## **Non-classical logics**

**Lecture 6:** Many-valued logics (2)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

**Question:** Oral or written?

#### When?

- 1. Termin: first two weeks after end of lectures (16.02.15-27.02.15)
- 2. Termin: March or April.

#### Doodle

# Last time

## **Many-valued Logics**

History

Motivation

Examples.

# **Many-valued logics**

- Syntax
- Semantics
- Applications
- Proof theory / Methods for automated reasoning

# 1 Syntax

- propositional variables
- logical operations

Let  $\Pi$  be a set of propositional variables.

We use letters P, Q, R, S, to denote propositional variables.

# **Logical operators**

Let  $\mathcal{F}$  be a set of logical operators.

These logical operators could be the usual ones from classical logic

$$\{\neg/1, \lor/2, \land/2, \rightarrow/2, \leftrightarrow/2\}$$

but could also be other operations, with arbitrary arity.

 $F_{\Pi}^{\mathcal{F}}$  is the set of propositional formulas over  $\Pi$  defined as follows:

F, G, H::=c(c constant logical operator)| $P, P \in \Pi$ (atomic formula)| $f(F_1, \ldots, F_n)$  $(f \in \mathcal{F} \text{ with arity } n)$ 

 $F_{\Pi}^{\mathcal{F}}$  is the smallest among all sets A with the properties:

- Every constant logical operator is in A.
- Every propositional variable is in A.
- If  $f \in \mathcal{F}$  with arity n and  $F_1, \ldots, F_n \in A$ then also  $f(F_1, \ldots, F_n) \in A$ .

# **Example: Classical propositional logic**

If  $\mathcal{F} = \{\top/0, \perp/0, \neg/1, \lor/2, \land/2, \rightarrow/2, \leftrightarrow/2\}$  then  $\mathcal{F}_{\Pi}^{\mathcal{F}}$  is the set of propositional formulas over  $\Pi$ , defined as follows:

| F, G, H | ::= | $\perp$                 | (falsum)         |
|---------|-----|-------------------------|------------------|
|         |     | Т                       | (verum)          |
|         |     | $P, P \in \Pi$          | (atomic formula) |
|         |     | $\neg F$                | (negation)       |
|         |     | $(F \wedge G)$          | (conjunction)    |
|         |     | $(F \lor G)$            | (disjunction)    |
|         |     | $(F \rightarrow G)$     | (implication)    |
|         |     | $(F \leftrightarrow G)$ | (equivalence)    |

We assume that a set  $M = \{w_1, w_2, \dots, w_m\}$  of truth values is given. We assume that a subset  $D \subseteq M$  of designated truth values is given.

#### 1. Meaning of the logical operators

$$f \in \mathcal{F}$$
 with arity  $n \mapsto f_M : M^n \to M$   
(truth tables for the operations in  $\mathcal{F}$ )

**Example 1:** If  $\mathcal{F}$  consists of the Boolean operations and  $M = B_2 = \{0, 1\}$  then specifying the meaning of the logical operations means giving the truth tables for the operations in  $\mathcal{F}$ 

| $\neg B$ |   | $\vee_B$ | 0 | 1 | $\wedge_B$ | 0 | 1 |
|----------|---|----------|---|---|------------|---|---|
| 0        | 1 | 0        | 0 | 1 | 0          | 0 | 0 |
| 1        | 0 | 1        | 1 | 1 | 1          | 0 | 1 |

We assume that a set  $M = \{w_1, \ldots, w_m\}$  of truth values is given. We assume that a subset  $D \subseteq M$  of designated truth values is given.

#### 1. Meaning of the logical operators

$$f \in \mathcal{F}$$
 with arity  $n \mapsto f_M : M^n \to M$   
(truth tables for the operations in  $\mathcal{F}$ )

**Example 2:** If  $\mathcal{F}$  consists of the operations  $\{\lor, \land, \neg\}$  and  $M_3 = \{0, \text{undef}, 1\}$  then specifying the meaning of the logical operations means giving the truth tables for these operations e.g.

| F     | ¬ <sub>M3</sub> F |
|-------|-------------------|
| 1     | 0                 |
| undef | undef             |
| 0     | 1                 |

| ^ <i>M</i> 3 | 1     | undef | 0 |
|--------------|-------|-------|---|
| 1            | 1     | undef | 0 |
| undef        | undef | undef | 0 |
| 0            | 0     | 0     | 0 |

| $\vee_{M_3}$ | 1 | undef | 0     |
|--------------|---|-------|-------|
| 1            | 1 | 1     | 1     |
| undef        | 1 | undef | undef |
| 0            | 1 | undef | 0     |

We assume that a set  $M = \{w_1, \ldots, w_m\}$  of truth values is given. We assume that a subset  $D \subseteq M$  of designated truth values is given.

#### 1. Meaning of the logical operators

$$f \in \mathcal{F}$$
 with arity  $n \mapsto f_M : M^n \to M$   
(truth tables for the operations in  $\mathcal{F}$ )

# **Example 2:** $\mathcal{F} = \{ \forall, \land, \sim \}$ and $M_4 = \{ \{ \}, \{0\}, \{1\}, \{0, 1\} \}$ . The truth tables for these operations:

| F     | $\sim_{M_4}$ F | $\wedge_{M_4}$ | { }   | {0}   | $\{1\}$  | {0,1}        | $\vee_{M_4}$ | { }   | {0}     | {1}     | {0,1}    |
|-------|----------------|----------------|-------|-------|----------|--------------|--------------|-------|---------|---------|----------|
| { }   | { }            | { }            | { }   | {0}   | { }      | {0}          | { }          | { }   | { }     | {1}     | {1}      |
| { 0 } | { 1 }          | {0}            | { 0 } | {0}   | { 0 }    | { 0 }        | {0}          | { }   | {0}     | $\{1\}$ | { 0,1 }  |
| {1}   | { 0 }          | {1}            | { }   | { 0 } | { 1 }    | $\{ 0, 1 \}$ | $\{1\}$      | { 1}  | { 0,1 } | {1}     | { 0, 1 } |
| {0,1} | {0,1}          | {0, 1}         | { 0 } | {0}   | { 0, 1 } | {0,1}        | $\{0, 1\}$   | { 1 } | {0,1}   | {0,1}   | { 1}     |

We assume that a set  $M = \{w_1, \ldots, w_m\}$  of truth values is given.

We assume that a subset  $D \subseteq M$  of designated truth values is given.

### 2. The meaning of the propositional variables

A  $\Pi$ -valuation is a map

 $\mathcal{A}:\Pi \to M.$ 

We assume that a set  $M = \{w_1, \ldots, w_m\}$  of truth values is given. We assume that a subset  $D \subseteq M$  of designated truth values is given.

#### 3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols  $(M, \{f_M\}_{f \in \mathcal{F}})$  and  $\Pi$ -valuation  $\mathcal{A} : \Pi \to M$ , the function  $\mathcal{A}^* : \Sigma$ -formulas  $\to M$  is defined inductively over the structure of F as follows:

$$\mathcal{A}^*(c) = c_M$$
(for every constant operator  $c \in \mathcal{F}$ )  
 $\mathcal{A}^*(P) = \mathcal{A}(P)$   
 $\mathcal{A}^*(f(F_1, \dots, F_n)) = f_M(\mathcal{A}^*(F_1), \dots, \mathcal{A}^*(F_n))$ 

For simplicity, we write  $\mathcal{A}$  instead of  $\mathcal{A}^*$ .

Given a  $\Pi$ -valuation  $\mathcal{A} : \Pi \to B_2 = \{0, 1\}$ , the function  $\mathcal{A}^*$ :  $\Sigma$ -formulas  $\to \{0, 1\}$  is defined inductively over the structure of F as follows:

$$egin{aligned} &\mathcal{A}^*(ot) = 0 \ &\mathcal{A}^*(ot) = 1 \ &\mathcal{A}^*(P) = \mathcal{A}(P) \ &\mathcal{A}^*(
abla F) = 
abla_b \mathcal{A}^*(F) \ &\mathcal{A}^*(F) = 
abla_b \mathcal{A}^*(F) \ &\mathcal{A}^*(F) = \circ_B (\mathcal{A}^*(F), \mathcal{A}^*(G)) \end{aligned}$$

with  $\circ_B$  the Boolean function associated with  $\circ \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ (as described by the truth tables)

## **Example 2: Logic of undefinedness**

Given a  $\Pi$ -valuation  $\mathcal{A} : \Pi \to M_3 = \{0, \text{undef}, 1\}$ , the function  $\mathcal{A}^* : \Sigma$ -formulas  $\to \{0, \text{undef}, 1\}$  is defined inductively over the structure of F as follows:

$$egin{aligned} &\mathcal{A}^*(ot)=0\ &\mathcal{A}^*(ot)=1\ &\mathcal{A}^*(P)=\mathcal{A}(P)\ &\mathcal{A}^*(
abla F)=
egin{aligned} &\mathcal{A}^*((\nabla F))=\nabla_{M_3}(\mathcal{A}^*(F))\ &\mathcal{A}^*(F\vee G)=\mathcal{A}^*(F)\vee_{M_3}\mathcal{A}^*(G)\ &\mathcal{A}^*(F\wedge G)=\mathcal{A}^*(F)\wedge_{M_3}\mathcal{A}^*(G) \end{aligned}$$

## **Example 3: Belnap's 4-valued logic**

Given a  $\Pi$ -valuation  $\mathcal{A} : \Pi \to M_4 = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}\}$ , the function  $\mathcal{A}^* : \Sigma$ -formulas  $\to \{\{\}, \{0\}, \{1\}, \{0, 1\}\}\}$  is defined inductively over the structure of F as follows:

$$egin{aligned} &\mathcal{A}^*(ot) = \{0\} \ &\mathcal{A}^*(ot) = \{1\} \ &\mathcal{A}^*(P) = \mathcal{A}(P) \ &\mathcal{A}^*(\sim F) = &\sim_{M_4} (\mathcal{A}^*(F)) \ &\mathcal{A}^*(F \lor G) = \mathcal{A}^*(F) \lor_{M_4} \mathcal{A}^*(G) \ &\mathcal{A}^*(F \land G) = \mathcal{A}^*(F) \land_{M_4} \mathcal{A}^*(G) \end{aligned}$$

# Models, Validity, and Satisfiability

 $M = \{w_1, \ldots, w_m\} \text{ set of truth values}$  $D \subseteq M \text{ set of designated truth values}$  $\mathcal{A} : \Pi \to M.$ 

*F* is valid in  $\mathcal{A}$  ( $\mathcal{A}$  is a model of *F*; *F* holds under  $\mathcal{A}$ ):

 $\mathcal{A} \models F : \Leftrightarrow \mathcal{A}(F) \in D$ 

*F* is valid (or is a tautology):

 $\models F : \Leftrightarrow \mathcal{A} \models F \text{ for all } \Pi \text{-valuations } \mathcal{A}$ 

*F* is called satisfiable iff there exists an A such that  $A \models F$ . Otherwise *F* is called unsatisfiable (or contradictory).

# The logic $\mathcal{L}_3$

Set of truth values:  $M = \{1, u, 0\}$ .

Designated truth values:  $D = \{1\}$ .

Logical operators:  $\mathcal{F} = \{ \lor, \land, \neg, \sim \}.$ 

## Truth tables for the operators



 $v(F \land G) = \min(v(F), v(G))$  $v(F \lor G) = \max(v(F), v(G))$ 

Under the assumption that 0 < u < 1.

# **Truth tables for negations**

| A | $\neg A$ | $\sim A$ | $\sim \neg A$ | $\sim \sim A$ | $\neg \neg A$ | $\neg \sim A$ |
|---|----------|----------|---------------|---------------|---------------|---------------|
|   | 0        | 0        | 1             | 1             | 1             | 1             |
| и | u        | 1        | 1             | 0             | U             | 0             |
| 0 | 1        | 1        | 0             | 0             | 0             | 0             |

Translation in natural language:

$$v(A) = 1$$
 gdw.  $A$  is true  
 $v(\neg A) = 1$  gdw.  $A$  is false  
 $v(\sim A) = 1$  gdw.  $A$  is not true  
 $v(\sim \neg A) = 1$  gdw.  $A$  is not false

# **First-order** many-valued logic

- $M = \{w_1, \ldots, w_m\}$  set of truth values
- $D \subseteq M$  set of designated truth values.
- 1. Syntax
  - non-logical symbols (domain-specific)
     ⇒ terms, atomic formulas
  - logical symbols  $\mathcal{F}$ , quantifiers  $\Rightarrow$  formulae

# Signature

A signature

$$\Sigma = (\Omega, \Pi),$$

fixes an alphabet of non-logical symbols, where

- $\Omega$  is a set of function symbols f with arity  $n \ge 0$ , written f/n,
- $\Pi$  is a set of predicate symbols p with arity  $m \ge 0$ , written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also called a propositional variable. We use letters P, Q, R, S, to denote propositional variables. As in classical logic

# Atoms

Atoms (also called atomic formulas) over  $\Sigma$  are formed according to this syntax:

In what follows we will only consider variants of first-order logic without equality.

# **Logical Operations**

- ${\mathcal F}$  set of logical operations
- $\mathcal{Q} = \{Q_1, \ldots, Q_k\}$  set of quantifiers

 $F_{\Sigma}(X)$  is the set of first-order formulas over  $\Sigma$  defined as follows:

$$F, G, H$$
::= $c$  $(c \in \mathcal{F}, \text{ constant})$  $|$  $A$ (atomic formula) $|$  $f(F_1, \ldots, F_n)$  $(f \in \mathcal{F} \text{ with arity } n)$  $|$  $QxF$  $(Q \in \mathcal{Q} \text{ is a quantifier})$ 

In  $Q \times F$ ,  $Q \in Q$ , we call F the scope of the quantifier  $Q \times A$ . An *occurrence* of a variable x is called **bound**, if it is inside the scope of a quantifier  $Q \times A$ .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or sentential forms.

Formulas without variables are called ground.

 $M = \{1, \ldots, m\}$  set of truth values

 $D \subseteq M$  set of designated truth values.

Truth tables for the logical operations:

 ${f_M: M^n \to M | f/n \in \mathcal{F}}$ 

"Truth tables" for the quantifiers:

$$\{Q_M:\mathcal{P}(M)\to M|Q\in\mathcal{Q}\}$$

Examples: If  $M = B_2 = \{0, 1\}$  then  $\forall_{B_2} : \mathcal{P}(\{0, 1\}) \rightarrow \{0, 1\} \quad \forall_{B_2}(X) = \min(X)$  $\exists_{B_2} : \mathcal{P}(\{0, 1\}) \rightarrow \{0, 1\} \quad \exists_{B_2}(X) = \max(X)$ 

# **Structures**

An *M*-valued  $\Sigma$ -algebra ( $\Sigma$ -interpretation or  $\Sigma$ -structure) is a triple

$$\mathcal{A}=(\mathit{U},~(\mathit{f}_{\mathcal{A}}:\mathit{U}^{n}
ightarrow \mathit{U})_{\mathit{f}/n\in\Omega}$$
,  $(p_{\mathcal{A}}:\mathit{U}^{m}
ightarrow \mathit{M})_{\mathit{p}/m\in\Pi})$ 

where  $U \neq \emptyset$  is a set, called the universe of  $\mathcal{A}$ .

Normally, by abuse of notation, we will have  $\mathcal{A}$  denote both the algebra and its universe.

By  $\Sigma$ -Alg<sup>M</sup> we denote the class of all *M*-valued  $\Sigma$ -algebras.

# Assignments

Variable assignments  $\beta: X \to \mathcal{A}$ 

and extensions to terms  $\mathcal{A}(\beta)$  :  $\mathcal{T}_{\Sigma} \to \mathcal{A}$  as in classical logic.

# Truth Value of a Formula in ${\cal A}$ with Respect to $\beta$

 $\mathcal{A}(\beta) : F_{\Sigma}(X) \to M$  is defined inductively as follows:

$$egin{aligned} &\mathcal{A}(eta)(c)=c_{\mathcal{M}}\ &\mathcal{A}(eta)(p(s_{1},\ldots,s_{n}))=p_{\mathcal{A}}(\mathcal{A}(eta)(s_{1}),\ldots,\mathcal{A}(eta)(s_{n}))\in M\ &\mathcal{A}(eta)(f(F_{1},\ldots,F_{n}))=f_{\mathcal{M}}(\mathcal{A}(eta)(F_{1}),\ldots,\mathcal{A}(eta)(F_{n}))\ &\mathcal{A}(eta)(QxF)=Q_{\mathcal{M}}(\{\mathcal{A}(eta[x\mapsto a])(F)\mid a\in U\}) \end{aligned}$$

$$egin{aligned} M &= \{0, \, u, \, 1\} \ D &= \{1\} \ \mathcal{F} &= \{ee, \wedge, \neg, \sim\} \end{aligned}$$

truth values as the propositional version

$$\mathcal{Q} = \{\forall, \exists\}$$

$$\forall_M(S) = \begin{cases} 1 & \text{if } S = \{1\} \\ 0 & \text{if } 0 \in S \\ u & \text{otherwise} \end{cases} \quad \exists_M(S) = \begin{cases} 1 & \text{if } 1 \in S \\ 0 & \text{if } S = \{0\} \\ u & \text{otherwise} \end{cases}$$

## **Interpretation of quantifiers**

 $\begin{aligned} \mathcal{A}(\beta)(\forall x F(x)) &= 1 & iff & \text{for all } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x)) = 1 \\ \mathcal{A}(\beta)(\forall x F(x)) &= 0 & iff & \text{for some } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x)) = 0 \\ \mathcal{A}(\beta)(\forall x F(x)) &= u & \text{otherwise} \\ \end{aligned}$  $\begin{aligned} \mathcal{A}(\beta)(\exists x F(x)) &= 1 & iff & \text{for some } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x)) = 1 \\ \mathcal{A}(\beta)(\exists x F(x)) &= 0 & iff & \text{for all } a \in U_{\mathcal{A}}, & \mathcal{A}(\beta[x \mapsto a])(F(x)) = 0 \\ \mathcal{A}(\beta)(\forall x F(x)) &= u & \text{otherwise} \\ \end{aligned}$ 

## Models, Validity, and Satisfiability

*F* is valid in A under assignment  $\beta$ :

$$\mathcal{A}, \beta \models F : \Leftrightarrow \mathcal{A}(\beta)(F) \in D$$

F is valid in  $\mathcal{A}$  ( $\mathcal{A}$  is a model of F):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}, \beta \models F$$
, for all  $\beta \in X \to U_{\mathcal{A}}$ 

*F* is valid:

$$\models$$
 *F* : $\Leftrightarrow$   $\mathcal{A} \models$  *F*, for all  $\mathcal{A} \in \Sigma$ -alg

*F* is called satisfiable iff there exist A and  $\beta$  such that  $A, \beta \models F$ . Otherwise *F* is called unsatisfiable.

# Entailment

# $N \models F : \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$ : if $\mathcal{A}(\beta)(G) \in D$ , for all $G \in N$ , then $\mathcal{A}(\beta)(F) \in D$ .

# Models, Validity, and Satisfiability in $\mathcal{L}_3$

*F* is valid in A under assignment  $\beta$ :

$$\mathcal{A}, \beta \models_{3} F : \Leftrightarrow \mathcal{A}(\beta)(F) = 1$$

F is valid in  $\mathcal{A}$  ( $\mathcal{A}$  is a model of F):

$$\mathcal{A}\models_{3} \mathsf{F}$$
 : $\Leftrightarrow$   $\mathcal{A}, \beta \models_{3} \mathsf{F}$ , for all  $\beta \in \mathsf{X} \to U_{\mathcal{A}}$ 

*F* is valid (or is a tautology):

$$\models_{3} F : \Leftrightarrow \mathcal{A} \models_{3} F$$
, for all  $\mathcal{A} \in \Sigma$ -alg

*F* is called satisfiable iff there exist A and  $\beta$  such that  $A, \beta \models_3 F$ . Otherwise *F* is called unsatisfiable.  $N \models_{3} F : \Leftrightarrow$  for all  $\mathcal{A} \in \Sigma$ -alg and  $\beta \in X \to U_{\mathcal{A}}$ : if  $\mathcal{A}(\beta)(G) = 1$ , for all  $G \in N$ , then  $\mathcal{A}(\beta)(F) = 1$ .

# **Observations**

- Every  $\mathcal{L}_3$ -tautology is also a two-valued tautology.
- Not every two-valued tautology is an L<sub>3</sub>-tautology.
   Example: F ∨ ¬F.

# Entailment

# $N \models F : \Leftrightarrow$ for all $\mathcal{A} \in \Sigma$ -alg and $\beta \in X \to U_{\mathcal{A}}$ : if $\mathcal{A}(\beta)(G) \in D$ , for all $G \in N$ , then $\mathcal{A}(\beta)(F) \in D$ .

 $N \models F : \Leftrightarrow$  for all  $\mathcal{A} \in \Sigma$ -alg and  $\beta \in X \to U_{\mathcal{A}}$ : if  $\mathcal{A}(\beta)(G) \in D$ , for all  $G \in N$ , then  $\mathcal{A}(\beta)(F) \in D$ .

**Goal:** Define a version of implication ' $\Rightarrow$ ' such that

 $F \models G \text{ iff } \models F \Rightarrow G$ 

# Weak implication

The logical operations  $\supset$  and  $\equiv$  are introduced as defined operations:

Weak implication

$$F \supset G := \sim F \lor G$$

Weak equivalence

$$F \equiv G := (F \supset G) \land (G \supset F)$$

| $F \supset G$ | 1 | и | 0 | $F \equiv G$ | 1 | и | 0 |
|---------------|---|---|---|--------------|---|---|---|
| 1             | 1 | и | 0 | 1            | 1 | и | 0 |
| и             | 1 | 1 | 1 | и            | u | 1 | 1 |
| 0             | 1 | 1 | 1 | 0            | 0 | 1 | 1 |

# **Strong implication**

The logical operations  $\rightarrow$  and  $\leftrightarrow$  are introduced as defined operations:

Strong implication

$$F \rightarrow G := \neg F \lor G$$

Strong equivalence

$$F \leftrightarrow G := (F \rightarrow G) \land (G \rightarrow F)$$

| $F \rightarrow G$ | 1 | и | 0 | $F \leftrightarrow G$ | 1 | и | 0 |
|-------------------|---|---|---|-----------------------|---|---|---|
| 1                 | 1 | и | 0 | 1                     | 1 | u | 0 |
| и                 | 1 | U | U | и                     | u | u | и |
| 0                 | 1 | 1 | 1 | 0                     | 0 | u | 1 |

# Comparisons

#### Implications

| $A \supset B$ | 1 | и | 0 |
|---------------|---|---|---|
| 1             | 1 | и | 0 |
| и             | 1 | 1 | 1 |
| 0             | 1 | 1 | 1 |

| $A \rightarrow B$ | 1 | и | 0 |
|-------------------|---|---|---|
| 1                 | 1 | и | 0 |
| и                 | 1 | и | и |
| 0                 | 1 | 1 | 1 |

#### Equivalences

| $A \equiv B$ | 1 | u | 0 | $A \leftrightarrow B$ | 1 | и | 0 |
|--------------|---|---|---|-----------------------|---|---|---|
| 1            | 1 | и | 0 | 1                     | 1 | и | 0 |
| u            | u | 1 | 1 | и                     | u | и | и |
| 0            | 0 | 1 | 1 | 0                     | 0 | и | 1 |

# Equivalences

| $A \supset B := \sim A \lor B$      | A  ightarrow B := -     | $\neg A \lor B$                                                                      |
|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------|
| $A\equiv B:=(A\supset B)\wedge (A)$ | $B \supset A$ )         | $A \leftrightarrow B := (A  ightarrow B) \wedge (B  ightarrow A)$                    |
| $Approx B:=(A\equiv B)\wedge (-$    | $\neg A \equiv \neg B)$ | $A \Leftrightarrow B := (A \leftrightarrow B) \land (\neg A \leftrightarrow \neg B)$ |
| A id $B:=~\sim\sim$ (A $pprox$ I    | 3)                      |                                                                                      |

| A | В | $A \equiv B$ | $A \leftrightarrow B$ | $A \approx B$ | $A \Leftrightarrow B$ | A id B |
|---|---|--------------|-----------------------|---------------|-----------------------|--------|
| 1 | 1 | 1            | 1                     | 1             | 1                     | 1      |
| 1 | и | и            | и                     | и             | и                     | 0      |
| 1 | 0 | 0            | 0                     | 0             | 0                     | 0      |
| и | 1 | и            | и                     | и             | и                     | 0      |
| и | и | 1            | и                     | 1             | и                     | 1      |
| u | 0 | 1            | и                     | и             | и                     | 0      |
| 0 | 1 | 0            | 0                     | 0             | 0                     | 0      |
| 0 | и | 1            | и                     | и             | и                     | 0      |
| 0 | 0 | 1            | 1                     | 1             | 1                     | 1      |

## Some $\mathcal{L}_3$ tautologies

- $\neg \neg A \text{ id } A$
- $\sim \sim A \equiv A$
- $\neg \sim A \equiv A$
- $\neg (A \lor B)$  id  $\neg A \land \neg B$  $\neg (A \land B)$  id  $\neg A \lor \neg B$

- $(A \land B) \lor C$  id  $(A \lor C) \land (B \lor C)$  $(A \lor B) \land C$  id  $(A \land C) \lor (B \land C)$
- $\sim (A \lor B) ext{ id } \sim A \land \sim B$  $\sim (A \land B) ext{ id } \sim A \lor \sim B$

 $\neg(\forall xA) \text{ id } \exists x \neg A$  $\neg(\exists xA) \text{ id } \forall x \neg A$   $\sim$  ( $\forall xA$ ) id  $\exists x \sim A$  $\sim$  ( $\exists xA$ ) id  $\forall x \sim A$  **Lemma.** Let *F* be a formula which does not contain the strong negation  $\neg$ . Then the following are equivalent:

(1) F is an  $\mathcal{L}_3$ -tautology.

(2) F is a two-valued tautology (negation is identified with  $\sim$ )

Proof.

" $\Rightarrow$ " Every  $\mathcal{L}_3$ -tautology is a 2-valued tautology (the restriction of the operators  $\lor, \land, \sim$  to  $\{0, 1\}$  coincides with the Boolean operations  $\lor, \land, \neg$ ).

" $\Leftarrow$ " Assume that *F* is a two-valued tautology. Let  $\mathcal{A}$  be an  $\mathcal{L}_3$ -structure and  $\beta : X \to \mathcal{A}$  be a valuation. We construct a two-valued structure  $\mathcal{A}'$ from  $\mathcal{A}$ , which agrees with  $\mathcal{A}$  except for the fact that whenever  $p_{\mathcal{A}}(\overline{x}) = u$ we define  $p_{\mathcal{A}'}(\overline{x}) = 0$ . Then  $\mathcal{A}'(\beta)(F) = 1$ . It can be proved that  $\mathcal{A}(\beta)(F) = 1 \Rightarrow \mathcal{A}'(\beta)(F) = 1$  $\mathcal{A}(\beta)(F) \in \{0, u\} \Rightarrow \mathcal{A}'(\beta)(F) = 0$ . Hence,  $\mathcal{A}(\beta)(F) = 1$ .

1. Let F be a formula which does not contain  $\sim$ . Then F is not a tautology.

1. Let *F* be a formula which does not contain  $\sim$ . Then *F* is not a tautology.

**Proof.** Take the valuation which maps all propositional variables to u.

1. Let *F* be a formula which does not contain  $\sim$ . Then *F* is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

- 2. Prove that for every term t,  $\forall xq(x) \supset q(x)[t/x]$  is an  $\mathcal{L}_3$ -tautology.
- 3. Show that  $\forall xq(x) \rightarrow q(x)[t/x]$  is not a tautology.

1. Let *F* be a formula which does not contain  $\sim$ . Then *F* is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

- 2. Prove that for every term t,  $\forall xq(x) \supset q(x)[t/x]$  is an  $\mathcal{L}_3$ -tautology.
- 3. Show that  $\forall xq(x) \rightarrow q(x)[t/x]$  is not a tautology. Solution.  $q \rightarrow q$  is not a tautology.

4. Which of the following statements are true? If  $F \equiv G$  is a tautology and F is a tautology then G is a tautology.

If  $F \equiv G$  is a tautology and F is satisfiable then G is satisfiable.

If  $F \equiv G$  is a tautology and F is a non-tautology then G is a non-tautology.

If  $F \equiv G$  is a tautology and F is two-valued then G is two-valued.

*F* is a non-tautology iff for every 3-valued structure,  $\mathcal{A}$  and every valuation  $\beta$ ,  $\mathcal{A}(\beta)(F) \neq 1$ .

4. Which of the following statements are true?
If F ≡ G is a tautology and F is a tautology then G is a tautology.
true
If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If  $F \equiv G$  is a tautology and F is a non-tautology then G is a non-tautology.

If  $F \equiv G$  is a tautology and F is two-valued then G is two-valued.

*F* is a non-tautology iff for every 3-valued structure,  $\mathcal{A}$  and every valuation  $\beta$ ,  $\mathcal{A}(\beta)(F) \neq 1$ .

4. Which of the following statements are true? If  $F \equiv G$  is a tautology and F is a tautology then G is a tautology. true

If  $F \equiv G$  is a tautology and F is satisfiable then G is satisfiable.

true

If  $F \equiv G$  is a tautology and F is a non-tautology then G is a non-tautology.

If  $F \equiv G$  is a tautology and F is two-valued then G is two-valued.

*F* is a non-tautology iff for every 3-valued structure,  $\mathcal{A}$  and every valuation  $\beta$ ,  $\mathcal{A}(\beta)(F) \neq 1$ .

4. Which of the following statements are true?

If  $F \equiv G$  is a tautology and F is a tautology then G is a tautology. true

If  $F \equiv G$  is a tautology and F is satisfiable then G is satisfiable.

true

If  $F \equiv G$  is a tautology and F is a non-tautology then G is a non-tautology.

true

If  $F \equiv G$  is a tautology and F is two-valued then G is two-valued.

*F* is a non-tautology iff for every 3-valued structure,  $\mathcal{A}$  and every valuation  $\beta$ ,  $\mathcal{A}(\beta)(F) \neq 1$ .

4. Which of the following statements are true?

If  $F \equiv G$  is a tautology and F is a tautology then G is a tautology. true

If  $F \equiv G$  is a tautology and F is satisfiable then G is satisfiable.

true

If  $F \equiv G$  is a tautology and F is a non-tautology then G is a non-tautology.

true

If  $F \equiv G$  is a tautology and F is two-valued then G is two-valued.

#### false

*F* is a non-tautology iff for every 3-valued structure,  $\mathcal{A}$  and every valuation  $\beta$ ,  $\mathcal{A}(\beta)(F) \neq 1$ .