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History and Motivation
Syntax
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Functional completeness

Definition A family (M,{fyy : M" — M}fcr) is called functionally
complete if every function g : M™ — M can be expressed in terms of the

functions {fy; : M" — M | f € F}.

Definition A many-valued logic with finite set of truth values M and
logical operators F is called functionally complete if for every function
g : M™ — M there exists a propositional formula F of the logic such that

forevery A: Il - M
g(A(x1), ..., A(xm)) = A(F).



Example: Propositional logic

F: (PVQ)AN((-PANQ)VR)
Pl Q|R|(PVQR)|-P|(=PAQ) | (-PAQ)YVR)|F
00| O 0 1 0 0 0
0|01 0 1 0 1 0
o110 1 1 1 1 1
0111 1 1 1 1 1
1]01|0 1 0 0 0 0
1|01 1 0 0 1 1
1|10 1 0 0 0 0
1] 1|1 1 0 0 1 1




Example: Propositional logic
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Example: Propositional logic

F: (PVQA(-PAQ)VR)

Plol|lrR|l(PPve)| -P| (=PrQ) | (-PAQ)VR) | F
olo0]o 0 1 0 0 0
0|01 0 1 0 1 0
o| 1o 1 1 1 1 1
o 1]1 1 1 1 1 1
1|0 o 1 0 0 0 0
10 |1 1 0 0 1 1
1|10 1 0 0 0 0
1] 1|1 1 0 0 1 1

DNF: (-PAQA-R)V(-PAQAR)V(PAN-QAR)V(PANQAR)



Functional completeness

Theorem. Propositional logic is functionally complete.

Proof. For every g : {0,1}™ — {0, 1} let:

P fa=1
- P ifa:O

where P? =

(Then clearly A(P)? =1 iff A(P)=a, ie. 1!=0=1;19=0!=0)
It can be easily checked that for every A : {P1,...,Pmn} — {0,1} we have:
g(A(P1), ..., A(Pm)) = A(F).



Functional completeness

Theorem. The logic L3 is not functionally complete.

Proof. If F is a formula with n propositional variables in the language of L3
with operators {—, ~, V, A} then for the valuation A: M= {Py,..., Py} —
{0, u, 1} with A(P;) =1 for all i we have: A(F) # u.

Therefore: If g is a function which takes value u when the arguments are in
{0, 1} then there is no formula F such that g(A(P1),..., A(Pn)) = A(F)
forall A: M — {0, u,1}.

Theorem. /L;r, obtained from L3 by adding one more constant operation u
(which takes always value u) is functionally complete.



A simple criterion for functional completeness

.

Theorem. An m-valued logic with set of truth values M = {wy, ..., wn} and
logical operations F with truth tables {fy, | f € F} in which the functions:

e min(x,y), max(x, y),

1 (maximal element) if k =x
[ Jk(X) — _

O (minimal element) otherwise
e all constant functions ¢/(x1,...,xn) = k

can be expressed in terms of the functions {fy, | f € F}
is functionally complete.

~N

Proof. Let g : M" — M.

g(x1,...,xn) =

I n
max{mln{cg(al

oy Ja (X)), oo s Jap(xn) ) | (a1, ... an) € M"}



Functional completeness of L7

Theorem. /L;r, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

e We define J1, Jy, Jo : {0,u,1} — {0, u, 1} as follows:

JO(X) =~~~ X
Ju(x) =~ XA\ ~ —x

J1(x) =~~~ x

x | Jo(x) | Ju(x) | S(x)
0|1 0 0
ulO 1 0
11|10 0 1
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Functional completeness of L7

Theorem. /L;r, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof

e We define J1, Jy, Jo : {0,u,1} — {0, u, 1} as follows:

JO (X) =~~~ X

Ju(x) =~ XA\ ~ —x

J1(x) =~~~ x

x | Jo(x) | Ju(x) | S(x)
0|1 0 0
ulO 1 0
11|10 0 1

e min and max are A resp. V.
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Functional completeness of L7

Theorem. /L;r, obtained from L3 by adding one more constant operation u

(which takes always value u) is functionally complete.

Proof
e We define J1, J,, Jo : {0, u,1} — {0, u, 1} as follow

JO (X) =~ X

Ju(x) =~ xA\ ~ —x

J1(x) =~~~ x

~ Jo(x) | Ju(x) | h(x)
1 0 0
0 1 0
0 0 1

e min and max are A resp. V.

e The constant operation u is in the language.

e [he constant functions 0 and 1 are definable as follows:

1(x) =~ xV -~ x
O(x) =~ (~ xV 2 ~ x)

12




Example

Let g the following binary function:

gl 0|ul|l
OO0 | u|O
ul| ulul| u
1 0| u]|O
g(Xl,Xz) —

(uN Jo(x1) AN Ju(x2)) V (uA Jdy(x1) A Jo(x2))V

(uNJu(x1) AJu(x2)) V (uAJdy(x1) AJ(x2)) V (u A Ji(x1) A Ju(x2)
(UN ~~ =X A ~ oA ~ =x0) V (UA ~ XA ~ XA\~ —xo)V

(UN ~ X1\ ~ X1 A ~ Xxo A ~ —x0)V

(UN ~ X1\ ~ X A\~ x0)V

(u/\ ~r X1\~ X\~ —lX2)

13



Post logics

Pmn=14{0,1,..., m—1}
F ={V,s}
Vp(a, b) = max(a, b)

sp(a) =a—1 (mod m)

14



Post logics

Theorem. The Post logics are functionally complete.
Proof:

1. maxis Vp
2. The functions x — k (mod m) and x 4+ k (mod m) are definable
x —k = s(s(...s(x))) (mod m)

N——
k times
x+k=x—(m—k) (modm), 0 < k< m.
x+0=x

3. min(x,y)=m—1—max(m—1—x,m—1—y)

15



Post logics

Theorem. The Post logics are functionally complete.
Proof:
4. All constants are definable
T(x) =max{x,x—1,...,x—m+ 1}
T(x) = m—1 for all x.
The other constants are definable using s iterated 1,2,..., m — 1 times.
5. Ti(x) = max(max[T(x) —1,x] — m+1,x+ k) — m+ 1 has the
0 ifx#Fm-1
k ifx=m-1
Then Ji(x) = max(T, o) (x+m—1),..., T (m_o)(x+1), Ty (m-1)(X)).

property that T,(x) =

in general, if g(i)=k; then g(x)=max(Tx__,(x), Tx, _,(x+1),..., Tiy (x+(m—1)))
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Proof Calculi and Automated reasoning

e Axiom systems — proofs
e Tableau calculi

e Resolution calculi

17



Proof Calculi/Inference systems and proofs

Inference systems ' (proof calculi) are sets of tuples
(F11°°°1Fn1Fn—|-1)1 nZO,

called inferences or inference rules, and written

premises

N\

Fi ... Fj

Fn—l—l
——

conclusion

Inferences with O premises are also called axioms.

Clausal inference system: premises and conclusions are clauses. One
also considers inference systems over other data structures.



Proofs

A proof in I of a formula F from a a set of formulas N (called

assumptions) is a sequence Fi, ..., Fx of formulas where
(i) Fo=F,

(i) forall 1 < i < k: F; € N, or else there exists an inference
(Fi,, ..., Fi,. , Fi) in I, such that 0 < j; < i, for 1 < j < n;.

19



Soundness and Completeness

Provability Fr of F from N in I:
N Hr F & there exists a proof [ of F from N.

[ is called sound &

Fi ... F,
F

[ is called complete &

N|=F = N F

[ is called refutationally complete &

NEL = Nbirl

el = FA,....F,=F

20



Axiom systems

For L£3: Wajsberg proposed an axiom system
(based on connectors — and =):

(A= (B=A))
Ab:(A=B)=((B=C)= (A= (0))
(A= -B)=(B=A)

Ay (A= -A) = A)= A

Inference rules:

A A= B
Moduls Ponens:

21



Axiom systems

For £3: Wajsberg proposed an axiom system
(based on connectors — and =):

XNy =x-(x=y),

where x - y = =(x = —y)

22



Proof calculi

Main disadvantage:
New proof calculus for each many-valued logic.

Goal:
Uniform methods for checking validity /satisfiability of formulae.

23



Automated reasoning

Classical logic:
Task: prove that F is valid

Method: prove that —F is unsatisfiable:

— assume —F: derive a contradiction.

24



Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that —F is unsatisfiable:
— assume —F: derive a contradiction.

Many-valued logic:
Task: prove that F is valid
(i.e. A(B)(F) € D for all A, p)
Method: prove that it is not possible that A(8) € M\D:

— assume F € M\ D; derive a contradiction.

25



Automated reasoning

Classical logic:
Task: prove that F is valid
Method: prove that —F is unsatisfiable:
— assume —F: derive a contradiction.

Many-valued logic:
Task: prove that F is valid
(i.e. A(B)(F) € D for all A, )

Method: prove that it is not possible that A(8) € M\D:

— assume F € M\ D; derive a contradiction.

Problem: How do we express the fact that F € M\D

1) \/ve/\/l\D(F = v)

2) more economical notation?

26



Automated reasoning

Idea: Use signed formulae

e [V, where F is a formulaandve M
A, 8= FYiff A(B)(F)=v.

e S:F, where F is a formula and
D #S C M (set of truth values)
A, 8= S:Fiff A(B)(F)eS.

27



Semantic tableaux

For every ) # S C M and every logical operator f we have a
tableau rule:

where T(Aq, ..., A,) is a finite extended tableau containing only
formulae of the form S;:F;.

Informally: Exhaustive list of conditions which ensure that the
value of f(Fy,..., F,)isin S.

28



Example

Let t5 be the 5-valued tukasiewicz logic with M = {0,1,2,3,4}.

=

1

AWML |O

O, |IN|[W|PH]| O

NfW|[PH|P]PH]DN

= INNDIWD D

S R LN E IR
R ELEIIES

{4}(p = q)

{0}p

{0,1}p
{1,2,3,4}q

{0,1,2}p
{2,3,4}q

{0,1,2,3}p
{3,4}q

{4}q
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Labelling sets

Let V C P(M) be the set of all sets of truth values which are used for
labelling the formulae.

Remarks:

1. In general not all subsets of truth values are used, so V # P(M).

2. Proof by contradiction:
Goal: Prove that F is valid, i.e. A(B)(F) € D.
We start from (M\D):F and build the tableau
= We assume that (M\D) € V.

3. Need to make sure that the new signs introduced by the tableau rules

are in V.

30



Tableau rules: Soundness

S:f(Fq,..., Fnr)
T(Fy,..., Fnr)
where T(F1, ..., Fr) is a finite extended tableau containing only formulae
of the form S;:F;.
S:f(Fq,..., Fnr)
Slkl :Clkl 52k2:C2k2 qu/:qu/

where C,',j c {Fl ,,,,, Fn}



Tableau rules: Soundness

S:f(Fq,..., Fnr)
T(F,..., Fnr)
where T(F1, ..., Fn) is a finite extended tableau containing only formulae
of the form S;:F;.
S:f(Fq,..., Fnr)
S11:Cq1 S51:Cr1 . Sq1:Cq1
Slkl :Clkl 52k2IC2k2 qu/Zqu/

where C,',j ~ {Fl ,,,,, Fn}

For every A, 3: A(B)(F) € S then there exists i such that for all j:

32



Tableau rules: Soundness

S:f(F]_,...,Fn)
S11:Cq1 S51:Cr1 Sq1:Ca1
Slkl :Clkl 52!(2 . C2k2 qu/ . qu/
where C,',j c {Fl, Ceey Fn}
Every model of S:f(F1,..., Fn) is also a model of the formulae on one of

the branches

If there is no expansion rule for a premise: premise is unsatisfiable

(A(B)(F) € S for all A,p).

If f(F1,..., Fn) satisfiable then there is an expansion rule.



L3: Tableau rules for A

{1}ANAB {u}ANB

{0}ANAB

{u,0}ANB

{1}A {ujA | {u}B ‘ {u}A
{1}B {1}B [{1}JA[{u}B

{0}A|{0}B

{u,0}A|{u,0}B

34



L3: Tableau rules for V

{1}AV B {u}AV B {0}AV B
{1}A{1}B  {u,0}A {u}A {0}A
{u}B {u,0}B {0}B
{u,0}AV B
{u,0}A

{u,0}B

35



L3: Tableau rules for —, ~

{1}~ A 10}~ A {u} ~ A {u,0} ~ A
{u,0}A {11A 114
{1}—A 10}-A {u}-A {u,0}-A

{03A {1}A {u}A {1}A|{u}A



L3: Tableau rules for D

{1}AD B {0 ADB  {uYADB  {u0}ADB
{u, 0}A|{1}B {1}1A {1}1A {1}1A
{0}B (u}B {u,0}B

37



L3: Tableau rules for 4

{1}3xA(x) {0}3xA(x) {u}3xA(x) {u, 0}3xA(x)
{LFA(F (1, - -0 i) {0}A(2) {u}A(F(y1, - - - i) {u, 0}A(2)
{u,0}A(2)
where

® ~ is a new free variable
® yvi,..., yk are the free variables in IxA(x)

e f is a new function symbol

38



L3: Tableau rules for V

{1}VxA(x) {0}VxA(x) {u}VxA(x) {u, 0}VxA(x)
{1}A(z)  {0JA(F(yr - oy AudA(F(y - vi))  {u 0FA(F (v, - - -0 yi))
{u, 1}A(z)
where

® ~ is a new free variable
® yvi,..., yk are the free variables in VxA(x)

e f is a new function symbol

39



Tableaux

A tableau for a finite set For of sighed formulae is constructed as follows:
e A linear tree, in which each formula in For occurs once is a tableau.

e Let T be a tableau for For und P a path in T, which contains a signed
formula S:F.

Assume that there exists a tableau rule with premise S:F. If

Ei, ..., E, are the possible conclusions of the tableau rule (under the
corresponding restrictions in case of quantified formulae) then T is
exteded with n linear subtrees containing the signed formulae from E;
(respectively), in arbitrary order.

The tree obtained this way is again a tableau for For.

40



Closed Tableaux

A path P in a tableau T is closed if:

e P contains complementary formulae, i.e. there exists a substitution
o and there exists signed formulae S1:F1, ..., Sk:Fx occurring of the
branch such that:

- FLo=---=Fho

- S$SN---NS, =0, or

e P contains a signed formula S:F for which no expansion rule can be
applied and F is not atomic.

A path which is not closed is called open.

41



Closed Tableaux

A path P in a tableau T is closed if:

e P contains complementary formulae, i.e. there exists a substitution
o and there exists signed formulae S1:F1, ..., Sk:Fx occurring of the
branch such that:

- FLo=---=Fho

- S$SN---NS, =0, or

e P contains a signed formula S:F for which no expansion rule can be
applied and F is not atomic.

A path which is not closed is called open.
A tableau is closed if every path can be closed with the same substitution.

Otherwise the tableau is called open.

42



Soundness and completeness

Given an signature ¥, by ¥5*° we denote the result of adding infinitely many
new Skolem function symbols which we may use in the rules for quantifiers.

Let A be a ZSkO—interpretation, T a tableau, and B a variable assignment

over A.

T is called (A, B)-valid, if there is a path Pg in T such that A, 8 = F, for
each formula F on Pg.

T is called satisfiable if there exists a structure A such that for each
assighment ( the tableau T is (A, §)-valid.
(This implies that we may choose Pg depending on §3.)
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Soundness and completeness

Theorem (Soundness of the tableau calculus for £3)

Let F be a £3-formula without free variables. If there exists a closed tableau
T for {U, F}F, then F is an L3-tautology (it is valid).

Theorem (Refutational completeness)
Let F be a L3-tautology. Then we can construct a closed tableau for

{U, F}F. (The order in which we apply the expansion rules is not
important).
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