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Exam

Question: Oral or written?

When?

1. Termin: first two weeks after end of lectures
(16.02.15-27.02.15)

2. Termin: March or April.

Doodle



Last time

Many-valued Logics
History
Motivation

Examples.



Many-valued logics

e Syntax
e Semantics
e Applications

e Proof theory / Methods for automated reasoning



1 Syntax

e propositional variables

e logical operations



Propositional Variables

Let 1 be a set of propositional variables.

We use letters P, @, R, S, to denote propositional variables.



Logical operators

Let F be a set of logical operators.

These logical operators could be the usual ones from classical logic

{=/1,V/2,N/2,— [2,+ /2}

but could also be other operations, with arbitrary arity.



Propositional Formulas

F: is the set of propositional formulas over I defined as follows:

F,.GGH := ¢ (c constant logical operator)
| P, Pecll (atomic formula)
| f(Fi,...,Fn) (f € F with arity n)

Fr]|: Is the smallest among all sets A with the properties:
e Every constant logical operator is in A.

e Every propositional variable is in A.

o If f € Fwitharitynand F{,...,F, €A
then also f(Fy,..., Fp) € A.



Example: Classical propositional logic

It F={T1/0,L /0,-/1,V/2,A/2,— /2,4 /2} then
F: is the set of propositional formulas over I, defined as follows:

F.GGH = L (falsum)
T (verum)
P, P eIl (atomic formula)
—F (negation)
(FAG) (conjunction)
(FVG) (disjunction)
(F — G) (implication)
(F < G) (equivalence)




Semantics

We assume that a set M = {wy, ws, ..., wn} of truth values is given.

We assume that a subset D C M of designated truth values is given.

1. Meaning of the logical operators

feFwitharityn — fy: M"—- M
(truth tables for the operations in F)

Example 1: If F consists of the Boolean operations and M = B, = {0, 1}
then specifying the meaning of the logical operations means giving the
truth tables for the operations in F

B Ve | 0 1 Ag | 0 1
0) 1 0 0O 1 0) 0O O
1 0 1 1 1 1 0O 1
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Semantics

We assume that a set M = {wy, ..., wn} of truth values is given.

We assume that a subset D C M of designated truth values is given.

1. Meaning of the logical operators

fvy: M" — M
(truth tables for the operations in F)

f € F with arity n  —

Example 2: If F consists of the operations {V, A, =} and M3 = {0, undef, 1}
then specifying the meaning of the logical operations means giving the
truth tables for these operations e.g.

F My F A Ms 1 undef \Y Ms undef 0
1 0 1 1 undef 1 1 1
undef undef undef undef undef undef undef undef
0 1 0 0 0 0 undef 0
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Semantics

We assume that a set M = {wjq,.

.., Wm} of truth values is given.

We assume that a subset D C M of designated truth values is given.

1. Meaning of the logical operators

f € F with arity n

—

fig s M7 — M

(truth tables for the operations in F)

Example 2: F = {V,A,~} and My = {{}, {0}, {1},{0,1}}. The truth

tables for these operations:

Fool~m, F AM, {r {0y {1} ({01} Vv, || 1| 10 | {1} [{0.1}
{1} {1} {1} {r J{to}] {3} {0} {r tr] {7 {1y {1}
{0}y | {1} {0}y jftoyf{o}| {0} ({0} oy {0y | {1}y {01}
{1}y | {0} {1} {rjtoy)p {v}y {oryp {1ty j{1rj{o1}) {1} {01}
{0,1}]1{0,1} {0, 1y f{orj{or){or}p|{o 13| |[{0,1}]j{1}]{0,1} {0 1}] {1}
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Semantics

We assume that a set M = {wy, ..., wn} of truth values is given.

We assume that a subset D C M of designated truth values is given.

2. The meaning of the propositional variables

A Tl-valuation is a map
A: M — M.
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Semantics

We assume that a set M = {wy, ..., wn} of truth values is given.

We assume that a subset D C M of designated truth values is given.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fy}rcr) and
[1-valuation A : 1 — M, the function A* : ¥-formulas — M is defined
inductively over the structure of F as follows:

A*(c) = cp(for every constant operator ¢ € F)
A*(P) = A(P)
A*(f(F1,...,Fn) = fy(A*(F1), ..., A*(Fn))

For simplicity, we write A instead of A*.
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Example 1: Classical logic

Given a [l-valuation A : 1 — B, = {0,1}, the function A" :
Y -formulas — {0, 1} is defined inductively over the structure of F as

follows:
A% (L)=0
A (T)=1
A™(P) = A(P)

A (2F) = —5A"(F)
A™(F o G) = og(A™(F), A°(G))
with og the Boolean function associated with o € {V, A, —, <}

(as described by the truth tables)
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Example 2: Logic of undefinedness

Given a [M-valuation A : 1 — M; = {0, undef, 1}, the function
A" Y-formulas — {0, undef, 1} is defined inductively over the

structure of F as follows:

A* (L) =0
A(T) =1
A™(P) = A(P)

A" (=F) = —m (A" (F))
A (FV G) = A*(F) Vi, A*(G)
A (F A G) = A*(F) Am, A*(G)
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Example 3: Belnap’s 4-valued logic

Given a [ll-valuation A : M — M, = {{}, {0}, {1},{0,1}}, the
function A" : X-formulas — {{},{0},{1},{0,1}} is defined
inductively over the structure of F as follows:

A7(L) = {0}
AT(T) = {1)
A (P) = A(P)

A" (~ F) =~m, (A (F))
A (FV G) = A*(F) Vi, A*(G)
A*(F A G) = A*(F) Ay, A*(G)
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Models, Validity, and Satisfiability

M = {wi, ..., wn} set of truth values
D C M set of designated truth values
A: M — M.

F is valid in A (A is a model of F; F holds under A):

AEF o AF)eD

F is valid (or is a tautology):
= F : < A = F for all MN-valuations A

F is called satisfiable iff there exists an A such that A = F.

Otherwise F is called unsatisfiable (or contradictory).
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The logic L3

Set of truth values: M = {1, u, 0}.
Designated truth values: D = {1}.

Logical operators: F = {V, A, -, ~}.
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Truth tables for the operators

V10 u 1 AlO u 1
0|0 u 1 0O[0 O O
u|lu u 1 u |0 u wu

1 1 1 0 u 1

v(F A G) = min(v(F), v(G))
v(FV G) = max(v(F), v(G))

Under the assumption that 0 < u < 1.
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Truth tables for negations

Translation in natural language:
v(A) =1 gdw. A is true
v(—A) =1 gdw. A is false

<

vV

(
(
(

~ A) =1 gdw. A is not true

Y

—A) =1 gdw. A is not false

Al "Al~A|l~—A|~~A|—A|-~A
110 0 1 1 1 1
u|u 1 1 0 u 0
0|1 1 0 0 0 0
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First-order many-valued logic

M= {wy, ..., wy,} set of truth values
D C M set of designated truth values.

1. Syntax

e non-logical symbols (domain-specific)
= terms, atomic formulas

e logical symbols F, quantifiers
= formulae
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Signature

A signature
Y = (Q,1),

fixes an alphabet of non-logical symbols, where

e () is a set of function symbols f with arity n > 0,
written f/n,

e [1is a set of predicate symbols p with arity m > 0,

written p/m.

If n =0 then f is also called a constant (symbol).
If m = 0 then p is also called a propositional variable.
We use letters P, Q, R, S, to denote propositional variables.
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Variables, Terms

As in classical logic
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Atoms

Atoms (also called atomic formulas) over ¥ are formed according
to this syntax:

AB == p(s,....sm) ,p/meTl
(equation)

“«
Q

In what follows we will only consider variants of first-order logic
without equality.
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Logical Operations

F set of logical operations

Q={Q1,..., Q} set of quantifiers
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First-Order Formulas

Fs(X) is the set of first-order formulas over ¥ defined as follows:

F,G, H

C (c € F, constant)

A (atomic formula)

f(Fy,..., F.) (f € F with arity n)
QxF (Q € Q is a quantifier)
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Bound and Free Variables

In QxF, Q € Q, we call F the scope of the quantifier Qx.
An occurrence of a variable x is called bound, if it is inside the

scope of a quantifier Qx.
Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas

or sentential forms.

Formulas without variables are called ground.
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Semantics

M=A{1,..., m} set of truth values

D C M set of designated truth values.

Truth tables for the logical operations:
{fy : M" — M|f/n e F}

“Truth tables” for the quantifiers:
{Qv : P(M) = M|Q € Q}

Examples: If M = B, ={0,1} then
\V/B2 : P({O, 1}) — {0, 1} VB2(X) = min(X)
dg, : P({0,1}) — {0,1}  dp,(X) = max(X)
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Structures

An M-valued ¥ -algebra (X-interpretation or ¥-structure) is a triple
A= (U, (fa:U" = U)tjnea, (pa:U" = M)pmen)

where U # () is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the
algebra and its universe.

By ¥-Alg" we denote the class of all M-valued X-algebras.
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Assignments

Variable assignments 5 : X — A

and extensions to terms A(S5) : Ty — A as in classical logic.
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Truth Value of a Formula in A with Respect to

A(B) : Fs(X) — M is defined inductively as follows:

A(B)(¢c) = cm
A(B)(p(st, - 5n)) = pal(A(B)(s1), ..., A(B)(sn)) € M
AB)(f(Fy, ... Fn)) = tm(A(B)(F1), .., A(B)(Fn))
A(B)(QxF) = Qu({A(B[x — a])(F) | a € U})
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First-order version of L3

M ={0,u,1}
D = {1}
F = {\/,/\,—l,N}

truth values as the propositional version

Q={Vv,d}
(1 ifS={1) 1 ifles
Ym(S)=4¢ 0 ifoeS Im(S) =< 0 if S={0}
| u otherwise u  otherwise



Interpretation of quantifiers

A(B)(¥xF(x)) = 1
A(B)(¥xF(x)) = 0
A(B)(YxF(x)) = u

A(B)(3xF(x)) =1
A(B)(3xF(x)) =0
A(B)(VxF(x)) = u

iff
iff

iff
iff

for all a € Uy,

for some a € U4,

otherwise

for some a € U4,

for all a € Uy,

otherwise

A(Blx — a])(F(x)) =1
A(Blx = a])(F(x)) =0

A(Blx = a])(F(x)) =1
A(Blx = a])(F(x)) =0
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Models, Validity, and Satisfiability

F is valid in A under assignment j3:

ABEF = APB)F)eD

F is valid in A (A is a model of F):
A=F & APBEF, forall e X — Ug

F is valid:
=F & AEF, forall Ac ¥-alg

F is called satisfiable iff there exist A and § such that A, 5 = F.

Otherwise F is called unsatisfiable.
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Entailment

NEF: <

forall A € X-algand 8 € X — U:
if A(B)(G) € D, for all G € N, then A(B)(F) € D.
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Models, Validity, and Satisfiability in £;

F is valid in A under assignment j3:

A B F e APB)F) =1

F is valid in A (A is a model of F):
Al F o A BEsF, forall e X — Ug
F is valid (or is a tautology):
=3 F & A3 F, forall A€ X-alg

F is called satisfiable iff there exist A and 8 such that A, 5 =3 F.
Otherwise F is called unsatisfiable.
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Entailment in L3

N =3 F:& forall AcX-algand g€ X — Ua:
if A(8)(G) =1, for all G € N, then A(B)(F) =1.
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Observations

e Every L3-tautology is also a two-valued tautology.

e Not every two-valued tautology is an L3-tautology.
Example: FV —F.
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Entailment

NEF: <

forall A € X-algand 8 € X — U:
if A(B)(G) € D, for all G € N, then A(B)(F) € D.
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Entailment

NEF:« forall AcX-algand 5 € X — Uax:
if A(8)(G) € D, for all G € N, then A(B)(F) € D.

Goal: Define a version of implication '=-" such that

FEGiff=F=G
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Weak implication

The logical operations D and = are introduced as defined operations:
Weak implication

FO>G:=~FVG
Weak equivalence

F=G:=(F>G)A(GDF)

FOG|1|u|O F=G||1|u|O
1 1| u]|0 1 1|{u]|0
u 1111 u ul|l]1l
0 11171 0 0|11




Strong implication

The logical operations — and <+ are introduced as defined operations:
Strong implication

F—G:=-FVG
Strong equivalence

F< G:=(F—=G)AN(G— F)

F—-G|1|u|O0 F<~G|1|u|0
1 1{uvu|0 1 1|lu|O
u 1| u|u u uluiu
0 11111 0 O|u|l




Comparisons

Implications

Equivalences

ADB 0
1 0
u 1
0 1
A=B 0
1 0
u 1
0 1

A— B 0
1 0
u u
0 1
A< B 0
1 0

c

—t
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Equivalences

ADB:= ~AVB A—- B:= -AV B
A=B:=(ADB)A(BDA) A< B:=(A— B)AN(B— A)
A%B::(AEB)/\(—IAE—IB) A<=>B::(A<—>B)/\(—|A<—>—IB)
Aid B:= ~~ (A= B)

Al B A=B | A« B | Ax~xB | A B | AidB
1 1 1 1 1 1 1
1 u u u u u 0
1 0 0 0 0 0 0
u 1 u u u u 0
u u 1 u 1 u 1
u 0 1 u u u 0
0 1 0 0 0 0 0
0 u 1 u u u 0
0 0 1 1 1 1 1
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Some [; tautologies

——Aid A
~~ A=A
-—~A=ZA

—-(AV B) id ~AA—-B
-(AAB)id -AV —-B

—(VxA) id Ix-A
—(3dxA) id Vx-A

(AAB)VCid(AVvC)A(BV C)
(AVB)ACid(AANC)V(BAC)

~(AvB)id ~AAN~ B
~(AAB)id ~AV ~ B

~ (VxA) id Ix ~ A
~ (3xA) id Vx ~ A

46



No occurrence of —

Lemma. Let F be a formula which does not contain the strong negation —.

Then the following are equivalent:

(1) F is an L3-tautology.
(2) F is a two-valued tautology (negation is identified with ~)

Proof.

“=" Every L3-tautology is a 2-valued tautology (the restriction of the
operators V, A, ~ to {0, 1} coincides with the Boolean operations V, A, —).

“<" Assume that F is a two-valued tautology. Let A be an L3-structure
and 8 : X — A be a valuation. We construct a two-valued structure A’
from A, which agrees with A except for the fact that whenever p4(X) = u
we define p 4/(X) = 0. Then A’(B)(F) = 1. It can be proved that
A(B)F)=1= A (B)(F) =1
A(B)(F) € {0, u} = A’(B)(F) = 0.
Hence, A(B)(F) = 1.

47



Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.
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Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
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Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term t, Vxq(x) D q(x)[t/x] is an L3-tautology.

3. Show that Vxq(x) — g(x)[t/x] is not a tautology.
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Exercises

1. Let F be a formula which does not contain ~.
Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term t, Vxq(x) D q(x)[t/x] is an L3-tautology.

3. Show that Vxq(x) — g(x)[t/x] is not a tautology.

Solution. g — g is not a tautology.
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Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

If F = G is a tautology and F is satisfiable then G is satisfiable.

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €

{0,1}.
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Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €

{0,1}.

53



Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €

{0,1}.
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Exercises

4. Which of the following statements are true?

If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

true

If F = G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €

{0,1}.
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Exercises

4. Which of the following statements are true?
If F = G is a tautology and F is a tautology then G is a tautology.

true

If F = G is a tautology and F is satisfiable then G is satisfiable.

true

If F = G is a tautology and F is a non-tautology then G is a
non-tautology.

true

If F = G is a tautology and F is two-valued then G is two-valued.

false

F is a non-tautology iff for every 3-valued structure, A and every valuation

B, A(B)(F) # 1.

F is two-valued iff for every 3-valued structure, A and every valuation 8, A(B)(F) €

{0,1}.

56



