Non-classical logics

Lecture 6: Many-valued logics (3)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

• Many-valued logic (finitely-valued; infinitely-valued)

History and Motivation Syntax

Semantics

Today:

Functional completeness

Automated reasoning:

Tableaux

Resolution

Definition A family $(M, \{f_M : M^n \to M\}_{f \in \mathcal{F}})$ is called functionally complete if every function $g : M^m \to M$ can be expressed in terms of the functions $\{f_M : M^n \to M \mid f \in \mathcal{F}\}$.

Definition A many-valued logic with finite set of truth values M and logical operators \mathcal{F} is called functionally complete if for every function $g: M^m \to M$ there exists a propositional formula F of the logic such that for every $\mathcal{A}: \Pi \to M$

 $g(\mathcal{A}(x_1),\ldots,\mathcal{A}(x_m))=\mathcal{A}(F).$

Example: Propositional logic

F :	: $(P \lor Q) \land ((\neg P \land Q) \lor R)$						
Р	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

4

Example: Propositional logic

F :	$(P \lor Q) \land ((\neg P \land Q) \lor R)$							
Р	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F	
0	0	0	0	1	0	0	0	
0	0	1	0	1	0	1	0	
0	1	0	1	1	1	1	1	
0	1	1	1	1	1	1	1	
1	0	0	1	0	0	0	0	
1	0	1	1	0	0	1	1	
1	1	0	1	0	0	0	0	
1	1	1	1	0	0	1	1	

5

Example: Propositional logic

F :	$(P \lor Q) \land ((\neg P \land Q) \lor R)$						
Ρ	Q	R	$(P \lor Q)$	$\neg P$	$(\neg P \land Q)$	$((\neg P \land Q) \lor R)$	F
0	0	0	0	1	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0
1	0	1	1	0	0	1	1
1	1	0	1	0	0	0	0
1	1	1	1	0	0	1	1

 $(\mathsf{D} \setminus (\mathsf{O}) \setminus (\mathsf{O}) \setminus (\mathsf{O}) \setminus \mathsf{O})$

DNF: $(\neg P \land Q \land \neg R) \lor (\neg P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$

Theorem. Propositional logic is functionally complete.

Proof. For every
$$g : \{0,1\}^m \to \{0,1\}$$
 let:
 $F = \bigvee_{(a_1,\ldots,a_m)\in\{0,1\}} (c_{g(a_1,\ldots,a_m)} \wedge P_1^{a_1} \wedge \cdots \wedge P_m^{a_m})$
where $P^a = \begin{cases} P & \text{if } a = 1 \\ \neg P & \text{if } a = 0 \end{cases}$
(Then clearly $\mathcal{A}(P)^a = 1$ iff $\mathcal{A}(P) = a$, i.e. $1^1 = 0^0 = 1; 1^0 = 0^1 = 0$.)
It can be easily checked that for every $\mathcal{A} : \{P_1,\ldots,P_m\} \to \{0,1\}$ we have:
 $g(\mathcal{A}(P_1),\ldots,\mathcal{A}(P_m)) = \mathcal{A}(F)$.

Theorem. The logic \mathcal{L}_3 is not functionally complete.

Proof. If *F* is a formula with *n* propositional variables in the language of \mathcal{L}_3 with operators $\{\neg, \sim, \lor, \land\}$ then for the valuation $\mathcal{A} : \Pi = \{P_1, \ldots, P_n\} \rightarrow \{0, u, 1\}$ with $\mathcal{A}(P_i) = 1$ for all *i* we have: $\mathcal{A}(F) \neq u$.

Therefore: If g is a function which takes value u when the arguments are in $\{0, 1\}$ then there is no formula F such that $g(\mathcal{A}(P_1), \ldots, \mathcal{A}(P_n)) = \mathcal{A}(F)$ for all $\mathcal{A} : \Pi \to \{0, u, 1\}$.

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

A simple criterion for functional completeness

Theorem. An *m*-valued logic with set of truth values $M = \{w_1, \ldots, w_m\}$ and logical operations \mathcal{F} with truth tables $\{f_M \mid f \in \mathcal{F}\}$ in which the functions:

- $\min(x, y)$, $\max(x, y)$,
- $J_k(x) = \begin{cases} 1 \text{ (maximal element)} & \text{if } k = x \\ 0 \text{ (minimal element)} & \text{otherwise} \end{cases}$
- all constant functions $c_k^n(x_1, \ldots, x_n) = k$

can be expressed in terms of the functions $\{f_M \mid f \in \mathcal{F}\}$ is functionally complete.

Proof. Let $g : M^n \to M$. $g(x_1, ..., x_n) =$ $\max\{\min\{c_{g(a_1,...,a_n)}^n, J_{a_1}(x_1), ..., J_{a_n}(x_n)\} \mid (a_1, ..., a_n) \in M^n\}$

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:

$$J_0(x) = \sim \neg x$$

 $J_u(x) = \sim x \land \sim \neg x$
 $J_1(x) = \sim x$

x	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

• We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:

$J_0(x) = \sim \sim \neg x$
$J_u(x) = \sim x \land \sim \neg x$
$J_1(x) = \sim \sim x$

• min and max are \land resp. \lor .

x	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

Functional completeness of \mathcal{L}_3^+

Theorem. \mathcal{L}_3^+ , obtained from \mathcal{L}_3 by adding one more constant operation u (which takes always value u) is functionally complete.

Proof

- We define J_1 , J_u , J_0 : $\{0, u, 1\} \rightarrow \{0, u, 1\}$ as follows:
 - $egin{aligned} J_0(x) =& \sim \neg x \ J_u(x) =& \sim \land \land \neg \neg x \ J_1(x) =& \sim \sim x \end{aligned}$
- min and max are \land resp. \lor .
- The constant operation u is in the language.
- The constant functions 0 and 1 are definable as follows:

 $1(x) = \sim x \lor \neg \sim x$ $0(x) = \sim (\sim x \lor \neg \sim x)$

x	$J_0(x)$	$J_u(x)$	$J_1(x)$
0	1	0	0
и	0	1	0
1	0	0	1

Example

Let g the following binary function:

g	0	и	1
0	0	и	0
и	и	и	и
1	0	и	0

$$\begin{array}{ll} g(x_1, x_2) = & (u \wedge J_0(x_1) \wedge J_u(x_2)) \vee (u \wedge J_u(x_1) \wedge J_0(x_2)) \vee \\ & (u \wedge J_u(x_1) \wedge J_u(x_2)) \vee (u \wedge J_u(x_1) \wedge J_1(x_2)) \vee (u \wedge J_1(x_1) \wedge J_u(x_2)) \\ = & (u \wedge \sim \sim \neg x_1 \wedge \sim x_2 \wedge \sim \neg x_2) \vee (u \wedge \sim x_1 \wedge \sim \neg x_1 \wedge \sim \sim \neg x_2) \vee \\ & (u \wedge \sim x_1 \wedge \sim \neg x_1 \wedge \sim x_2 \wedge \sim \neg x_2) \vee \\ & (u \wedge \sim x_1 \wedge \sim \neg x_1 \wedge \sim x_2 \wedge \sim \neg x_2) \vee \\ & (u \wedge \sim x_1 \wedge \sim x_2 \wedge \sim \neg x_2) \vee \end{array}$$

)

Post logics

$$egin{aligned} &P_m = \{0, 1, \ldots, m-1\} \ &\mathcal{F} = \{ee, s\} \ ⅇ_P(a, b) = \max(a, b) \ &s_P(a) = a-1 \pmod{m} \end{aligned}$$

Post logics

Theorem. The Post logics are functionally complete.

Proof:

- 1. max is \vee_P
- 2. The functions $x k \pmod{m}$ and $x + k \pmod{m}$ are definable $x - k = \underbrace{s(s(...s(x)))}_{k \text{ times}} \pmod{m}$ $x + k = x - (m - k) \pmod{m}, \ 0 < k < m.$ x + 0 = x
- 3. $\min(x, y) = m 1 \max(m 1 x, m 1 y)$

Theorem. The Post logics are functionally complete.

Proof:

4. All constants are definable

$$T(x) = max\{x, x - 1, ..., x - m + 1\}$$

 $T(x) = m - 1$ for all x.

The other constants are definable using s iterated 1, 2, ..., m-1 times.

5.
$$T_k(x) = \max(\max[T(x) - 1, x] - m + 1, x + k) - m + 1$$
 has the
property that $T_k(x) = \begin{cases} 0 & \text{if } x \neq m - 1 \\ k & \text{if } x = m - 1 \end{cases}$
Then $J_k(x) = \max(T_{J_k(0)}(x + m - 1), \dots, T_{J_k(m-2)}(x + 1), T_{J_k(m-1)}(x)).$

in general, if $g(i) = k_i$ then $g(x) = \max(T_{k_{m-1}}(x), T_{k_{m-2}}(x+1), \dots, T_{k_0}(x+(m-1)))$

Proof Calculi and Automated reasoning

- Axiom systems \mapsto proofs
- Tableau calculi

. . .

• Resolution calculi

Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

 $(F_1, \ldots, F_n, F_{n+1}), n \ge 0,$

called inferences or inference rules, and written

Inferences with 0 premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One also considers inference systems over other data structures.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

(i)
$$F_k = F$$
,

(ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Soundness and Completeness

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F : \Leftrightarrow$ there exists a proof Γ of F from N.

 Γ is called sound : \Leftrightarrow

$$\frac{F_1 \dots F_n}{F} \in \Gamma \quad \Rightarrow \quad F_1, \dots, F_n \models F$$

 $\Gamma \text{ is called complete } :\Leftrightarrow$

$$N \models F \Rightarrow N \vdash_{\Gamma} F$$

 Γ is called refutationally complete $:\Leftrightarrow$

$$N \models \bot \Rightarrow N \vdash_{\Gamma} \bot$$

Axiom systems

For \mathcal{L}_3 : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):

$$A_{1} : (A \Rightarrow (B \Rightarrow A))$$

$$A_{2} : (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

$$A_{3} : (\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$$

$$A_{4} : ((A \Rightarrow \neg A) \Rightarrow A) \Rightarrow A$$
Inference rules:

Moduls Ponens:
$$\frac{A \qquad A \Rightarrow B}{B}$$

Axiom systems

For \mathcal{L}_3 : Wajsberg proposed an axiom system (based on connectors \neg and \Rightarrow):

 $x \wedge y = x \cdot (x \Rightarrow y),$ where $x \cdot y = \neg (x \Rightarrow \neg y)$

Proof calculi

Main disadvantage:

New proof calculus for each many-valued logic.

Goal:

Uniform methods for checking validity/satisfiability of formulae.

Classical logic:

- **Task:** prove that *F* is valid **Method:** prove that $\neg F$ is unsatisfiable:
- assume $\neg F$; derive a contradiction.

Classical logic:

Task: prove that F is valid **Method:** prove that $\neg F$ is unsatisfiable: – assume $\neg F$; derive a contradiction.

Many-valued logic:

Task: prove that F is valid (i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β) **Method:** prove that it is not possible that $\mathcal{A}(\beta) \in M \setminus D$:

- assume $F \in M \setminus D$; derive a contradiction.

Classical logic:

Task: prove that F is valid **Method:** prove that $\neg F$ is unsatisfiable: – assume $\neg F$; derive a contradiction.

Many-valued logic:

Task: prove that *F* is valid

(i.e. $\mathcal{A}(\beta)(F) \in D$ for all \mathcal{A}, β)

Method: prove that it is not possible that $\mathcal{A}(\beta) \in M \setminus D$:

- assume $F \in M \setminus D$; derive a contradiction.

Problem: How do we express the fact that $F \in M \setminus D$

1)
$$\bigvee_{v \in M \setminus D} (F = v)$$

2) more economical notation?

Idea: Use signed formulae

- F^{ν} , where F is a formula and $v \in M$ $\mathcal{A}, \beta \models F^{\nu}$ iff $\mathcal{A}(\beta)(F) = v$.
- S:F, where F is a formula and $\emptyset \neq S \subseteq M$ (set of truth values) $\mathcal{A}, \beta \models S:F$ iff $\mathcal{A}(\beta)(F) \in S$.

For every $\emptyset \neq S \subseteq M$ and every logical operator f we have a tableau rule:

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(A_1, ..., A_n)$ is a finite extended tableau containing only formulae of the form $S_i:F_i$.

Informally: Exhaustive list of conditions which ensure that the value of $f(F_1, \ldots, F_n)$ is in S.

Example

Let L_5 be the 5-valued Łukasiewicz logic with $M = \{0, 1, 2, 3, 4\}$.

\Rightarrow	0	1	2	3	4
0	4	4	4	4	4
1	3	4	4	4	4
2	2	3	4	4	4
3	1	2	3	4	4
4	0	1	2	3	4

 $\{4\}(p \Rightarrow q)$

{0} <i>p</i>	{0,1} <i>p</i>	{0,1,2} <i>p</i>	$\{0, 1, 2, 3\}p$	
	$\{1, 2, 3, 4\}q$	$\{2, 3, 4\}q$	{3,4} <i>q</i>	{4} <i>q</i>

Labelling sets

Let $V \subseteq \mathcal{P}(M)$ be the set of all sets of truth values which are used for labelling the formulae.

Remarks:

- 1. In general not all subsets of truth values are used, so $V \neq \mathcal{P}(M)$.
- 2. Proof by contradiction:

Goal: Prove that F is valid, i.e. $\mathcal{A}(\beta)(F) \in D$. We start from $(M \setminus D)$: F and build the tableau \Rightarrow We assume that $(M \setminus D) \in V$.

3. Need to make sure that the new signs introduced by the tableau rules are in V.

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(F_1, \ldots, F_n)$ is a finite extended tableau containing only formulae of the form $S_i:F_i$.

$$S:f(F_1, ..., F_n)$$

$$S_{11}:C_{11} = S_{21}:C_{21} = ... = S_{q1}:C_{q1}$$

$$... = ...$$

$$S_{1k_1}:C_{1k_1} = S_{2k_2}:C_{2k_2} = ... = S_{qk'}:C_{qk'}$$

where $C_{i,j} \in \{F_1, \ldots, F_n\}$

$$\frac{S:f(F_1,\ldots,F_n)}{T(F_1,\ldots,F_n)}$$

where $T(F_1, \ldots, F_n)$ is a finite extended tableau containing only formulae of the form $S_i:F_i$.

where $C_{i,j} \in \{F_1, \ldots, F_n\}$

For every \mathcal{A}, β : $\mathcal{A}(\beta)(F) \in S$ then there exists *i* such that for all *j*: $\mathcal{A}(\beta)(C_{ij}) \in S_{ij}$.

$$S:f(F_1, ..., F_n)$$

$$S_{11}:C_{11} \qquad S_{21}:C_{21} \qquad ... \qquad S_{q1}:C_{q1}$$

$$... \qquad ... \qquad ...$$

$$S_{1k_1}:C_{1k_1} \qquad S_{2k_2}:C_{2k_2} \qquad S_{qk'}:C_{qk'}$$

where $C_{i,j} \in \{F_1, \ldots, F_n\}$

Every model of $S:f(F_1, \ldots, F_n)$ is also a model of the formulae on one of the branches

If there is no expansion rule for a premise: premise is unsatisfiable $(\mathcal{A}(\beta)(F) \notin S \text{ for all } \mathcal{A}, \beta).$

If $f(F_1, \ldots, F_n)$ satisfiable then there is an expansion rule.

$\{1\}A\wedge B$	$\{u\}A \wedge B$	$\{0\}A \wedge B$	$\{u,0\}A\wedge B$
$\{1\}A$	$\{u\}A \mid \{u\}B \mid \{u\}A$	$\{0\}A \{0\}B$	${u,0}A {u,0}B$
$\{1\}B$	$\{1\}B \mid \{1\}A \mid \{u\}B$		

$\{1\}A \lor B$	$\{u\}A \lor B$			$\{0\}A \lor B$
$\{1\}A \{1\}B$	${u,0}A$		$\{u\}A$	{0} <i>A</i>
	{ <i>u</i> } <i>B</i>		{ <i>u</i> ,0} <i>B</i>	{0} <i>B</i>
		{ <i>u</i> ,	0}A	

$\{1\}\sim A$	$\{0\} \sim A$	$\{u\} \sim A$	$\{u,0\}\sim A$
{ <i>u</i> ,0} <i>A</i>	$\{1\}A$		$\{1\}A$
$\{1\} eg A$	$\{0\} eg A$	$\{u\} \neg A$	$\{u, 0\} \neg A$
{0} <i>A</i>	$\overline{\{1\}A}$	$\{u\}A$	$\{1\}A \{u\}A$

$\{1\}A \supset B$	$\{0\}A \supset B$	$\{u\}A \supset B$	$\{u, 0\}A \supset B$
${u,0}A {1}B$	$\{1\}A$	$\{1\}A$	$\{1\}A$
	$\{0\}B$	$\{u\}B$	{ <i>u</i> ,0} <i>B</i>

$$\frac{\{1\} \exists x A(x)}{\{1\} A(f(y_1, \dots, y_k))} \quad \frac{\{0\} \exists x A(x)}{\{0\} A(z)} \quad \frac{\{u\} \exists x A(x)}{\{u\} A(f(y_1, \dots, y_k))} \quad \frac{\{u, 0\} \exists x A(x)}{\{u, 0\} A(z)} \\ \quad \{u, 0\} A(z) \quad \{u, 0\} A$$

where

- z is a new free variable
- y_1, \ldots, y_k are the free variables in $\exists x A(x)$
- *f* is a new function symbol

where

-

- z is a new free variable
- y_1, \ldots, y_k are the free variables in $\forall x A(x)$
- *f* is a new function symbol

Tableaux

A tableau for a finite set For of signed formulae is constructed as follows:

- A linear tree, in which each formula in For occurs once is a tableau.
- Let T be a tableau for For und P a path in T, which contains a signed formula S:F.

Assume that there exists a tableau rule with premise S:F. If $E_1, ..., E_n$ are the possible conclusions of the tableau rule (under the corresponding restrictions in case of quantified formulae) then T is exteded with n linear subtrees containing the signed formulae from E_i (respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

Closed Tableaux

A path P in a tableau T is closed if:

• *P* contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_1:F_1, \ldots, S_k:F_k$ occurring of the branch such that:

$$- F_1 \sigma = \cdots = F_n \sigma$$

-
$$S_1 \cap \cdots \cap S_n = \emptyset$$
, or

- *P* contains a signed formula *S*:*F* for which no expansion rule can be applied and *F* is not atomic.
- A path which is not closed is called open.

Closed Tableaux

A path P in a tableau T is closed if:

- *P* contains complementary formulae, i.e. there exists a substitution σ and there exists signed formulae $S_1:F_1, \ldots, S_k:F_k$ occurring of the branch such that:
 - $F_1 \sigma = \cdots = F_n \sigma$
 - $S_1 \cap \cdots \cap S_n = \emptyset$, or
- *P* contains a signed formula *S*:*F* for which no expansion rule can be applied and *F* is not atomic.
- A path which is not closed is called open.

A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

Given an signature Σ , by Σ^{sko} we denote the result of adding infinitely many new Skolem function symbols which we may use in the rules for quantifiers.

Let \mathcal{A} be a Σ^{sko} -interpretation, \mathcal{T} a tableau, and β a variable assignment over \mathcal{A} .

T is called (\mathcal{A}, β) -valid, if there is a path P_{β} in T such that $\mathcal{A}, \beta \models F$, for each formula F on P_{β} .

T is called satisfiable if there exists a structure \mathcal{A} such that for each assignment β the tableau T is (\mathcal{A}, β) -valid. (This implies that we may choose P_{β} depending on β .) **Theorem** (Soundness of the tableau calculus for \mathcal{L}_3) Let F be a \mathcal{L}_3 -formula without free variables. If there exists a closed tableau T for $\{U, F\}F$, then F is an \mathcal{L}_3 -tautology (it is valid).

Theorem (Refutational completeness)

Let F be a \mathcal{L}_3 -tautology. Then we can construct a closed tableau for $\{U, F\}F$. (The order in which we apply the expansion rules is not important).