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Exam

Question: Oral or written?

When?

1. Termin: first two weeks after end of lectures

(16.02.15-27.02.15)

2. Termin: March or April.

Doodle
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Last time

Many-valued Logics

History

Motivation

Examples.
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Many-valued logics

• Syntax

• Semantics

• Applications

• Proof theory / Methods for automated reasoning
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1 Syntax

• propositional variables

• logical operations
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Propositional Variables

Let Π be a set of propositional variables.

We use letters P, Q, R, S , to denote propositional variables.
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Logical operators

Let F be a set of logical operators.

These logical operators could be the usual ones from classical logic

{¬/1,∨/2,∧/2,→ /2,↔ /2}

but could also be other operations, with arbitrary arity.
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Propositional Formulas

FF
Π is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= c (c constant logical operator)

| P, P ∈ Π (atomic formula)

| f (F1, . . . ,Fn) (f ∈ F with arity n)

FF
Π is the smallest among all sets A with the properties:

• Every constant logical operator is in A.

• Every propositional variable is in A.

• If f ∈ F with arity n and F1, . . . ,Fn ∈ A

then also f (F1, . . . ,Fn) ∈ A.
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Example: Classical propositional logic

If F = {⊤/0,⊥ /0,¬/1,∨/2,∧/2,→ /2,↔ /2} then

FF
Π is the set of propositional formulas over Π, defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| P, P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)
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Semantics

We assume that a set M = {w1,w2, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M

(truth tables for the operations in F)

Example 1: If F consists of the Boolean operations and M = B2 = {0, 1}

then specifying the meaning of the logical operations means giving the

truth tables for the operations in F

¬B

0 1

1 0

∨B 0 1

0 0 1

1 1 1

∧B 0 1

0 0 0

1 0 1
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M

(truth tables for the operations in F)

Example 2: If F consists of the operations {∨,∧,¬} and M3 = {0, undef, 1}

then specifying the meaning of the logical operations means giving the

truth tables for these operations e.g.

F ¬M3
F

1 0

undef undef

0 1

∧M3
1 undef 0

1 1 undef 0

undef undef undef 0

0 0 0 0

∨M3
1 undef 0

1 1 1 1

undef 1 undef undef

0 1 undef 0
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

1. Meaning of the logical operators

f ∈ F with arity n 7→ fM : Mn → M

(truth tables for the operations in F)

Example 2: F = {∨,∧,∼} and M4 = {{}, {0}, {1}, {0, 1}}. The truth

tables for these operations:

F ∼M4
F

{ } { }

{ 0 } { 1 }

{ 1 } { 0 }

{0, 1 } {0, 1 }

∧M4
{ } {0 } { 1 } {0, 1}

{ } { } { 0 } { } { 0 }

{0 } { 0 } {0 } { 0 } { 0 }

{1 } { } { 0 } { 1 } { 0, 1 }

{0, 1 } { 0 } {0 } { 0, 1 } {0, 1}

∨M4
{ } {0 } { 1 } {0, 1}

{ } { } { } { 1 } { 1 }

{0 } { } {0 } { 1 } { 0, 1 }

{1 } { 1} { 0, 1 } { 1 } { 0, 1 }

{0, 1 } { 1 } {0, 1 } {0, 1 } { 1}
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

2. The meaning of the propositional variables

A Π-valuation is a map

A : Π → M.
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Semantics

We assume that a set M = {w1, . . . ,wm} of truth values is given.

We assume that a subset D ⊆ M of designated truth values is given.

3. Truth value of a formula in a valuation

Given an interpretation of the operation symbols (M, {fM}f∈F ) and

Π-valuation A : Π → M, the function A∗ : Σ-formulas → M is defined

inductively over the structure of F as follows:

A∗(c) = cM (for every constant operator c ∈ F)

A∗(P) = A(P)

A∗(f (F1, . . . ,Fn)) = fM(A∗(F1), . . . ,A
∗(Fn))

For simplicity, we write A instead of A∗.
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Example 1: Classical logic

Given a Π-valuation A : Π → B2 = {0, 1}, the function A∗ :

Σ-formulas → {0, 1} is defined inductively over the structure of F as

follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F ) = ¬bA
∗(F )

A∗(F ◦ G) = ◦B(A
∗(F ),A∗(G))

with ◦B the Boolean function associated with ◦ ∈ {∨,∧,→,↔}

(as described by the truth tables)
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Example 2: Logic of undefinedness

Given a Π-valuation A : Π → M3 = {0, undef, 1}, the function

A∗ : Σ-formulas → {0, undef, 1} is defined inductively over the

structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F ) = ¬M3(A
∗(F ))

A∗(F ∨ G) = A∗(F ) ∨M3 A
∗(G)

A∗(F ∧ G) = A∗(F ) ∧M3 A
∗(G)
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Example 3: Belnap’s 4-valued logic

Given a Π-valuation A : Π → M4 = {{}, {0}, {1}, {0, 1}}, the

function A∗ : Σ-formulas → {{}, {0}, {1}, {0, 1}} is defined

inductively over the structure of F as follows:

A∗(⊥) = {0}

A∗(⊤) = {1}

A∗(P) = A(P)

A∗(∼ F ) =∼M4 (A
∗(F ))

A∗(F ∨ G) = A∗(F ) ∨M4 A
∗(G)

A∗(F ∧ G) = A∗(F ) ∧M4 A
∗(G)
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Models, Validity, and Satisfiability

M = {w1, . . . ,wm} set of truth values

D ⊆ M set of designated truth values

A : Π → M.

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F ) ∈ D

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable iff there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).
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The logic L3

Set of truth values: M = {1, u, 0}.

Designated truth values: D = {1}.

Logical operators: F = {∨,∧,¬,∼}.
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Truth tables for the operators

∨ 0 u 1

0 0 u 1

u u u 1

1 1 1 1

∧ 0 u 1

0 0 0 0

u 0 u u

1 0 u 1

v(F ∧ G ) = min(v(F ), v(G ))

v(F ∨ G ) = max(v(F ), v(G ))

Under the assumption that 0 < u < 1.
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Truth tables for negations

A ¬A ∼ A ∼ ¬A ∼∼ A ¬¬A ¬ ∼ A

1 0 0 1 1 1 1

u u 1 1 0 u 0

0 1 1 0 0 0 0

Translation in natural language:

v(A) = 1 gdw. A is true

v(¬A) = 1 gdw. A is false

v(∼ A) = 1 gdw. A is not true

v(∼ ¬A) = 1 gdw. A is not false

21



First-order many-valued logic

M = {w1, . . . ,wm} set of truth values

D ⊆ M set of designated truth values.

1. Syntax

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols F , quantifiers

⇒ formulae
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Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written f /n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written p/m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R, S , to denote propositional variables.
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Variables, Terms

As in classical logic
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Atoms

Atoms (also called atomic formulas) over Σ are formed according

to this syntax:

A,B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

In what follows we will only consider variants of first-order logic

without equality.
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Logical Operations

F set of logical operations

Q = {Q1, . . . ,Qk} set of quantifiers
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First-Order Formulas

FΣ(X ) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= c (c ∈ F , constant)

| A (atomic formula)

| f (F1, . . . ,Fn) (f ∈ F with arity n)

| QxF (Q ∈ Q is a quantifier)
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Bound and Free Variables

In QxF , Q ∈ Q, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the

scope of a quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas

or sentential forms.

Formulas without variables are called ground.
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Semantics

M = {1, . . . ,m} set of truth values

D ⊆ M set of designated truth values.

Truth tables for the logical operations:

{fM : Mn → M |f /n ∈ F}

“Truth tables” for the quantifiers:

{QM : P(M) → M |Q ∈ Q}

Examples: If M = B2 = {0, 1} then

∀B2
: P({0, 1}) → {0, 1} ∀B2

(X ) = min(X )

∃B2 : P({0, 1}) → {0, 1} ∃B2(X ) = max(X )
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Structures

An M-valued Σ-algebra (Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f /n∈Ω, (pA : Um → M)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.

Normally, by abuse of notation, we will have A denote both the

algebra and its universe.

By Σ-AlgM we denote the class of all M-valued Σ-algebras.
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Assignments

Variable assignments β : X → A

and extensions to terms A(β) : TΣ → A as in classical logic.
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Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X ) → M is defined inductively as follows:

A(β)(c) = cM

A(β)(p(s1, . . . , sn)) = pA(A(β)(s1), . . . ,A(β)(sn)) ∈ M

A(β)(f (F1, . . . ,Fn)) = fM(A(β)(F1), . . . ,A(β)(Fn))

A(β)(QxF ) = QM({A(β[x 7→ a])(F ) | a ∈ U})
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First-order version of L3

M = {0, u, 1}

D = {1}

F = {∨,∧,¬,∼}

truth values as the propositional version

Q = {∀,∃}

∀M(S) =















1 if S = {1}

0 if 0 ∈ S

u otherwise

∃M(S) =















1 if 1 ∈ S

0 if S = {0}

u otherwise
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Interpretation of quantifiers

A(β)(∀xF (x)) = 1 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∀xF (x)) = 0 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise

A(β)(∃xF (x)) = 1 iff for some a ∈ UA, A(β[x 7→ a])(F (x)) = 1

A(β)(∃xF (x)) = 0 iff for all a ∈ UA, A(β[x 7→ a])(F (x)) = 0

A(β)(∀xF (x)) = u otherwise
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Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F ) ∈ D

F is valid in A (A is a model of F ):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid:

|= F :⇔ A |= F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

35



Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F ) ∈ D.
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Models, Validity, and Satisfiability in L3

F is valid in A under assignment β:

A,β |=3 F :⇔ A(β)(F ) = 1

F is valid in A (A is a model of F ):

A |=3 F :⇔ A,β |=3 F , for all β ∈ X → UA

F is valid (or is a tautology):

|=3 F :⇔ A |=3 F , for all A ∈ Σ-alg

F is called satisfiable iff there exist A and β such that A,β |=3 F .

Otherwise F is called unsatisfiable.
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Entailment in L3

N |=3 F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) = 1, for all G ∈ N, then A(β)(F ) = 1.
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Observations

• Every L3-tautology is also a two-valued tautology.

• Not every two-valued tautology is an L3-tautology.

Example: F ∨ ¬F .
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Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F ) ∈ D.
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Entailment

N |= F :⇔ for all A ∈ Σ-alg and β ∈ X → UA:

if A(β)(G) ∈ D, for all G ∈ N, then A(β)(F ) ∈ D.

Goal: Define a version of implication ’⇒’ such that

F |= G iff |= F ⇒ G

41



Weak implication

The logical operations ⊃ and ≡ are introduced as defined operations:

Weak implication

F ⊃ G :=∼ F ∨ G

Weak equivalence

F ≡ G := (F ⊃ G) ∧ (G ⊃ F )

F ⊃ G 1 u 0

1 1 u 0

u 1 1 1

0 1 1 1

F ≡ G 1 u 0

1 1 u 0

u u 1 1

0 0 1 1
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Strong implication

The logical operations → and ↔ are introduced as defined operations:

Strong implication

F → G := ¬F ∨ G

Strong equivalence

F ↔ G := (F → G) ∧ (G → F )

F → G 1 u 0

1 1 u 0

u 1 u u

0 1 1 1

F ↔ G 1 u 0

1 1 u 0

u u u u

0 0 u 1
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Comparisons

Implications

A ⊃ B 1 u 0

1 1 u 0

u 1 1 1

0 1 1 1

A → B 1 u 0

1 1 u 0

u 1 u u

0 1 1 1

Equivalences

A ≡ B 1 u 0

1 1 u 0

u u 1 1

0 0 1 1

A ↔ B 1 u 0

1 1 u 0

u u u u

0 0 u 1
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Equivalences

A ⊃ B := ∼ A ∨ B A → B := ¬A ∨ B

A ≡ B := (A ⊃ B) ∧ (B ⊃ A) A ↔ B := (A → B) ∧ (B → A)

A ≈ B := (A ≡ B) ∧ (¬A ≡ ¬B) A ⇔ B := (A ↔ B) ∧ (¬A ↔ ¬B)

A id B := ∼∼ (A ≈ B)

A B A ≡ B A ↔ B A ≈ B A ⇔ B A id B

1 1 1 1 1 1 1

1 u u u u u 0

1 0 0 0 0 0 0

u 1 u u u u 0

u u 1 u 1 u 1

u 0 1 u u u 0

0 1 0 0 0 0 0

0 u 1 u u u 0

0 0 1 1 1 1 1
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Some L3 tautologies

¬¬A id A (A ∧ B) ∨ C id (A ∨ C) ∧ (B ∨ C)

∼∼ A ≡ A (A ∨ B) ∧ C id (A ∧ C) ∨ (B ∧ C)

¬ ∼ A ≡ A

¬(A ∨ B) id ¬A ∧ ¬B ∼ (A ∨ B) id ∼ A∧ ∼ B

¬(A ∧ B) id ¬A ∨ ¬B ∼ (A ∧ B) id ∼ A∨ ∼ B

¬(∀xA) id ∃x¬A ∼ (∀xA) id ∃x ∼ A

¬(∃xA) id ∀x¬A ∼ (∃xA) id ∀x ∼ A
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No occurrence of ¬

Lemma. Let F be a formula which does not contain the strong negation ¬.

Then the following are equivalent:

(1) F is an L3-tautology.

(2) F is a two-valued tautology (negation is identified with ∼)

Proof.

“⇒” Every L3-tautology is a 2-valued tautology (the restriction of the

operators ∨,∧,∼ to {0, 1} coincides with the Boolean operations ∨,∧,¬).

“⇐” Assume that F is a two-valued tautology. Let A be an L3-structure

and β : X → A be a valuation. We construct a two-valued structure A′

from A, which agrees with A except for the fact that whenever pA(x) = u

we define pA′(x) = 0. Then A′(β)(F ) = 1. It can be proved that

A(β)(F ) = 1 ⇒ A′(β)(F ) = 1

A(β)(F ) ∈ {0, u} ⇒ A′(β)(F ) = 0.

Hence, A(β)(F ) = 1.
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Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.
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Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.
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Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

2. Prove that for every term t, ∀xq(x) ⊃ q(x)[t/x] is an L3-tautology.

3. Show that ∀xq(x) → q(x)[t/x] is not a tautology.
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Exercises

1. Let F be a formula which does not contain ∼.

Then F is not a tautology.

Proof. Take the valuation which maps all propositional variables to u.

2. Prove that for every term t, ∀xq(x) ⊃ q(x)[t/x] is an L3-tautology.

3. Show that ∀xq(x) → q(x)[t/x] is not a tautology.

Solution. q → q is not a tautology.
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Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F ) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F ) ∈

{0, 1}.
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Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F ) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F ) ∈

{0, 1}.
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Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F ) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F ) ∈

{0, 1}.
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Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

true

If F ≡ G is a tautology and F is two-valued then G is two-valued.

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F ) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F ) ∈

{0, 1}.
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Exercises

4. Which of the following statements are true?

If F ≡ G is a tautology and F is a tautology then G is a tautology.

true

If F ≡ G is a tautology and F is satisfiable then G is satisfiable.

true

If F ≡ G is a tautology and F is a non-tautology then G is a

non-tautology.

true

If F ≡ G is a tautology and F is two-valued then G is two-valued.

false

F is a non-tautology iff for every 3-valued structure, A and every valuation

β,A(β)(F ) 6= 1.

F is two-valued iff for every 3-valued structure, A and every valuation β,A(β)(F ) ∈

{0, 1}.
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