in free variable semantic tableaux, J. Automated Reasoning 13,2, 1994,

211–221.

76

Definition: Free-Variable Tableau
Let {F1, . . . ,Fn} be a set of closed formulas.

(i) The tree consisting of a single path:

F1

.

.

.

Fn

is a tableau for {F1, . . . ,Fn}.

(ii) If T is a tableau for {F1, . . . ,Fn} and if T ′ results by applying an

expansion rule to T , then T ′ is also a tableau for {F1, . . . ,Fn}.

(iii) If T is a tableau for {F1, . . . ,Fn} and if σ is a substitution, then Tσ

is also a tableau for {F1, . . . ,Fn}.

The substitution rule (iii) may, potentially, modify all the formulas of a

tableau. This feature makes the tableau method a global proof method.

(Resolution, by comparison, is a local method.) If one took (iii) literally,

by repeated application of γ-rule one could enumerate all substitution

instances of the universally quantified formulas (major drawback compared

with resolution). Fortunately, we can improve on this.

77

Example

1. ¬[∃w∀x p(x ,w , f (x ,w)) → ∃w∀x∃y p(x ,w , y)]

2. ∃w∀x p(x ,w , f (x ,w)) 11 [α]

3. ¬∃w∀x∃y p(x ,w , y) 12 [α]

4. ∀x p(x , a, f (x , a)) 2(a) [δ]

5. ¬∀x∃y p(x , v1, y) 3(v1) [γ]

6. ¬∃y p(b(v1), v1, y) 5(b(v1)) [δ]

7. p(v2, a, f (v2, a)) 4(v2) [γ]

8. ¬p(b(v1), v1, v3) 6(v3) [γ]

7. and 8. are complementary (modulo unification):

v2
.
= b(v1), a

.
= v1, f (v2, a)

.
= v3

is solvable with an mgu σ = [a/v1, b(a)/v2, f (b(a), a)/v3],

and hence, Tσ is a closed (linear) tableau for the formula in 1.

78

AMGU-Tableaux

Idea: Restrict the substitution rule to unifiers of complementary

formulas.

We speak of an AMGU-Tableau, whenever the substitution rule

is only applied for substitutions σ for which there is a path in T

containing two literals ¬A and B such that σ = mgu(A,B).

79

Correctness

Given an signature Σ, by Σsko we denote the result of adding

infinitely many new Skolem function symbols which we may use

in the δ-rule.

Let A be a Σsko-interpretation, T a tableau, and β a variable

assignment over A.

T is called (A,β)-valid, if there is a path Pβ in T such that

A,β |= F , for each formula F on Pβ .

T is called satisfiable if there exists a structure A such that for

each assignment β the tableau T is (A,β)-valid.

(This implies that we may choose Pβ depending on β.)

80

Correctness

Theorem 2.52:

Let T be a tableau for {F1, . . . ,Fn}, where the Fi are closed

Σ-formulas. Then {F1, . . . ,Fn} is satisfiable ⇔ T is satisfiable.

(Proof of “⇒” by induction over the depth of T . For δ one

needs to reuse the ideas for proving that Skolemization preserves

[un-]satisfiability.)

81

Incompleteness of Strictness

Strictness for γ is incomplete:

5. ¬p(a) 31 6. ¬p(b) 32

✘
✘
✘
✘
✘
✘

P
P
P
P
P

1. ¬[∀x p(x) → (p(a) ∧ p(b))]

2. ∀x p(x) 11

3. ¬(p(a) ∧ p(b)) 12

4. p(v1) 2(v1)

If we placed a strictness requirement also on applications of γ,

the tableau would only be expandable by the substitution rule.

However, there is no substitution (for v1) that can close both

paths simultaneously.

82

Multiple Application of γ Solves the Problem

5. ¬p(a) 31 6. ¬p(b) 32

7. p(v2) 2v2

✥✥✥✥✥

❵❵❵❵❵

1. ¬[∀x p(x) → (p(a) ∧ p(b))]

2. ∀x p(x) 11

3. ¬(p(a) ∧ p(b)) 12

4. p(v1) 2v1

The point is that different applications of γ to ∀x p(x) may

employ different free variables for x .

Now, by two applications of the AMGU-rule, we obtain the

substitution [a/v1, b/v2] closing the tableau.

83

Multiple Application of γ Solves the Problem

Therefore strictness for γ should from now on mean that each

instance of γ (depending on the choice of the free variable) is

applied at most once to each γ-formula on any path.

84

Refutational Completeness

Theorem 2.53:

{F1, . . . ,Fn} satisfiable ⇔ there exists no closed, strict

AMGU-Tableau for {F1, . . . ,Fn}.

For the proof one defines a fair tableau expansion process

converging against an infinite tableau where on each path each

γ-formula is expanded into all its variants (modulo the choice of

the free variable).

One may then again show that each path in that tableau is

saturated (up to redundancy) by resolution. This requires

to apply the lifting lemma for resolution in order to show

completeness of the AMGU-restriction.

85

How Often Do we Have to Apply γ ?

Theorem 2.54:

There is no recursive function f : FΣ × FΣ → N such that,

if the closed formula F is unsatisfiable, then there exists a

closed tableau for F where to all formulas ∀xG appearing in

T the γ-rule is applied at most f (F ,∀xG) times on each path

containing ∀xG .

Otherwise unsatisfiability or, respectively, validity for first-order logic

would be decidable. In fact, one would be able to enumerate in finite

time all tableaux bounded in depth as indicated by f . In other words,

free-variable tableaux are not recursively bounded in their depth.

Again ∀ is treated like an infinite conjunction. By repeatedly applying

γ, together with the substitution rule, one can enumerate all instances

F [t/x] vertically, that is, conjunctively, in each path containing ∀xF .

86

Semantic Tableaux vs. Resolution

• Both methods are machine methods on which today’s

provers are based upon.

• Tableaux: global, goal-oriented, “backward”.

• Resolution: local, “forward”.

• Goal-orientation is a clear advantage if only a small subset

of a large set of formulas is necessary for a proof.

(Note that resolution provers saturate also those parts of

the clause set that are irrelevant for proving the goal.)

87

Semantic Tableaux vs. Resolution

• Like resolution, the tableau method, in order to be useful

in practice, must be accompanied by refinements: lemma

generation, ordering restrictions, efficient term and proof

data structures.

• Resolution can be combined with more powerful redundancy

elimination methods.

• Because of its global nature redundancy elimination is more

difficult for the tableau method.

• Resolution can be refined to work well with equality and

algebraic structures; for tableaux this is more problematic.

88

