Non-classical logics

Lecture 6: Many-valued logics (2)

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Exam

Question: Oral or written?

When?

1. Termin: first two weeks after end of lectures
(16.02.15-27.02.15)
2. Termin: March or April.

Doodle

Last time

Many-valued Logics
History
Motivation
Examples.

Many-valued logics

- Syntax
- Semantics
- Applications
- Proof theory / Methods for automated reasoning

1 Syntax

- propositional variables
- logical operations

Propositional Variables

Let Π be a set of propositional variables.
We use letters P, Q, R, S, to denote propositional variables.

Logical operators

Let \mathcal{F} be a set of logical operators.
These logical operators could be the usual ones from classical logic

$$
\{\neg / 1, \vee / 2, \wedge / 2, \rightarrow / 2, \leftrightarrow / 2\}
$$

but could also be other operations, with arbitrary arity.

Propositional Formulas

$F_{\Pi}^{\mathcal{F}}$ is the set of propositional formulas over Π defined as follows:

$$
\begin{array}{rlr}
F, G, H \quad & := & c \\
& & \text { (c constant logical operator) } \\
& \mid & f\left(F_{1}, \ldots, F_{n}\right)
\end{array} \quad(f \in \mathcal{F} \text { with arity } n) \text { (atomic formula) }
$$

$F_{\Pi}^{\mathcal{F}}$ is the smallest among all sets A with the properties:

- Every constant logical operator is in A.
- Every propositional variable is in A.
- If $f \in \mathcal{F}$ with arity n and $F_{1}, \ldots, F_{n} \in A$ then also $f\left(F_{1}, \ldots, F_{n}\right) \in A$.

Example: Classical propositional logic

If $\mathcal{F}=\{\top / 0, \perp / 0, \neg / 1, \vee / 2, \wedge / 2, \rightarrow / 2, \leftrightarrow / 2\}$ then
$F_{\Pi}^{\mathcal{F}}$ is the set of propositional formulas over Π, defined as follows:
$F, G, H \quad::=\quad \perp$
| T
| $\quad P, \quad P \in \Pi \quad$ (atomic formula)
$\neg F$
$(F \wedge G)$
$(F \vee G)$
$(F \rightarrow G)$
$(F \leftrightarrow G)$
(falsum)
(verum)
(negation)
(conjunction)
(disjunction)
(implication)
(equivalence)

Semantics

We assume that a set $M=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators
$f \in \mathcal{F}$ with arity $n \quad \mapsto \quad f_{M}: M^{n} \rightarrow M$
(truth tables for the operations in \mathcal{F})

Example 1: If \mathcal{F} consists of the Boolean operations and $M=B_{2}=\{0,1\}$ then specifying the meaning of the logical operations means giving the truth tables for the operations in \mathcal{F}

$\neg B$	
0	1
1	0

\vee_{B}	0	1
0	0	1
1	1	1

\wedge_{B}	0	1
0	0	0
1	0	1

Semantics

We assume that a set $M=\left\{w_{1}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators

$$
\begin{aligned}
f \in \mathcal{F} \text { with arity } n \quad \mapsto \quad & f_{M}: M^{n} \rightarrow M \\
& \text { (truth tables for the operations in } \mathcal{F} \text {) }
\end{aligned}
$$

Example 2: If \mathcal{F} consists of the operations $\{\vee, \wedge, \neg\}$ and $M_{3}=\{0$, undef, 1$\}$ then specifying the meaning of the logical operations means giving the truth tables for these operations e.g.

F	$\neg M_{3} F$
1	0
undef	undef
0	1

$\wedge M_{3}$	1	undef	0
1	1	undef	0
undef	undef	undef	0
0	0	0	0

\vee_{M}	1	undef	0
1	1	1	1
undef	1	undef	undef
0	1	undef	0

Semantics

We assume that a set $M=\left\{w_{1}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.

1. Meaning of the logical operators

$f \in \mathcal{F}$ with arity $n \quad \mapsto \quad f_{M}: M^{n} \rightarrow M$
(truth tables for the operations in \mathcal{F})

Example 2: $\mathcal{F}=\{\vee, \wedge, \sim\}$ and $M_{4}=\{\{ \},\{0\},\{1\},\{0,1\}\}$. The truth tables for these operations:

F	$\sim_{M_{4}} F$
$\}$	$\}$
$\{0\}$	$\{1\}$
$\{1\}$	$\{0\}$
$\{0,1\}$	$\{0,1\}$

$\wedge M_{4}$	$\}$	$\{0\}$	$\{1\}$	$\{0,1\}$
$\}$	$\}$	$\{0\}$	$\}$	$\{0\}$
$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
$\{1\}$	$\}$	$\{0\}$	$\{1\}$	$\{0,1\}$
$\{0,1\}$	$\{0\}$	$\{0\}$	$\{0,1\}$	$\{0,1\}$

$\vee_{M_{4}}$	$\}$	$\{0\}$	$\{1\}$	$\{0,1\}$
$\}$	$\}$	$\}$	$\{1\}$	$\{1\}$
$\{0\}$	$\}$	$\{0\}$	$\{1\}$	$\{0,1\}$
$\{1\}$	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{0,1\}$
$\{0,1\}$	$\{1\}$	$\{0,1\}$	$\{0,1\}$	$\{1\}$

Semantics

We assume that a set $M=\left\{w_{1}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.
2. The meaning of the propositional variables

A Π-valuation is a map

$$
\mathcal{A}: \Pi \rightarrow M
$$

Semantics

We assume that a set $M=\left\{w_{1}, \ldots, w_{m}\right\}$ of truth values is given.
We assume that a subset $D \subseteq M$ of designated truth values is given.
3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols $\left(M,\left\{f_{M}\right\}_{f \in \mathcal{F}}\right)$ and Π-valuation $\mathcal{A}: \Pi \rightarrow M$, the function $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow M$ is defined inductively over the structure of F as follows:

$$
\begin{aligned}
\mathcal{A}^{*}(c) & =c_{M}(\text { for every constant operator } c \in \mathcal{F}) \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}\left(f\left(F_{1}, \ldots, F_{n}\right)\right) & =f_{M}\left(\mathcal{A}^{*}\left(F_{1}\right), \ldots, \mathcal{A}^{*}\left(F_{n}\right)\right)
\end{aligned}
$$

For simplicity, we write \mathcal{A} instead of \mathcal{A}^{*}.

Example 1: Classical logic

Given a Π-valuation $\mathcal{A}: \Pi \rightarrow B_{2}=\{0,1\}$, the function \mathcal{A}^{*} : Σ-formulas $\rightarrow\{0,1\}$ is defined inductively over the structure of F as follows:

$$
\begin{aligned}
\mathcal{A}^{*}(\perp) & =0 \\
\mathcal{A}^{*}(\top) & =1 \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}(\neg F) & =\neg_{b} \mathcal{A}^{*}(F) \\
\mathcal{A}^{*}(F \circ G) & =o_{B}\left(\mathcal{A}^{*}(F), \mathcal{A}^{*}(G)\right)
\end{aligned}
$$

with \circ_{B} the Boolean function associated with $\circ \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$ (as described by the truth tables)

Example 2: Logic of undefinedness

Given a Π-valuation $\mathcal{A}: \Pi \rightarrow M_{3}=\{0$, undef, 1$\}$, the function $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow\{0$, undef, 1$\}$ is defined inductively over the structure of F as follows:

$$
\begin{aligned}
\mathcal{A}^{*}(\perp) & =0 \\
\mathcal{A}^{*}(\top) & =1 \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}(\neg F) & =\neg M_{3}\left(\mathcal{A}^{*}(F)\right) \\
\mathcal{A}^{*}(F \vee G) & =\mathcal{A}^{*}(F) \vee_{M_{3}} \mathcal{A}^{*}(G) \\
\mathcal{A}^{*}(F \wedge G) & =\mathcal{A}^{*}(F) \wedge_{M_{3}} \mathcal{A}^{*}(G)
\end{aligned}
$$

Example 3: Belnap's 4-valued logic

Given a Π-valuation $\mathcal{A}: \Pi \rightarrow M_{4}=\{\{ \},\{0\},\{1\},\{0,1\}\}$, the function $\mathcal{A}^{*}: \Sigma$-formulas $\rightarrow\{\},\{0\},\{1\},\{0,1\}\}$ is defined inductively over the structure of F as follows:

$$
\begin{aligned}
\mathcal{A}^{*}(\perp) & =\{0\} \\
\mathcal{A}^{*}(\top) & =\{1\} \\
\mathcal{A}^{*}(P) & =\mathcal{A}(P) \\
\mathcal{A}^{*}(\sim F) & =\sim_{M_{4}}\left(\mathcal{A}^{*}(F)\right) \\
\mathcal{A}^{*}(F \vee G) & =\mathcal{A}^{*}(F) \vee_{M_{4}} \mathcal{A}^{*}(G) \\
\mathcal{A}^{*}(F \wedge G) & =\mathcal{A}^{*}(F) \wedge_{M_{4}} \mathcal{A}^{*}(G)
\end{aligned}
$$

Models, Validity, and Satisfiability

$M=\left\{w_{1}, \ldots, w_{m}\right\}$ set of truth values
$D \subseteq M$ set of designated truth values
$\mathcal{A}: \Pi \rightarrow M$.
F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F ; F$ holds under $\mathcal{A})$:

$$
\mathcal{A} \models F: \Leftrightarrow \mathcal{A}(F) \in D
$$

F is valid (or is a tautology):

$$
\models F: \Leftrightarrow \mathcal{A} \models F \text { for all } \Pi \text {-valuations } \mathcal{A}
$$

F is called satisfiable iff there exists an \mathcal{A} such that $\mathcal{A} \models F$.
Otherwise F is called unsatisfiable (or contradictory).

The logic \mathcal{L}_{3}

Set of truth values: $M=\{1, u, 0\}$.
Designated truth values: $D=\{1\}$.
Logical operators: $\mathcal{F}=\{\bigvee, \wedge, \neg, \sim\}$.

Truth tables for the operators

V	0	u	1
0	0	u	1
u	u	u	1
1	1	1	1

\wedge	0	u	1
0	0	0	0
u	0	u	u
1	0	u	1

$v(F \wedge G)=\min (v(F), v(G))$
$v(F \vee G)=\max (v(F), v(G))$

Under the assumption that $0<u<1$.

Truth tables for negations

A	$\neg A$	$\sim A$	$\sim \neg A$	$\sim \sim A$	$\neg \neg A$	$\neg \sim A$
1	0	0	1	1	1	1
u	u	1	1	0	u	0
0	1	1	0	0	0	0

Translation in natural language:
$v(A)=1 \mathrm{gdw} . A$ is true
$v(\neg A)=1 \mathrm{gdw} . A$ is false
$v(\sim A)=1 \mathrm{gdw} . A$ is not true
$v(\sim \neg A)=1 \mathrm{gdw} . A$ is not false

First-order many-valued logic

$M=\left\{w_{1}, \ldots, w_{m}\right\}$ set of truth values
$D \subseteq M$ set of designated truth values.

1. Syntax

- non-logical symbols (domain-specific)
\Rightarrow terms, atomic formulas
- logical symbols \mathcal{F}, quantifiers
\Rightarrow formulae

Signature

A signature

$$
\Sigma=(\Omega, \Pi)
$$

fixes an alphabet of non-logical symbols, where

- Ω is a set of function symbols f with arity $n \geq 0$, written f / n,
- Π is a set of predicate symbols p with arity $m \geq 0$, written p / m.

If $n=0$ then f is also called a constant (symbol).
If $m=0$ then p is also called a propositional variable.
We use letters P, Q, R, S, to denote propositional variables.

Variables, Terms

As in classical logic

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$
\left.\begin{array}{c}
A, B \quad:=\quad p\left(s_{1}, \ldots, s_{m}\right) \quad, \quad p / m \in \Pi \\
{\left[\begin{array}{cc}
& (s \approx t)
\end{array} \quad\right. \text { (equation) }}
\end{array}\right]
$$

In what follows we will only consider variants of first-order logic without equality.

Logical Operations

\mathcal{F} set of logical operations
$\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{k}\right\}$ set of quantifiers

First-Order Formulas

$F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

$$
\begin{aligned}
F, G, H \quad::= & c \\
& \mid \\
& A \\
& f\left(F_{1}, \ldots, F_{n}\right) \\
& Q x F
\end{aligned}
$$

($c \in \mathcal{F}$, constant)
(atomic formula)
$(f \in \mathcal{F}$ with arity $n)$
($Q \in \mathcal{Q}$ is a quantifier)

Bound and Free Variables

In $Q \times F, Q \in \mathcal{Q}$, we call F the scope of the quantifier $Q x$. An occurrence of a variable x is called bound, if it is inside the scope of a quantifier $Q x$.
Any other occurrence of a variable is called free.
Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

Semantics

$M=\{1, \ldots, m\}$ set of truth values
$D \subseteq M$ set of designated truth values.
Truth tables for the logical operations:

$$
\left\{f_{M}: M^{n} \rightarrow M \mid f / n \in \mathcal{F}\right\}
$$

"Truth tables" for the quantifiers:

$$
\left\{Q_{M}: \mathcal{P}(M) \rightarrow M \mid Q \in \mathcal{Q}\right\}
$$

Examples: If $M=B_{2}=\{0,1\}$ then

$$
\begin{array}{ll}
\forall_{B_{2}}: \mathcal{P}(\{0,1\}) \rightarrow\{0,1\} & \forall_{B_{2}}(X)=\min (X) \\
\exists_{B_{2}}: \mathcal{P}(\{0,1\}) \rightarrow\{0,1\} & \exists_{B_{2}}(X)=\max (X)
\end{array}
$$

Structures

An M-valued Σ-algebra (Σ-interpretation or Σ-structure) is a triple

$$
\mathcal{A}=\left(U,\left(f_{\mathcal{A}}: U^{n} \rightarrow U\right)_{f / n \in \Omega},\left(p_{\mathcal{A}}: U^{m} \rightarrow M\right)_{p / m \in \Pi}\right)
$$

where $U \neq \emptyset$ is a set, called the universe of \mathcal{A}.
Normally, by abuse of notation, we will have \mathcal{A} denote both the algebra and its universe.

By $\Sigma-\mathrm{Alg}^{M}$ we denote the class of all M-valued Σ-algebras.

Assignments

Variable assignments $\beta: X \rightarrow \mathcal{A}$ and extensions to terms $\mathcal{A}(\beta): T_{\Sigma} \rightarrow \mathcal{A}$ as in classical logic.

Truth Value of a Formula in \mathcal{A} with Respect to β

$\mathcal{A}(\beta): \mathrm{F}_{\Sigma}(X) \rightarrow M$ is defined inductively as follows:

$$
\begin{aligned}
\mathcal{A}(\beta)(c) & =c_{M} \\
\mathcal{A}(\beta)\left(p\left(s_{1}, \ldots, s_{n}\right)\right) & =p_{\mathcal{A}}\left(\mathcal{A}(\beta)\left(s_{1}\right), \ldots, \mathcal{A}(\beta)\left(s_{n}\right)\right) \in M \\
\mathcal{A}(\beta)\left(f\left(F_{1}, \ldots, F_{n}\right)\right) & =f_{M}\left(\mathcal{A}(\beta)\left(F_{1}\right), \ldots, \mathcal{A}(\beta)\left(F_{n}\right)\right) \\
\mathcal{A}(\beta)(Q \times F) & =Q_{M}(\{\mathcal{A}(\beta[x \mapsto a])(F) \mid a \in U\})
\end{aligned}
$$

First-order version of \mathcal{L}_{3}

$$
M=\{0, u, 1\}
$$

$D=\{1\}$
$\mathcal{F}=\{\vee, \wedge, \neg, \sim\}$
truth values as the propositional version
$\mathcal{Q}=\{\forall, \exists\}$

$$
\forall_{M}(S)=\left\{\begin{array}{ll}
1 & \text { if } S=\{1\} \\
0 & \text { if } 0 \in S \\
u & \text { otherwise }
\end{array} \quad \exists_{M}(S)= \begin{cases}1 & \text { if } 1 \in S \\
0 & \text { if } S=\{0\} \\
u & \text { otherwise }\end{cases}\right.
$$

Interpretation of quantifiers

$$
\begin{array}{llll}
\mathcal{A}(\beta)(\forall x F(x))=1 & \text { iff } & \text { for all } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x))=1 \\
\mathcal{A}(\beta)(\forall x F(x))=0 & \text { iff } & \text { for some } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x))=0 \\
\mathcal{A}(\beta)(\forall x F(x))=u & & \text { otherwise } & \\
\mathcal{A}(\beta)(\exists x F(x))=1 \quad \text { iff } & \text { for some } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x))=1 \\
\mathcal{A}(\beta)(\exists x F(x))=0 \quad \text { iff } & \text { for all } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x))=0 \\
\mathcal{A}(\beta)(\forall x F(x))=u & & \text { otherwise } &
\end{array}
$$

Models, Validity, and Satisfiability

F is valid in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models F \quad: \Leftrightarrow \quad \mathcal{A}(\beta)(F) \in D
$$

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F)$:

$$
\mathcal{A} \models F \quad: \Leftrightarrow \mathcal{A}, \beta \models F, \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

F is valid:

$$
\models F \quad: \Leftrightarrow \mathcal{A} \models F, \text { for all } \mathcal{A} \in \Sigma \text {-alg }
$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models F$. Otherwise F is called unsatisfiable.

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Models, Validity, and Satisfiability in \mathcal{L}_{3}

F is valid in \mathcal{A} under assignment β :

$$
\mathcal{A}, \beta \models_{3} F \quad: \Leftrightarrow \quad \mathcal{A}(\beta)(F)=1
$$

F is valid in $\mathcal{A}(\mathcal{A}$ is a model of $F)$:

$$
\mathcal{A} \models_{3} F \quad: \Leftrightarrow \mathcal{A}, \beta \models_{3} F, \text { for all } \beta \in X \rightarrow U_{\mathcal{A}}
$$

F is valid (or is a tautology):

$$
\models_{3} F \quad: \Leftrightarrow \mathcal{A} \models_{3} F, \text { for all } \mathcal{A} \in \Sigma \text {-alg }
$$

F is called satisfiable iff there exist \mathcal{A} and β such that $\mathcal{A}, \beta \models_{3} F$. Otherwise F is called unsatisfiable.

Entailment in \mathcal{L}_{3}

$N \models_{3} F: \Leftrightarrow \quad$ for all $\mathcal{A} \in \Sigma$-alg and $\beta \in X \rightarrow U_{\mathcal{A}}:$
if $\mathcal{A}(\beta)(G)=1$, for all $G \in N$, then $\mathcal{A}(\beta)(F)=1$.

Observations

- Every \mathcal{L}_{3}-tautology is also a two-valued tautology.
- Not every two-valued tautology is an \mathcal{L}_{3}-tautology. Example: $F \vee \neg F$.

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Entailment

$$
\begin{aligned}
N \models F: \Leftrightarrow & \text { for all } \mathcal{A} \in \Sigma \text {-alg and } \beta \in X \rightarrow U_{\mathcal{A}}: \\
& \text { if } \mathcal{A}(\beta)(G) \in D, \text { for all } G \in N, \text { then } \mathcal{A}(\beta)(F) \in D .
\end{aligned}
$$

Goal: Define a version of implication ' \Rightarrow ' such that

$$
F \models G \text { iff } \models F \Rightarrow G
$$

Weak implication

The logical operations \supset and \equiv are introduced as defined operations:
Weak implication

$$
F \supset G:=\sim F \vee G
$$

Weak equivalence

$$
F \equiv G:=(F \supset G) \wedge(G \supset F)
$$

$F \supset G$	1	u	0
1	1	u	0
u	1	1	1
0	1	1	1

$F \equiv G$	1	u	0
1	1	u	0
u	u	1	1
0	0	1	1

Strong implication

The logical operations \rightarrow and \leftrightarrow are introduced as defined operations:
Strong implication

$$
F \rightarrow G:=\neg F \vee G
$$

Strong equivalence

$$
F \leftrightarrow G:=(F \rightarrow G) \wedge(G \rightarrow F)
$$

$F \rightarrow G$	1	u	0
1	1	u	0
u	1	u	u
0	1	1	1

$F \leftrightarrow G$	1	u	0
1	1	u	0
u	u	u	u
0	0	u	1

Comparisons

Implications

$A \supset B$	1	u	0
1	1	u	0
u	1	1	1
0	1	1	1

$A \rightarrow B$	1	u	0
1	1	u	0
u	1	u	u
0	1	1	1

Equivalences

$A \equiv B$	1	u	0
1	1	u	0
u	u	1	1
0	0	1	1

$A \leftrightarrow B$	1	u	0
1	1	u	0
u	u	u	u
0	0	u	1

Equivalences

$$
A \supset B:=\sim A \vee B \quad A \rightarrow B:=\neg A \vee B
$$

$$
\begin{array}{ll}
A \equiv B:=(A \supset B) \wedge(B \supset A) & A \leftrightarrow B:=(A \rightarrow B) \wedge(B \rightarrow A) \\
A \approx B:=(A \equiv B) \wedge(\neg A \equiv \neg B) & A \Leftrightarrow B:=(A \leftrightarrow B) \wedge(\neg A \leftrightarrow \neg B)
\end{array}
$$

$$
A \text { id } B:=\sim \sim(A \approx B)
$$

A	B	$A \equiv B$	$A \leftrightarrow B$	$A \approx B$	$A \Leftrightarrow B$	A id B
1	1	1	1	1	1	1
1	u	u	u	u	u	0
1	0	0	0	0	0	0
u	1	u	u	u	u	0
u	u	1	u	1	u	1
u	0	1	u	u	u	0
0	1	0	0	0	0	0
0	u	1	u	u	u	0
0	0	1	1	1	1	1

Some \mathcal{L}_{3} tautologies

$\neg \neg A$ id A
$\sim \sim A \equiv A$
$\neg \sim A \equiv A$
$\neg(A \vee B)$ id $\neg A \wedge \neg B$
$\neg(A \wedge B)$ id $\neg A \vee \neg B$
$\neg(\forall x A)$ id $\exists x \neg A$
$\neg(\exists x A)$ id $\forall x \neg A$
$(A \wedge B) \vee C$ id $(A \vee C) \wedge(B \vee C)$
$(A \vee B) \wedge C$ id $(A \wedge C) \vee(B \wedge C)$
$\sim(A \vee B)$ id $\sim A \wedge \sim B$
$\sim(A \wedge B)$ id $\sim A \vee \sim B$
$\sim(\forall x A)$ id $\exists x \sim A$
$\sim(\exists x A)$ id $\forall x \sim A$

No occurrence of \neg

Lemma. Let F be a formula which does not contain the strong negation \neg. Then the following are equivalent:
(1) F is an \mathcal{L}_{3}-tautology.
(2) F is a two-valued tautology (negation is identified with \sim)

Proof.
" \Rightarrow " Every \mathcal{L}_{3}-tautology is a 2 -valued tautology (the restriction of the operators \vee, \wedge, \sim to $\{0,1\}$ coincides with the Boolean operations \vee, \wedge, \neg).
" \Leftarrow " Assume that F is a two-valued tautology. Let \mathcal{A} be an \mathcal{L}_{3}-structure and $\beta: X \rightarrow \mathcal{A}$ be a valuation. We construct a two-valued structure \mathcal{A}^{\prime} from \mathcal{A}, which agrees with \mathcal{A} except for the fact that whenever $p_{\mathcal{A}}(\bar{x})=u$ we define $p_{\mathcal{A}^{\prime}}(\bar{x})=0$. Then $\mathcal{A}^{\prime}(\beta)(F)=1$. It can be proved that

$$
\begin{aligned}
& \mathcal{A}(\beta)(F)=1 \Rightarrow \mathcal{A}^{\prime}(\beta)(F)=1 \\
& \mathcal{A}(\beta)(F) \in\{0, u\} \Rightarrow \mathcal{A}^{\prime}(\beta)(F)=0
\end{aligned}
$$

Hence, $\mathcal{A}(\beta)(F)=1$.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term $t, \forall x q(x) \supset q(x)[t / x]$ is an \mathcal{L}_{3}-tautology.
3. Show that $\forall x q(x) \rightarrow q(x)[t / x]$ is not a tautology.

Exercises

1. Let F be a formula which does not contain \sim.

Then F is not a tautology.
Proof. Take the valuation which maps all propositional variables to u.
2. Prove that for every term $t, \forall x q(x) \supset q(x)[t / x]$ is an \mathcal{L}_{3}-tautology.
3. Show that $\forall x q(x) \rightarrow q(x)[t / x]$ is not a tautology.

Solution. $q \rightarrow q$ is not a tautology.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology. true

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology. true

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable. true

If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.

If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology. true

If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.
true
If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.
true
If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

Exercises

4. Which of the following statements are true?

If $F \equiv G$ is a tautology and F is a tautology then G is a tautology.
true
If $F \equiv G$ is a tautology and F is satisfiable then G is satisfiable.
true
If $F \equiv G$ is a tautology and F is a non-tautology then G is a non-tautology.
true
If $F \equiv G$ is a tautology and F is two-valued then G is two-valued.
false
F is a non-tautology iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \neq 1$.
F is two-valued iff for every 3 -valued structure, \mathcal{A} and every valuation $\beta, \mathcal{A}(\beta)(F) \in$ $\{0,1\}$.

