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Until now

Classical logic

• Propositional logic (Syntax, Semantics)

• First-order logic (Syntax, Semantics)

Proof methods (resolution, tableaux)
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From now on: Non-Classical logics

• Many-valued logic (finitely-valued; infinitely-valued)

Syntax, semantics, Automated proof methods (resolution, tableaux)

Reduction to classical logic

• Modal logics (also description logics, dynamic logic)

Syntax, semantics, Automated proof methods (resolution, tableaux)

Reduction to classical logic

• Temporal logic (Linear time; branching time)

Syntax, semantics, Model checking
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Many-valued logic

• Introduction

• Many-valued logics

3-valued logic

finitely-valued logic

fuzzy logic

• Automated theorem proving (resolution, tableaux)

• Reduction to classical logic
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History and Motivation

Many-valued logics were introduced to model undefined or vague information
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History and Motivation

Jan  Lukasiewicz

Began to create systems of many-valued logic in 1920,
using a third value “possible” to deal with Aristotle’s
paradox of the sea battle.

• Jan  Lukasiewicz:

“On 3-valued logic” (Polish) Ruch Filozoficzny, Vol. 5, 1920.

Later, Jan  Lukasiewicz and Alfred Tarski together formulated a logic on n

truth values where n ≥ 2.

• Jan  Lukasiewicz:

Philosophische Bemerkungen zu mehrwertigen Systemen des

Aussagenkalküls. Comptes rendus des séance de la Societé des

Sciences et des Lettres de Varsovie, Classe III, Vol .23, 1930.

• S. McCall:

Polish Logic: 1920–1939. Oxford University Press, 1967.
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History

Emile L. Post

Introduced (in 1921) the formulation of additional truth degrees
with n ≥ 2 where n is the number of truth values (starting
mainly from algebraic considerations).

• Emil Post:

Introduction to a general theory of elementary propositions. American

J. of Math., Vol. 43, 1921.

S. C. Kleene:

Introduced a 3-valued logic in order to express the

fact that some recursive functions might be undefined.
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Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)
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A motivating example

B: the sky is blue

R: it rains

U: I take my umbrella

(B → ¬R) ∧ (R → U) ∧ (B → ¬U) ∧ R
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A motivating example

B: the sky is blue

R: it rains

U: I take my umbrella

(B → ¬R) ∧ (R → U) ∧ (B → ¬U) ∧ R

Description of a situation: (partial) variable assignment v : Π → {0, 1}

A v(A)

B 1

R

U 0
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Truth tables in partial logic

v partial valuation.

v ⊑ v1: v1 is a total variable assignment which extends v .

Example

Description of a situation:

(partial) v : Π → {0, 1}

A v(A)

B 1

R

U 0

A v1(A) v2(A)

B 1 1

R 0 1

U 0 0

v ⊑ v1, v ⊑ v2

v(F1 ∧ F2) = 0 iff for all v1 with v ⊑ v1 we have v1(F1 ∧ F2) = 0

v(F1 ∧ F2) = 1 iff for all v1 with v ⊑ v1 we have v1(F1 ∧ F2) = 1
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Truth tables for partial logic

∧ 1 undef 0

1 1 undef 0

undef undef undef 0

0 0 0 0

∨ 1 undef 0

1 1 1 1

undef 1 undef undef

0 1 undef 0

F ¬F

1 0

undef undef

0 1
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A motivating example

∧ 1 undef 0

1 1 undef 0

undef undef undef 0

0 0 0 0

∨ 1 undef 0

1 1 1 1

undef 1 undef undef

0 1 undef 0

F ¬F

1 0

undef undef

0 1

(B → ¬R) ∧ (R → U) ∧ (B → ¬U) ∧ R

Description of a situation: (partial) variable assignment v : Π → {0, 1}

A v(A)

B 1

R undef

U 0

F v(F )

¬B ∨ ¬R undef

¬R ∨ U undef

¬B ∨ ¬U 1
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Another example

Belnap’s 4-valued logic

This particularly interesting system of MVL was the result of research on

relevance logic, but it also has significance for computer science applications.

Its truth degree set may be taken as

M = {{}, {0}, {1}, {0, 1}},

and the truth degrees interpreted as indicating (e.g. with respect to a

database query for some particular state of affairs) that there is

• no information concerning this state of affairs,

• information saying that the state of affairs is false,

• information saying that the state of affairs is true,

• conflicting information saying that the state of affairs is true as well as

false.
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Another example

Belnap’s 4-valued logic M = {{}, {0}, {1}, {0, 1}}

This set of truth degrees has two natural orderings:

{0, 1} both false and true

{} neither false nor true 

{0} {1}

false true

information

ordering 

truth ordering

∧,∨: sup/inf in the truth ordering

∼ {} = {}, ∼ {0, 1} = {0, 1}, ∼ {0} = {1}, ∼ {1} = {0}

“Designated” values: (What we can assume to be true)

Computer science: D = {{1}}

Other applications (e.g. information bases): D = {{1}, {0, 1}}
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