
Non-classical logics

Lecture 8: Many-valued logics (5)

Viorica Sofronie-Stokkermans

sofronie@uni-koblenz.de

1

Exam

Best possibilities:

Tuesday, 24.02.2015 (7)

Wednesday, 18.02.2015 (6)

[Sunday, 22.02.2015 (6)]

Wednesday, 25.02.2015 (6)

Thursday, 12.03.2015 (6)

Suggested date: Thursday, 12.03.2015, 10:00-12:00

2

Until now

• Many-valued logics (finitely-valued; infinitely-valued)

History and Motivation

Syntax

Semantics

• Finitely-valued logics

Functional completeness

Automated reasoning:

Tableaux

Resolution

• Infinitely-valued logics

 Lukasiewicz logics, comparison

Fuzzy logics

3

“Fuzzy” logics

W = [0, 1]

Question: How to define conjunction?

Answer: Desired conditions

f : [0, 1]2 → [0, 1] such that:

• f associative and commutative

• for all 0 ≤ A ≤ B ≤ 1 and all 0 ≤ C ≤ 1 we have f (A,C) ≤ f (B,C)

• for all 0 ≤ C ≤ 1 we have f (C , 1) = C .

Definition A function with the properties above is called a t-norm.

4

Examples of t-norms

Gödel t-norm fG (x , y) = min(x , y)

 Lukasiewicz t-norm f L(x , y) = max(0, x + y − 1)

Product t-norm fP(x , y) = x · y

5

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every x , y ∈ [0, 1] and

every sequence {xn}n∈N with 0 ≤ xn ≤ x and limn→∞xn = x we have

limn→∞f (xn, y) = f (x , y).

6

Left-continuous t-norm

Definition. A t-norm f is left-continuous if for every x , y ∈ [0, 1] and

every sequence {xn}n∈N with 0 ≤ xn ≤ x and limn→∞xn = x we have

limn→∞f (xn, y) = f (x , y).

The following t-norms are left continuous:

Gödel t-norm fG (x , y) = min(x , y)

 Lukasiewicz t-norm f L(x , y) = max(0, x + y − 1)

Product t-norm fP(x , y) = x · y

7

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

Remark: Left continuity ensures that max{z | f (x , z) ≤ y} exists.

Validity: D = {1}

8

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

 Lukasiewicz t-norm

x ◦ L y = max(0, x + y − 1)

x ⊕ L y = 1 − max(0, 1 − x − y)

x ⇒f y = min(1, 1 − x + y)

¬x = min(1, 1 − x) = 1 − x

9

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

 Lukasiewicz t-norm

x ◦ L y = max(0, x + y − 1) x ∧ L y = x ◦ L (x ⇒ y)

x ⊕ L y = 1 − max(0, 1 − x − y) x ∨ L y = ¬ L((¬ Lx) ∧ L (¬ Ly))

x ⇒f y = min(1, 1 − x + y)

¬x = min(1, 1 − x) = 1 − x

10

Left continuous t-norms

With every left continuous t-norm f we can associate the following

operations:

• x ◦f y = f (x , y)

• x ⊕f y = 1 − f (1 − x , 1 − y)

• x ⇒f y = max{z | f (x , z) ≤ y}

• ¬f x = x ⇒f 0

Gödel t-norm

x ◦G y = min(x , y)

x ⊕G y = max(x , y)

x ⇒G y = max{z | x ∧ z ≤ y} =

{

1 if x ≤ y

y if x > y

¬G x = max{z | x ∧ z = 0) =

{

1 if x = 0

0 if x > 0

11

Checking validity of formulae in fuzzy logics

Given: F formula in a t-norm based fuzzy logic formed with the

operations {◦,⊕,¬,⇒} (and also ∨,∧ if definable)

Task: Check whether F is valid (a tautology)

i.e. whether for all A : X → [0, 1], A(F) = 1

Idea:

Assume that there exists A : X → [0, 1] such that A(F) 6= 1.

Derive a contradiction.

Let P1, . . . ,Pn be the propositional variables which occur in F .

Check whether ∃x1, . . . , xnF (x1, . . . , xm) 6= 1 is satisfiable in

A = ([0, 1], {◦f ,⊕f ,¬f ,→f ,↔f }).

12

Example 1: Lukasiewicz logic L = Lα1

F F-formula, where F = {∨,∧, ◦,¬,→,↔}.

Let P1, . . . ,Pn be the propositional variables which occur in F .

Check whether ∃x1, . . . , xnF (x1, . . . , xm) 6= 1 is satisfiable in

[0, 1] L = ([0, 1], {∨,∧, ◦,¬,→})

where ∨,∧,¬,→,↔ are the operations induced by the t-norm

f L(x , y) = max(0, x + y − 1), i.e.:

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

(Def¬ L
) ¬x = 1 − x

13

Example 1: Lukasiewicz logic L = Lα1

F F-formula, where F = {∨,∧, ◦,¬,→,↔}.

Remark: The following are equivalent:

(1) F (x1, . . . , xm) 6= 1 is satisfiable in [0, 1] L = ([0, 1], {∨,∧, ◦,¬,→}),

where ∨,∧,¬,→,↔ are the operations induced by the t-norm f L

(2) Def L ∧ F (x1, . . . , xm) 6= 1 satisfiable in [0, 1].

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

(Def¬ L
) ¬x = 1 − x

14

Example

To show: ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) is a tautology

New task: Def L ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

unsatisfiable

where (Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

15

Example

New task: Def L ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

unsatisfiable

where (Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

1. Rename subterms starting with L-operators and expand definitions:

p = x ⇒ 0 s 6= 1 x ≤ 0 → x ⇒ 0 = 1 x > 0 → x ⇒ 0 = 1 − x + 0
q = p ⇒ 0 p ≤ 0 → p ⇒ 0 = 1 p > 0 → p ⇒ 0 = 1 − p + 0
r = x ∨ y q ≤ r → q ⇒ r = 1 q > r → q ⇒ r = 1 − q + r

s = q ⇒ r x ≤ y → x ∨ y = y x > y → x ∨ y = x

16

Example

New task: Def L ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

unsatisfiable

where (Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def◦ L
) x+y<1 → x◦y=0 x+y≥1 → x◦y=x+y−1

(Def⇒ L
) x≤y → x⇒y=1 x>y → x⇒y = 1−x+y

2. Replace terms starting with L-operations; SAT checking in [0, 1]

p = x ⇒ 0 s 6= 1 x ≤ 0 → p = 1 x > 0 → p = 1 − x + 0
q = p ⇒ 0 p ≤ 0 → q = 1 p > 0 → q = 1 − p + 0
r = x ∨ y q ≤ r → s = 1 q > r → s = 1 − q + r

s = q ⇒ r x ≤ y → r = y x > y → r = x

17

Reduction to checking constraints over [0, 1]

Reduction to checking satisfiability in [0, 1] of constraints in linear arithmetic

(implications of LA expressions).

NP complete [Sonntag’85]

Similar techniques can be used also for Gödel logics (with the Gödel

t-norm).

This method was first described (in a slightly more general context) in:

Viorica Sofronie-Stokkermans and Carsten Ihlemann,

”Automated reasoning in some local extensions of ordered structures.”

Proceedings of ISMVL’07, IEEE Press, paper 1, 2007.

and (with full proofs) in

Viorica Sofronie-Stokkermans and Carsten Ihlemann,

”Automated reasoning in some local extensions of ordered structures.”

Journal of Multiple-Valued Logics and Soft Computing

(Special issue dedicated to ISMVL’07) 13 (4-6), 397-414, 2007.

18

Example 1: Gödel logic

F F-formula, where F = {∨,∧,¬,→,↔}.

Let P1, . . . ,Pn be the propositional variables which occur in F .

Check whether ∃x1, . . . , xnF (x1, . . . , xm) 6= 1 is satisfiable in

[0, 1]G = ([0, 1], {∨,∧, ◦,¬,→})

where ∨,∧,¬,→,↔ are the operations induced by the t-norm

fG(x , y) = min(x , y), i.e.:

(Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

19

Example

Check whether ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) is a tautology in the Gödel logic.

New task: DefG ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

satisfiable?

where (Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

20

Example

New task: DefG ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

satisfiable?

where (Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

1. Rename subterms starting with L-operators and expand definitions:

p = x ⇒ 0 s 6= 1 x ≤ 0 → x ⇒ 0 = 1 x > 0 → x ⇒ 0 = 0
q = p ⇒ 0 p ≤ 0 → p ⇒ 0 = 1 p > 0 → p ⇒ 0 = 0
r = x ∨ y q ≤ r → q ⇒ r = 1 q > r → q ⇒ r = r

s = q ⇒ r x ≤ y → x ∨ y = y x > y → x ∨ y = x

21

Example

New task: DefG ∧ ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) 6= 1
︸ ︷︷ ︸

G1

satisfiable?

where (Def◦) = (Def∧) x≤y → x∧y = x x>y → x∧y = y

(Def∨) x≤y → x∨y=y x>y → x∨y=x

(Def⇒) x≤y → x⇒y=1 x>y → x⇒y = y

(Def¬) x = 0 → ¬x = 1 x > 0 → ¬x = 0

2. Replace terms starting with L-operations; SAT checking in [0, 1]

p = x ⇒ 0 s 6= 1 x ≤ 0 → p = 1 x > 0 → p = 0
q = p ⇒ 0 p ≤ 0 → q = 1 p > 0 → q = 0
r = x ∨ y q ≤ r → s = 1 q > r → s = r

s = q ⇒ r x ≤ y → r = y x > y → r = x

Satisfiable (e.g. by β(x)=β(y)= 1
2), so ((x ⇒ 0) ⇒ 0) ⇒ (x ∨ y) not tautology

in Gödel logic.

22

Product logic

Similar techniques can be used also for the product logic

(with the product t-norm)

7→ non-linearity (hence higher complexity)

23

Many-Valued Logics

• Many-valued logics (finitely-valued)

History and Motivation

Syntax /Semantics

Functional completeness

Automated reasoning: Tableaux, Resolution

• Infinitely-valued logics

Examples: Lukasiewics logics Lℵ0
,Lℵ1

description of the tautologies

Fuzzy logics:

– t-norms, Lukasiewics, Gödel, Product t-norm

– Lukasiewics logic, Gödel logic, Product logic

– Automated methods for checking validity

24

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

25

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

26

Independence proofs

Task: Check independence of axioms in axiom systems [Bernays 1926]

Here: Example: Axiom system for propositional logic K1

27

Axiom system: K1

Inference rule: Modus Ponens:
H H⇒G

G

28

Independence

Definition: An axiom system K is independent iff for every axiom A ∈ K ,

A is not provable from K\{A}.

We will show that Ax2 is independent

29

Independence

Definition: An axiom system K is independent iff for every axiom A ∈ K ,

A is not provable from K\{A}.

We will show that Ax2 is independent

Idea: We introduce a 3-valued logic LK1
with truth values {0, u, 1},

D = {1} and operations ¬,⇒,∧,∨,≈ as defined for L3 in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

30

Independence

From 1,2,3 it follows that every formula which can be proved from K1\Ax2

is a tautology.

Hence – since Ax2 is not a tautology – K1\{Ax2} 6|= Ax2.

31

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined for calL3 in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

32

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

1. Routine (check all axioms in K1\{Ax2}).

33

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

2. Analyze the truth table of ⇒.

Assume H is a tautology and H ⇒ G is a tautology.

Let A : Π → {0, u, 1}.

Then A(H) = 1 and A(H ⇒ G) = 1, so A(G) = 1.

34

Proof

We introduce a 3-valued logic LK1
with truth values {0, u, 1}, D = {1} and

operations ¬,⇒,∧,∨,≈ as defined in the lecture.

To show:

1. Every axiom in K1 except for Ax2 is a LK1
-tautology.

2. Modus Ponens leads from LK1
tautologies to a LK1

-tautology.

3. Ax2 is not a LK1
-tautology.

3. Let A : Π → {0, u, 1} with A(p1) = u and A(p2) = 0.

Then

A(((p1 ⇒ p2) ⇒ p1) ⇒ p1) = ((u ⇒ 0) ⇒ u) ⇒ u

= (u ⇒ u) ⇒ u = u.

35

Applications of many-valued logic

• independence proofs

• modeling undefined function and predicate values (program

verification)

• semantic of natural languages

• theory of logic programming: declarative description of

operational semantics of negation

• modeling of electronic circuits

• modeling vagueness and uncertainly

• shape analysis (program verification)

36

Shape analysis

Shape Analysis is an important and well covered part of static program

analysis.

The central role in shape analysis is played by the set U of abstract stores.

U is perceived as the abstraction of the locations program variables can

point to.

In an object-oriented context U can be viewed as an abstraction of the set

of all objects existing at a snapshot during program execution

37

Shape analysis

U set of abstract stores.

X set of program variables.

Abstract state of a program at a given snapshot:

• Structure S = (U, {x : U → {0, 1}}x∈X ∪ Additional predicates)

x(v) = 1 (also denoted S |= x[v]) iff variable x points to store v .

For any abstract state S and any program variable x we require that the

unary predicate x holds true of at most one store, i.e. we require

S |= ∀s1∀s2((x(s1) ∧ x(s2)) → s1 = s2).

It is possible that x does not point to any store, i.e. S |= ∀s(¬x(s)).

38

Shape analysis

Additional predicates on S depend on the specific program/task

Example: next : U2 → {0, 1}

Examples of properties:

∃s x(s) x does not point to null

∀s(¬(x(s) ∧ t(s))) x and t do not point to the same store

∃s is(s) the list defined by next contains a shared node

We have used the abbreviation

is(s) = ∃s1∃s2(next(s1, s) ∧ next(s2, s) ∧ s1 6= s2)

Goal: prove for a given program, or a given program part, that a certain

property holds at every program state, or every stable program state.

39

Example: List reversing

Goal: Cycle-freeness of a list pointer structure is preserved by the algorithm

reversing the list.

Describing cycle-freeness

1. ¬∃v(next(v , n) n is the store representing the head of the list

2. ∀v∀w(next(m, v) ∧ next(m,w) → v = w) for all stores m reachable

from n,

3. ¬is(m) for all stores m reachable from n.

Remark:

If conditions 1.–3. hold then the list with entry point n cannot be cyclic.

We concentrate here on showing the preservation of the formula is(s).

40

Example: List reversing

Algorithm for list reversing:

class ReverseList {

int value;

ReverseList next;

public ReverseList reverse() {

ReverseList t, y= null, x = this;

while (x != null) {

st1: t=y;

st2: y=x;

st3: x=x.next;

st4: y.next = t;}

return y;}}

41

Example: List reversing

Task:

Assume that at the beginning of the while loop S |= ¬is(n) is true for all

stores n in the list.

Show that in the state Se after execution of the while loop again

Se |= ¬is(n) holds true for all n.

Problem: Since we cannot make any assumptions on the set of stores U at

the start of the while-loop we need to investigate infinitely many structures,

which obviously is not possible.

42

Shape analysis

Idea [Mooly Sagiv, Thomas Reps and Reinhard Wilhelm]

Use of three-valued structures to approximate two-valued structures.

More precisely, we try to find finitely many three-valued structures S3
1 , ...,S3

k

such that for an arbitrary two-valued abstract state S that may be possible

before the while-loop starts there is a surjective mapping F from S onto

one of the S3
i for 1 ≤ i ≤ k with S ⊑F S3

i , i.e.

• for all n-ary predicate symbols p and all b1, . . . , bn ∈ US we have:

p
S3
i

(F (b1), . . . ,F (bn)) ≤i pS(b1, . . . , bn)

bb where a ≤i b iff a = b or a = 1
2

(every possible initial state has an abstraction among S3
1 , ...,S3

k
)

43

Shape analysis

Plan:

Step 1:

For every three-valued structure S3
i we will define an algorithm to compute

a three-valued structure S3
i ,e .

We think of S3
i ,e as the three-valued state reached after execution of αr

(the body of the while-loop) when started in S3
i .

If S is a two-valued state it is fairly straight forward to compute the

two-valued state Se that is reached after executing αr starting with S, since

the commands in αr are so simple.

The construction of S3
i ,e will be done such that S ⊑F S3

i implies Se ⊑F S3
i ,e .

44

Shape analysis

Plan:

Step 2:

Determine a set M0 of abstract three-valued states to start with.

45

Shape analysis

Plan:

Step 3:

At iteration k(k ≥ 1) we are dealing with a set Mk−1 of abstract

three-valued states.

We try to prove for every S3 ∈ Mk−1 that if S3 |= ∀s(¬is(s))) then

S3
e |= (∀s(¬is(s))).

It will then follow that for any two-valued state S that is reachable with

k − 1 iterations of αr :

S |= ∀¬is(s) ⇒ Se |= ∀s¬is(s)

If we succeed we set

Mk = {S3
e |S

3 ∈ Mk−1}

46

Shape analysis

Plan:

Step 3 (continued)

If Mk ⊆ Mk−1 we are finished and the claim is positively established.

Otherwise we repeat step 3 with Mk .

If for one S3 ∈ Mk−1, ∀s(¬is(s))) evaluated to 0 then our conjecture was

false.

If for one S3 ∈ Mk−1, ∀s(¬is(s))) evaluated to 1
2

then this result is

inconclusive. Should this happen we need to iterate the procedure with a

larger set M′

k−1.

There is, unfortunately, no guarantee that this iteration will come to a con-

clusive end in the general case.

47

Shape analysis

[Example on the blackboard]

cf. also P.H. Schmidt’s lecture notes, Section 2.4.4 (pages

91-100).

48

