Non-classical logics

Lecture 8: Many-valued logics (5)

Viorica Sofronie-Stokkermans
sofronie@uni-koblenz.de

Exam

Best possibilities:
Tuesday, 24.02.2015 (7)
Wednesday, 18.02.2015 (6)
[Sunday, 22.02.2015 (6)]
Wednesday, 25.02.2015 (6)
Thursday, 12.03.2015 (6)

Suggested date: Thursday, 12.03.2015, 10:00-12:00

Until now

- Many-valued logics (finitely-valued; infinitely-valued)

History and Motivation
Syntax
Semantics

- Finitely-valued logics

Functional completeness
Automated reasoning:
Tableaux
Resolution

- Infinitely-valued logics

Łukasiewicz logics, comparison
Fuzzy logics

"Fuzzy" logics

$W=[0,1]$
Question: How to define conjunction?

Answer: Desired conditions
$f:[0,1]^{2} \rightarrow[0,1]$ such that:

- f associative and commutative
- for all $0 \leq A \leq B \leq 1$ and all $0 \leq C \leq 1$ we have $f(A, C) \leq f(B, C)$
- for all $0 \leq C \leq 1$ we have $f(C, 1)=C$.

Definition A function with the properties above is called a t-norm.

Examples of t-norms

Gödel t-norm
$f_{G}(x, y)=\min (x, y)$
Łukasiewicz t-norm
$f_{\mathrm{t}}(x, y)=\max (0, x+y-1)$
Product t-norm
$f_{P}(x, y)=x \cdot y$

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every $x, y \in[0,1]$ and every sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $0 \leq x_{n} \leq x$ and $\lim _{n \rightarrow \infty} x_{n}=x$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}, y\right)=f(x, y)$.

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every $x, y \in[0,1]$ and every sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ with $0 \leq x_{n} \leq x$ and $\lim _{n \rightarrow \infty} x_{n}=x$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}, y\right)=f(x, y)$.

The following t-norms are left continuous:
Gödel t-norm $\quad f_{G}(x, y)=\min (x, y)$
Łukasiewicz t-norm $\quad f_{Ł}(x, y)=\max (0, x+y-1)$
Product t-norm $\quad f_{P}(x, y)=x \cdot y$

Left continuous t-norms

With every left continuous t-norm f we can associate the following operations:

- $x \circ_{f} y=f(x, y)$
- $x \oplus_{f} y=1-f(1-x, 1-y)$
- $x \Rightarrow_{f} y=\max \{z \mid f(x, z) \leq y\}$
- $\neg_{f} x=x \Rightarrow_{f} 0$

Remark: Left continuity ensures that $\max \{z \mid f(x, z) \leq y\}$ exists.
Validity: $D=\{1\}$

Left continuous t-norms

With every left continuous t-norm f we can associate the following operations:

- $x \circ_{f} y=f(x, y)$
- $x \oplus_{f} y=1-f(1-x, 1-y)$
- $x \Rightarrow_{f} y=\max \{z \mid f(x, z) \leq y\}$
- $\neg f_{f}=x \Rightarrow_{f} 0$

Łukasiewicz t-norm

$$
\begin{aligned}
& x o_{Ł} y=\max (0, x+y-1) \\
& x \oplus_{Ł} y=1-\max (0,1-x-y) \\
& x \Rightarrow_{f} y=\min (1,1-x+y) \\
& \neg x=\min (1,1-x)=1-x
\end{aligned}
$$

Left continuous t-norms

With every left continuous t-norm f we can associate the following operations:

- $x \circ_{f} y=f(x, y)$
- $x \oplus_{f} y=1-f(1-x, 1-y)$
- $x \Rightarrow_{f} y=\max \{z \mid f(x, z) \leq y\}$
- $\neg_{f} x=x \Rightarrow_{f} 0$

Łukasiewicz t-norm

$$
\begin{array}{ll}
x o_{Ł} y=\max (0, x+y-1) & x \wedge_{Ł} y=x o_{Ł}(x \Rightarrow y) \\
x \oplus_{Ł} y=1-\max (0,1-x-y) & x \vee_{Ł} y=\neg_{Ł}\left(\left(\neg^{x}\right) \wedge_{Ł}\left(\neg_{\mathrm{Ł}} y\right)\right) \\
x \Rightarrow_{f} y=\min (1,1-x+y) & \\
\neg x=\min (1,1-x)=1-x &
\end{array}
$$

Left continuous t-norms

With every left continuous t-norm f we can associate the following operations:

- $x \circ_{f} y=f(x, y)$
- $x \oplus_{f} y=1-f(1-x, 1-y)$
- $x \Rightarrow_{f} y=\max \{z \mid f(x, z) \leq y\}$
- $\neg_{f} x=x \Rightarrow_{f} 0$

Gödel t-norm

$x \circ_{G} y=\min (x, y)$
$x \oplus_{G} y=\max (x, y)$
$x \Rightarrow_{G} y=\max \{z \mid x \wedge z \leq y\}= \begin{cases}1 & \text { if } x \leq y \\ y & \text { if } x>y\end{cases}$
$\neg_{G} x=\max \{z \mid x \wedge z=0)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x>0\end{cases}$

Checking validity of formulae in fuzzy logics

Given: $\quad F$ formula in a t-norm based fuzzy logic formed with the operations $\{\circ, \oplus, \neg, \Rightarrow\}$ (and also \vee, \wedge if definable)
Task: Check whether F is valid (a tautology)
i.e. whether for all $\mathcal{A}: X \rightarrow[0,1], \mathcal{A}(F)=1$

Idea:
Assume that there exists $\mathcal{A}: X \rightarrow[0,1]$ such that $\mathcal{A}(F) \neq 1$.
Derive a contradiction.

Let P_{1}, \ldots, P_{n} be the propositional variables which occur in F.
Check whether $\exists x_{1}, \ldots, x_{n} F\left(x_{1}, \ldots, x_{m}\right) \neq 1$ is satisfiable in $\mathcal{A}=\left([0,1],\left\{\circ_{f}, \oplus_{f}, \neg f, \rightarrow_{f}, \leftrightarrow_{f}\right\}\right)$.

Example 1: Łukasiewicz logic $\mathbf{t}=\mathcal{L}_{\alpha_{1}}$

$F \mathcal{F}$-formula, where $\mathcal{F}=\{\vee, \wedge, \circ, \neg, \rightarrow, \leftrightarrow\}$.

Let P_{1}, \ldots, P_{n} be the propositional variables which occur in F.
Check whether $\exists x_{1}, \ldots, x_{n} F\left(x_{1}, \ldots, x_{m}\right) \neq 1$ is satisfiable in

$$
[0,1]_{Ł}=([0,1],\{\vee, \wedge, \circ, \neg, \rightarrow\})
$$

where $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ are the operations induced by the t-norm $f_{\mathrm{t}}(x, y)=\max (0, x+y-1)$, i.e.:

$$
\begin{array}{lll}
\left(\operatorname{Def}_{{ }_{\llcorner }}\right) & x+y<1 \rightarrow x \circ y=0 & x+y \geq 1 \rightarrow x \circ y=x+y-1 \\
\left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \vee y=y & x>y \rightarrow x \vee y=x \\
\left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x & x>y \rightarrow x \wedge y=y \\
\left(\operatorname{Def}_{\neq Ł}\right) & x \leq y \rightarrow x \rightarrow y=1 & x>y \rightarrow x \Rightarrow y=1-x+y \\
\left(\operatorname{Def}_{\neg Ł}\right) & \neg x=1-x &
\end{array}
$$

Example 1: Łukasiewicz logic $\mathbf{t}=\mathcal{L}_{\alpha_{1}}$

$\mathcal{F} \mathcal{F}$-formula, where $\mathcal{F}=\{\vee, \wedge, \circ, \neg, \rightarrow, \leftrightarrow\}$.

Remark: The following are equivalent:
(1) $F\left(x_{1}, \ldots, x_{m}\right) \neq 1$ is satisfiable in $[0,1]_{Ł}=([0,1],\{\vee, \wedge, \circ, \neg, \rightarrow\})$, where $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ are the operations induced by the t-norm f_{t}
(2) $\operatorname{Def}_{t} \wedge F\left(x_{1}, \ldots, x_{m}\right) \neq 1$ satisfiable in $[0,1]$.

$$
\begin{array}{lll}
\left(\operatorname{Def}_{{ }_{\llcorner }}\right) & x+y<1 \rightarrow x \circ y=0 & x+y \geq 1 \rightarrow x \circ y=x+y-1 \\
\left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \vee y=y & x>y \rightarrow x \vee y=x \\
\left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x & x>y \rightarrow x \wedge y=y \\
\left(\operatorname{Def}_{\neq Ł}\right) & x \leq y \rightarrow x \Rightarrow y=1 & x>y \rightarrow x \Rightarrow y=1-x+y \\
\left(\operatorname{Def}_{\neg Ł}\right) & \neg x=1-x &
\end{array}
$$

Example

To show: $((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y)$ is a tautology
New task: $\operatorname{Def}_{\mathrm{t}} \wedge \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y) \neq 1}$ unsatisfiable G_{1}

where	$\left(\operatorname{Def}_{\vee}\right)$	$x \leq y \rightarrow x \vee y=y$	$x>y \rightarrow x \vee y=x$
	$\left(\operatorname{Def}_{\wedge}\right)$	$x \leq y \rightarrow x \wedge y=x$	$x>y \rightarrow x \wedge y=y$
	$\left(\operatorname{Def}_{\nmid}\right)$	$x+y<1 \rightarrow x \circ y=0$	$x+y \geq 1 \rightarrow x \circ y=x+y-1$
	$\left(\operatorname{Def}_{\Rightarrow_{Ł}}\right)$	$x \leq y \rightarrow x \Rightarrow y=1$	$x>y \rightarrow x \Rightarrow y=1-x+y$

Example

New task: $\operatorname{Def}_{\mathrm{t}} \wedge \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y) \neq 1}_{G_{1}}$ unsatisfiable

$$
\begin{array}{llll}
\text { where } & \left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \vee y=y & x>y \rightarrow x \vee y=x \\
& \left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x & x>y \rightarrow x \wedge y=y \\
& \left(\operatorname{Def}_{o_{Ł}}\right) & x+y<1 \rightarrow x \circ y=0 & x+y \geq 1 \rightarrow x \circ y=x+y-1 \\
& \left(\operatorname{Def}_{\neq Ł}\right) & x \leq y \rightarrow x \Rightarrow y=1 & x>y \rightarrow x \Rightarrow y=1-x+y
\end{array}
$$

1. Rename subterms starting with $Ł$-operators and expand definitions:

$$
\begin{array}{l|lll}
p=x \Rightarrow 0 \\
q=p \Rightarrow 0 & s \neq 1 & x \leq 0 \rightarrow x \Rightarrow 0=1 & x>0 \rightarrow x \Rightarrow 0=1-x+0 \\
r=x \vee y & & p \leq 0 \rightarrow p \Rightarrow 0=1 & p>0 \rightarrow p \Rightarrow 0=1-p+0 \\
s=q \Rightarrow r & & q \leq r \rightarrow q \Rightarrow r=1 & q>r \rightarrow q \Rightarrow r=1-q+r \\
& x \leq y \rightarrow x \vee y=y & x>y \rightarrow x \vee y=x
\end{array}
$$

Example

New task: $\operatorname{Def}_{\mathrm{k}} \wedge \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y) \neq 1}_{G_{1}}$ unsatisfiable

$$
\begin{array}{llll}
\text { where } & \left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \vee y=y & x>y \rightarrow x \vee y=x \\
& \left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x & x>y \rightarrow x \wedge y=y \\
& \left(\operatorname{Def}_{\ell_{Ł}}\right) & x+y<1 \rightarrow x \circ y=0 & x+y \geq 1 \rightarrow x \circ y=x+y-1 \\
& \left(\operatorname{Def}_{f_{Ł}}\right) & x \leq y \rightarrow x \Rightarrow y=1 & x>y \rightarrow x \Rightarrow y=1-x+y
\end{array}
$$

2. Replace terms starting with t -operations; SAT checking in $[0,1]$

$$
\begin{array}{l|lll}
p=x \Rightarrow 0 \\
q=p \Rightarrow 0 & s \neq 1 & x \leq 0 \rightarrow p=1 & x>0 \rightarrow p=1-x+0 \\
r=x \vee y & & p \leq 0 \rightarrow q=1 & p>0 \rightarrow q=1-p+0 \\
s=q \Rightarrow r & & q \leq r \rightarrow s=1 & q>r \rightarrow s=1-q+r \\
& & x \leq y \rightarrow r=y & x>y \rightarrow r=x
\end{array}
$$

Reduction to checking constraints over [0, 1]

Reduction to checking satisfiability in [0, 1] of constraints in linear arithmetic (implications of LA expressions).

NP complete [Sonntag'85]
Similar techniques can be used also for Gödel logics (with the Gödel t-norm).

This method was first described (in a slightly more general context) in:
Viorica Sofronie-Stokkermans and Carsten Ihlemann,
"Automated reasoning in some local extensions of ordered structures."
Proceedings of ISMVL'07, IEEE Press, paper 1, 2007.
and (with full proofs) in
Viorica Sofronie-Stokkermans and Carsten Ihlemann,
"Automated reasoning in some local extensions of ordered structures."
Journal of Multiple-Valued Logics and Soft Computing
(Special issue dedicated to ISMVL’07) 13 (4-6), 397-414, 2007.

Example 1: Gödel logic

$\mathcal{F} \mathcal{F}$-formula, where $\mathcal{F}=\{\vee, \wedge, \neg, \rightarrow, \leftrightarrow\}$.
Let P_{1}, \ldots, P_{n} be the propositional variables which occur in F. Check whether $\exists x_{1}, \ldots, x_{n} F\left(x_{1}, \ldots, x_{m}\right) \neq 1$ is satisfiable in

$$
[0,1]_{G}=([0,1],\{\vee, \wedge, \circ, \neg, \rightarrow\})
$$

where $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ are the operations induced by the t -norm $f_{G}(x, y)=\min (x, y)$, i.e.:

$$
\begin{array}{rlrl}
\left(\operatorname{Def}_{\circ}\right)= & \left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x & \\
& \left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \rightarrow x \wedge y=y \\
& \left(\operatorname{Def}_{\Rightarrow}\right) & x \leq y \rightarrow x \Rightarrow y=1 & \\
& \left(\operatorname{Def}_{\neg}\right) & x>y \rightarrow x \vee y=x \\
& x>0 \rightarrow \neg=1 & & x>y \rightarrow x \Rightarrow y=y \\
& x>0 \rightarrow \neg x=0
\end{array}
$$

Example

Check whether $((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y)$ is a tautology in the Gödel logic.

where $\quad\left(\operatorname{Def}_{\circ}\right)=\left(\operatorname{Def}_{\wedge}\right) \quad x \leq y \rightarrow x \wedge y=x$

$$
\text { (Def } \vee \text {) } \quad x \leq y \rightarrow x \vee y=y
$$

$$
\left(\text { Def }_{\Rightarrow}\right) \quad x \leq y \rightarrow x \Rightarrow y=1
$$

$$
\left(\text { Def }_{\neg}\right) \quad x=0 \rightarrow \neg x=1
$$

$$
\begin{aligned}
& x>y \rightarrow x \wedge y=y \\
& x>y \rightarrow x \vee y=x \\
& x>y \rightarrow x \Rightarrow y=y \\
& x>0 \rightarrow \neg x=0
\end{aligned}
$$

Example

New task: $\operatorname{Def}_{G} \wedge((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y) \neq 1$ satisfiable?
where

$$
\begin{array}{rlrl}
\left(\operatorname{Def}_{\circ}\right)= & \left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x & \\
& \left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \vee x \wedge y=y \\
& \left(\operatorname{Def}_{\Rightarrow}\right) & x \leq y \rightarrow x \Rightarrow y=1 & \\
& \left(\operatorname{Def}_{\neg}\right) & x>y \rightarrow x \vee y=x \\
& x>0 \rightarrow \neg x=1 & & x>y \rightarrow x \Rightarrow y=y \\
& & x>0 \rightarrow \neg x=0
\end{array}
$$

1. Rename subterms starting with $Ł$-operators and expand definitions:

$$
\begin{array}{l|lll}
p=x \Rightarrow 0 & s \neq 1 & x \leq 0 \rightarrow x \Rightarrow 0=1 & x>0 \rightarrow x \Rightarrow 0=0 \\
q=p \Rightarrow 0 & & p \leq 0 \rightarrow p \Rightarrow 0=1 & p>0 \rightarrow p \Rightarrow 0=0 \\
r=x \vee y & & q \leq r \rightarrow q \Rightarrow r=1 & q>r \rightarrow q \Rightarrow r=r \\
s=q \Rightarrow r & & x \leq y \rightarrow x \vee y=y & x>y \rightarrow x \vee y=x
\end{array}
$$

Example

New task: $\operatorname{Def}_{G} \wedge \underbrace{((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y) \neq 1}_{G_{1}}$ satisfiable?

$$
\begin{array}{rlrl}
\text { where } & \left(\operatorname{Def}_{\circ}\right)= & \left(\operatorname{Def}_{\wedge}\right) & x \leq y \rightarrow x \wedge y=x \\
& \left(\operatorname{Def}_{\vee}\right) & x \leq y \rightarrow x \vee y=y & \\
& \left(\operatorname{Def}_{\Rightarrow}\right) & x>y \rightarrow y \rightarrow x \wedge y=y \\
& \left(\operatorname{Def}_{\neg}\right) & x=0 \rightarrow \neg \Rightarrow y=1 & \\
& x>y \rightarrow x \vee y=x \\
& x>y \rightarrow x \Rightarrow y=y \\
& & x>0 \rightarrow \neg x=0
\end{array}
$$

2. Replace terms starting with $Ł$-operations; SAT checking in $[0,1]$

$$
\begin{array}{l|lll}
p=x \Rightarrow 0 & s \neq 1 & x \leq 0 \rightarrow p=1 & x>0 \rightarrow p=0 \\
q=p \Rightarrow 0 & & p \leq 0 \rightarrow q=1 & p>0 \rightarrow q=0 \\
r=x \vee y & & q \leq r \rightarrow s=1 & q>r \rightarrow s=r \\
s=q \Rightarrow r & & x \leq y \rightarrow r=y & x>y \rightarrow r=x
\end{array}
$$

Satisfiable (e.g. by $\left.\beta(x)=\beta(y)=\frac{1}{2}\right)$, so $((x \Rightarrow 0) \Rightarrow 0) \Rightarrow(x \vee y)$ not tautology in Gödel logic.

Product logic

Similar techniques can be used also for the product logic (with the product t -norm)
\mapsto non-linearity (hence higher complexity)

Many-Valued Logics

- Many-valued logics (finitely-valued)

History and Motivation
Syntax /Semantics
Functional completeness
Automated reasoning: Tableaux, Resolution

- Infinitely-valued logics

Examples: Łukasiewics logics $\mathcal{L}_{\aleph_{0}}, \mathcal{L}_{\aleph_{1}}$ description of the tautologies

Fuzzy logics:

- t-norms, Łukasiewics, Gödel, Product t-norm
- Łukasiewics logic, Gödel logic, Product logic
- Automated methods for checking validity

Applications of many-valued logic

- independence proofs
- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification)

Applications of many-valued logic

- independence proofs
- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification)

Independence proofs

Task: Check independence of axioms in axiom systems [Bernays 1926]
Here: Example: Axiom system for propositional logic K_{1}
$\mathrm{Ax1} p_{1} \Rightarrow\left(p_{2} \Rightarrow p_{1}\right)$
$\mathrm{Ax} 2\left(\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow p_{1}\right) \Rightarrow p_{1}$
$\mathrm{Ax} 3\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\left(p_{2} \Rightarrow p_{3}\right) \Rightarrow\left(p_{1} \Rightarrow p_{3}\right)\right)$
$\mathrm{Ax4}\left(p_{1} \wedge p_{2}\right) \Rightarrow p_{1}$
$\mathrm{A} \times 5\left(p_{1} \wedge p_{2}\right) \Rightarrow p_{2}$
$\left.\mathrm{Ax} 6\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\left(p_{1} \Rightarrow p_{3}\right) \Rightarrow p_{1} \Rightarrow p_{2} \wedge p_{3}\right)\right)$
$\mathrm{Ax} 7 p_{1} \Rightarrow\left(p_{1} \vee p_{2}\right)$
$\mathrm{Ax} 8 p_{2} \Rightarrow\left(p_{1} \vee p_{2}\right)$

Axiom system: K_{1}

$$
\begin{aligned}
& \left.\operatorname{Ax9}\left(p_{1} \Rightarrow p_{3}\right) \Rightarrow\left(\left(p_{2} \Rightarrow p_{3}\right) \Rightarrow p_{1} \vee p_{2} \Rightarrow p_{3}\right)\right) \\
& \mathbf{A x 1 0}\left(p_{1} \approx p_{2}\right) \Rightarrow\left(p_{1} \Rightarrow p_{2}\right) \\
& \mathbf{A x 1 1}\left(p_{1} \approx p_{2}\right) \Rightarrow\left(p_{2} \Rightarrow p_{1}\right) \\
& \left.\mathbf{A x 1 2}\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\left(p_{2} \Rightarrow p_{1}\right) \Rightarrow p_{1} \approx p_{2}\right)\right) \\
& \mathbf{A x 1 3}\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow\left(\neg p_{2} \Rightarrow \neg p_{1}\right) \\
& \mathbf{A x 1 4} p_{1} \Rightarrow \neg \neg p_{1} \\
& \mathbf{A x 1 5} \neg \neg p_{1} \Rightarrow p_{1}
\end{aligned}
$$

Inference rule: Modus Ponens: $\frac{H \quad H \Rightarrow G}{G}$

Independence

Definition: An axiom system K is independent iff for every axiom $A \in K$, A is not provable from $K \backslash\{A\}$.

We will show that $A \times 2$ is independent

Independence

Definition: An axiom system K is independent iff for every axiom $A \in K$, A is not provable from $K \backslash\{A\}$.

We will show that $A \times 2$ is independent

Idea: We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}$, $D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined for \mathcal{L}_{3} in the lecture.

To show:

1. Every axiom in K_{1} except for $A x 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.

Independence

From $1,2,3$ it follows that every formula which can be proved from $K_{1} \backslash A \times 2$ is a tautology.

Hence - since $A \times 2$ is not a tautology - $K_{1} \backslash\{A \times 2\} \not \vDash A \times 2$.

Proof

We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined for $c a l L_{3}$ in the lecture.

To show:

1. Every axiom in K_{1} except for $A \times 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.

Proof

We introduce a 3 -valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A \times 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.
4. Routine (check all axioms in $K_{1} \backslash\{A \times 2\}$).

Proof

We introduce a 3-valued logic $L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A \times 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.
4. Analyze the truth table of \Rightarrow.

Assume H is a tautology and $H \Rightarrow G$ is a tautology.
Let $\mathcal{A}: \Pi \rightarrow\{0, u, 1\}$.
Then $\mathcal{A}(H)=1$ and $\mathcal{A}(H \Rightarrow G)=1$, so $\mathcal{A}(G)=1$.

Proof

We introduce a 3 -valued $\operatorname{logic} L_{K_{1}}$ with truth values $\{0, u, 1\}, D=\{1\}$ and operations $\neg, \Rightarrow, \wedge, \vee, \approx$ as defined in the lecture.

To show:

1. Every axiom in K_{1} except for $A \times 2$ is a $L_{K_{1}}$-tautology.
2. Modus Ponens leads from $L_{K_{1}}$ tautologies to a $L_{K_{1}}$-tautology.
3. $A \times 2$ is not a $L_{K_{1}}$-tautology.
4. Let $\mathcal{A}: \Pi \rightarrow\{0, u, 1\}$ with $\mathcal{A}\left(p_{1}\right)=u$ and $\mathcal{A}\left(p_{2}\right)=0$.

Then

$$
\begin{aligned}
\mathcal{A}\left(\left(\left(p_{1} \Rightarrow p_{2}\right) \Rightarrow p_{1}\right) \Rightarrow p_{1}\right) & =((u \Rightarrow 0) \Rightarrow u) \Rightarrow u \\
& =(u \Rightarrow u) \Rightarrow u=u .
\end{aligned}
$$

Applications of many-valued logic

- independence proofs
- modeling undefined function and predicate values (program verification)
- semantic of natural languages
- theory of logic programming: declarative description of operational semantics of negation
- modeling of electronic circuits
- modeling vagueness and uncertainly
- shape analysis (program verification)

Shape analysis

Shape Analysis is an important and well covered part of static program analysis.

The central role in shape analysis is played by the set U of abstract stores.
U is perceived as the abstraction of the locations program variables can point to.

In an object-oriented context U can be viewed as an abstraction of the set of all objects existing at a snapshot during program execution

Shape analysis

U set of abstract stores.
X set of program variables.

Abstract state of a program at a given snapshot:

- Structure $\mathcal{S}=\left(U,\{x: U \rightarrow\{0,1\}\}_{x \in X} \cup\right.$ Additional predicates) $x(v)=1$ (also denoted $\mathcal{S} \models x[v]$) iff variable x points to store v.

For any abstract state \mathcal{S} and any program variable x we require that the unary predicate x holds true of at most one store, i.e. we require

$$
\mathcal{S} \models \forall s_{1} \forall s_{2}\left(\left(x\left(s_{1}\right) \wedge x\left(s_{2}\right)\right) \rightarrow s_{1}=s_{2}\right)
$$

It is possible that x does not point to any store, i.e. $\mathcal{S} \models \forall s(\neg x(s))$.

Shape analysis

Additional predicates on \mathcal{S} depend on the specific program/task
Example: next: $U^{2} \rightarrow\{0,1\}$

Examples of properties:

$$
\begin{array}{ll}
\exists s \times(s) & x \text { does not point to null } \\
\forall s(\neg(x(s) \wedge t(s))) & x \text { and } t \text { do not point to the same store } \\
\exists s \text { is }(s) & \text { the list defined by next contains a shared node }
\end{array}
$$

We have used the abbreviation

$$
\operatorname{is}(s)=\exists s_{1} \exists s_{2}\left(\operatorname{next}\left(s_{1}, s\right) \wedge \operatorname{next}\left(s_{2}, s\right) \wedge s_{1} \neq s_{2}\right)
$$

Goal: prove for a given program, or a given program part, that a certain property holds at every program state, or every stable program state.

Example: List reversing

Goal: Cycle-freeness of a list pointer structure is preserved by the algorithm reversing the list.

Describing cycle-freeness

1. $\neg \exists v(\operatorname{next}(v, n) \quad n$ is the store representing the head of the list
2. $\forall v \forall w(\operatorname{next}(m, v) \wedge \operatorname{next}(m, w) \rightarrow v=w)$ for all stores m reachable from n,
3. $\neg \mathrm{is}(m)$ for all stores m reachable from n.

Remark:

If conditions 1.-3. hold then the list with entry point n cannot be cyclic.

We concentrate here on showing the preservation of the formula is(s).

Example: List reversing

Algorithm for list reversing:

```
class ReverseList {
    int value;
    ReverseList next;
public ReverseList reverse() {
    ReverseList t, y= null, x = this;
    while (x != null) {
    st1: t=y;
    st2: y=x;
    st3: x=x.next;
    st4: y.next = t;}
    return y;}}
```


Example: List reversing

Task:

Assume that at the beginning of the while loop $\mathcal{S} \vDash \neg i s(n)$ is true for all stores n in the list.

Show that in the state \mathcal{S}_{e} after execution of the while loop again $\mathcal{S}_{e} \models \neg i s(n)$ holds true for all n.

Problem: Since we cannot make any assumptions on the set of stores U at the start of the while-loop we need to investigate infinitely many structures, which obviously is not possible.

Shape analysis

Idea [Mooly Sagiv, Thomas Reps and Reinhard Wilhelm]

Use of three-valued structures to approximate two-valued structures.

More precisely, we try to find finitely many three-valued structures $\mathcal{S}_{1}^{3}, \ldots, \mathcal{S}_{k}^{3}$ such that for an arbitrary two-valued abstract state \mathcal{S} that may be possible before the while-loop starts there is a surjective mapping F from S onto one of the \mathcal{S}_{i}^{3} for $1 \leq i \leq k$ with $\mathcal{S} \sqsubseteq^{F} \mathcal{S}_{i}^{3}$, i.e.

- for all n-ary predicate symbols p and all $b_{1}, \ldots, b_{n} \in U_{\mathcal{S}}$ we have:

$$
p_{\mathcal{S}_{i}^{3}}\left(F\left(b_{1}\right), \ldots, F\left(b_{n}\right)\right) \leq_{i} p_{\mathcal{S}}\left(b_{1}, \ldots, b_{n}\right)
$$

bb where $a \leq_{i} b$ iff $a=b$ or $a=\frac{1}{2}$
(every possible initial state has an abstraction among $\mathcal{S}_{1}^{3}, \ldots, \mathcal{S}_{k}^{3}$)

Shape analysis

Plan:

Step 1:

For every three-valued structure \mathcal{S}_{i}^{3} we will define an algorithm to compute a three-valued structure $\mathcal{S}_{i, e}^{3}$.

We think of $\mathcal{S}_{i, e}^{3}$ as the three-valued state reached after execution of α_{r} (the body of the while-loop) when started in \mathcal{S}_{i}^{3}.

If \mathcal{S} is a two-valued state it is fairly straight forward to compute the two-valued state \mathcal{S}_{e} that is reached after executing α_{r} starting with \mathcal{S}, since the commands in α_{r} are so simple.

The construction of $\mathcal{S}_{i, e}^{3}$ will be done such that $\mathcal{S} \sqsubseteq^{F} \mathcal{S}_{i}^{3}$ implies $\mathcal{S}_{e} \sqsubseteq^{F} \mathcal{S}_{i, e}^{3}$.

Shape analysis

Plan:

Step 2:

Determine a set \mathcal{M}_{0} of abstract three-valued states to start with.

Shape analysis

Plan:

Step 3:

At iteration $k(k \geq 1)$ we are dealing with a set \mathcal{M}_{k-1} of abstract three-valued states.

We try to prove for every $\mathcal{S}^{3} \in \mathcal{M}_{k-1}$ that if $\mathcal{S}^{3} \models \forall s(\neg \mathrm{is}(s))$) then $\mathcal{S}_{e}^{3} \models(\forall s(\neg \mathrm{is}(s)))$.

It will then follow that for any two-valued state \mathcal{S} that is reachable with $k-1$ iterations of α_{r} :

$$
\mathcal{S} \models \forall \neg \mathrm{is}(s) \Rightarrow \mathcal{S}_{e} \models \forall s \neg \mathrm{is}(s)
$$

If we succeed we set

$$
\mathcal{M}_{k}=\left\{\mathcal{S}_{e}^{3} \mid \mathcal{S}^{3} \in \mathcal{M}_{k-1}\right\}
$$

Shape analysis

Plan:

Step 3 (continued)

If $\mathcal{M}_{k} \subseteq \mathcal{M}_{k-1}$ we are finished and the claim is positively established.
Otherwise we repeat step 3 with \mathcal{M}_{k}.
If for one $\left.\mathcal{S}^{3} \in \mathcal{M}_{k-1}, \forall s(\neg \operatorname{is}(s))\right)$ evaluated to 0 then our conjecture was false.

If for one $\left.\mathcal{S}^{3} \in \mathcal{M}_{k-1}, \forall s(\neg i s(s))\right)$ evaluated to $\frac{1}{2}$ then this result is inconclusive. Should this happen we need to iterate the procedure with a larger set $\mathcal{M}_{k-1}^{\prime}$.

There is, unfortunately, no guarantee that this iteration will come to a conclusive end in the general case.

Shape analysis

[Example on the blackboard]
cf. also P.H. Schmidt's lecture notes, Section 2.4.4 (pages 91-100).

