Non-classical logics

Lecture 10: Modal logics (Part 3)

Viorica Sofronie-Stokkermans sofronie@uni-koblenz.de

Until now

History and Motivation

Syntax

Inference systems/Proofs

Semantics

Frames, Kripke structures; Validity

Entailment (local, global)

The deduction theorem (for local entailment)

Correspondence Theory

First-order definability

Properties not corresp. to schemata validity

There are some naturally occurring properties of a binary relation R that do not correspond to the validity of any modal schema.

```
One such properties is irreflexivity, i.e. \forall s \neg (sRs).
```

Proof (Idea)

Assume there exists a formula F which characterizes irreflexivity.

To show:

For every frame $\mathcal{F} = (S, R)$, a frame $\mathcal{F}^* = (S^*, R^*)$ can be constructed which satisfies the same modal formulae as \mathcal{F} , but is irreflexive.

It would then follow that $\mathcal{F}^* \models F$, but – since in \mathcal{F}^* the same formulae are true as in $\mathcal{F} - (S, R) \models F$ although R is not reflexive. Contradiction.

Properties not corresp. to schemata validity

In the proof we used the following result:

Lemma. For every Kripke structure $\mathcal{K} = (S, R, I)$, a structure $\mathcal{K}^* = (S^*, R^*, I^*)$ can be constructed which satisfies the same modal formulae as \mathcal{K} , but R is irreflexive.

Proof: For every $s \in S$ let $s^1, s^2 \notin S$ (different). We define: $S^* = \{s^i \mid s \in S, i = 1, 2\}; \quad I^*(s^i, P) = I(s, P)$ for i = 1, 2. $R^*(s^i, u^j)$ iff R(s, u) for all i, j if $s \neq u$. $R^*(s^i, s^j)$ iff R(s, s) and $i \neq j$. For every formula F and every $s \in S$ the following are equivalent: (1) $(\mathcal{K}, s) \models F$

 $(1) (\mathcal{K}, s) \models F$ $(2) (\mathcal{K}^*, s^1) \models F$ $(3) (\mathcal{K}^*, s^2) \models F$

[Proof by simultaneous structural induction]

Thus, $\mathcal{K} \models F$ iff $\mathcal{K}^* \models F$.

Theorem proving in modal logics

- Inference system
- Tableau calculi
- Resolution

Proof Calculi/Inference systems and proofs

Inference systems Γ (proof calculi) are sets of tuples

```
(F_1, \ldots, F_n, F_{n+1}), n \ge 0,
```

called inferences or inference rules, and written

Inferences with 0 premises are also called axioms.

Proofs

A proof in Γ of a formula F from a a set of formulas N (called assumptions) is a sequence F_1, \ldots, F_k of formulas where

- (i) $F_k = F$,
- (ii) for all $1 \le i \le k$: $F_i \in N$, or else there exists an inference $(F_{i_1}, \ldots, F_{i_{n_i}}, F_i)$ in Γ , such that $0 \le i_j < i$, for $1 \le j \le n_i$.

Provability \vdash_{Γ} of F from N in Γ : $N \vdash_{\Gamma} F$: \Leftrightarrow there exists a proof Γ of F from N.

The modal system *K*

Axioms:

- All axioms of propositional logic (e.g. $p \lor \neg p$)
- $\bullet \ \Box (A \to B) \to (\Box A \to \Box B)$

Inference rules

(K)

Some systems of modal logic

System	Description
Т	$K + \Box A \rightarrow A$
D	$K + \Box A \rightarrow \Diamond A$
В	$T + \neg A ightarrow \Box \neg \Box A$
<i>S</i> 4	$T + \Box A ightarrow \Box \Box A$
<i>S</i> 5	$T + \neg \Box A ightarrow \Box \neg \Box A$
<i>S</i> 4.2	$S4 + \diamond \Box A \rightarrow \Box \diamond A$
<i>S</i> 4.3	$S4 + \Box(\Box(A o B)) \lor \Box(\Box(B o A))$
С	$K + \frac{A \rightarrow B}{\Box(A \rightarrow B)}$ instead of (G).

Question:

Is it true that a formula F is valid in all frames iff F is provable in the inference system for the modal logic K?

Question:

Is it true that a formula F is valid in all frames iff F is provable in the inference system for the modal logic K?

- F provable \Rightarrow F valid in all frames: soundness
- F valid in all frames \Rightarrow F provable: completeness

Question:

Is it true that a formula F is valid in all frames iff F is provable in the inference system for the modal logic K?

- F provable \Rightarrow F valid in all frames: soundness
- F valid in all frames \Rightarrow F provable: completeness

Do similar results hold for other logics (taking into account correspondence theory results we proved in the last lecture)?

Theorem. If the formula F is provable in the inference system for the modal logic K then F is valid in all frames.

Proof:

(1) All axioms of the modal logic K are valid in all frames

Completeness

Theorem. If the formula F is is valid in all frames then F is provable in the inference system for the modal logic K.

Proof

Idea:

Assume that F is not provable in the inference system for the modal logic K.

We show that:

- (1) $\neg F$ is consistent with the set L of all theorems of K
- (2) We can construct a "canonical" Kripke structure \mathcal{K}_L and a world w in this Kripke structure such that $(\mathcal{K}, w) \models \neg F$.

Contradiction!

Completeness

Theorem. If the formula F is is valid in all frames then F is provable in the inference system for the modal logic K.

Proof

Idea:

Assume that F is not provable in the inference system for the modal logic K.

We show that:

- (1) $\neg F$ is consistent with the set L of all theorems of K
- (2) We can construct a "canonical" Kripke structure \mathcal{K}_L and a world w in this Kripke structure such that $(\mathcal{K}, w) \models \neg F$.

Contradiction!

Consistent sets of formulae

Let *L* be a set of modal formulae which:

- (1) contains all propositional tautologies
- (2) contains axiom K
- (3) is closed under modus ponens and generalization
- (4) is closed under instantiation

Definition. A subset $F \subseteq L$ is called *L*-inconsistent iff there exist formulae $A_1, \ldots, A_n \in F$ such that

$$(\neg A_1 \lor \cdots \lor \neg A_n) \in L$$

F is called L-consistent iff it is not L-inconsistent.

Definition. A consistent set *F* of modal formulae is called maximal *L*-consistent if for every modal formula *A* wither $A \in F$ or $\neg A \in F$.

Let L be as before. In what follows we assume that L is consistent.

Theorem. Let *F* be a maximal *L*-consistent set of formulae. Then:

- (1) For every formula A, either $A \in F$ or $\neg A \in F$, but not both.
- (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$
- (3) $A \land B \in F$ iff $A \in F$ and $B \in F$

(4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (1) $A \in F$ or $\neg A \in F$ by definition.

Assume $A \in F$ and $\neg A \in F$. We know that $\neg A \lor \neg \neg A \in L$ (propositional tautology), so F is inconsistent. Contradiction.

Consistent sets of formulae

Let *L* be as before.

Theorem. Let *F* be a maximal *L*-consistent set of formulae. Then:

- (1) For every formula A, either $A \in F$ or $\neg A \in F$, but not both.
- (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$
- (3) $A \land B \in F$ iff $A \in F$ and $B \in F$

(4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (2) " \Rightarrow " Assume $A \lor B \in F$, but $A, B \notin F$. Then $\neg A, \neg B \in F$. As $\neg \neg A \lor \neg \neg B \lor \neg (A \lor B) \in L$ (classical tautology) it follows that F is inconsistent. (2) " \Leftarrow " Assume $A \in F$ and $A \lor B \notin F$. Then $\neg (A \lor B) \in F$. Then $\neg A \lor (A \lor B) \in L$, so F is inconsistent. Let *L* be as before.

Theorem. Let *F* be a maximal *L*-consistent set of formulae. Then:

- (1) For every formula A, either $A \in F$ or $\neg A \in F$, but not both.
- (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$
- (3) $A \land B \in F$ iff $A \in F$ and $B \in F$

(4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (3) Analogous to (2)

Consistent sets of formulae

Let *L* be as before.

Theorem. Let *F* be a maximal *L*-consistent set of formulae. Then:

- (1) For every formula A, either $A \in F$ or $\neg A \in F$, but not both.
- (2) $A \lor B \in F$ iff $A \in F$ or $B \in F$
- (3) $A \land B \in F$ iff $A \in F$ and $B \in F$

(4) $L \subseteq F$

(5) F is closed under Modus Ponens

Proof. (4) If $A \in L$ then $\neg A$ is inconsistent. Hence, $\neg A \notin F$, so $A \in F$.

(5) Assume $A \in F$, $A \to B \in F$ and $B \notin F$. Then $\neg A \lor \neg (A \to B) \lor B$ is a tautology, hence in *L*. Thus, *F* inconsistent.

Theorem. Every consistent set F of formulae is contained in a maximally consistent set of formulae.

Proof. We enumerate all modal formulae: A_0, A_1, \ldots and inductively define an ascending chain of sets of formulae:

$$F_0 := F$$

 $F_{n+1} := \begin{cases} F_n \cup \{A_n\} & \text{if this set is consistent} \\ F_n \cup \{\neg A_n\} & \text{otherwise} \end{cases}$

It can be proved by induction that F_n is consistent for all n.

Let $F_{\max} = \bigcup_{n \in \mathbb{N}} F_n$. Then F_{\max} is maximal consistent and contains F. **Goal:** Assume *F* is not a theorem. Construct a Kripke structure *K* and a possible world *w* of *K* such that $(K, w) \models \neg F$.

States:

State of \mathcal{K} : maximal consistent set of formulae.

Intuition: $(\mathcal{K}, W) \models F$ iff $F \in W$.

Interpretation: I(P, W) = 1 iff $P \in W$.

Accessibility relation:

Intuition:

$$(\mathcal{K}, W) \models \Box F$$
 iff for all W' , $((W, W') \in R \rightarrow (\mathcal{K}, W') \models F$

Goal: Assume *F* is not a theorem. Construct a Kripke structure *K* and a possible world *w* of *K* such that $(K, w) \models \neg F$.

States:

State of \mathcal{K} : maximal consistent set of formulae.

Intuition: $(\mathcal{K}, W) \models F$ iff $F \in W$.

Interpretation: I(P, W) = 1 iff $P \in W$.

Accessibility relation:

Intuition: $(\mathcal{K}, W) \models \Box F$ iff for all W', $((W, W') \in R \to (\mathcal{K}, W') \models F)$ $\Box F \in W$ iff for all W', $((W, W') \in R \to F \in W')$ **Goal:** Assume *F* is not a theorem. Construct a Kripke structure *K* and a possible world *w* of *K* such that $(K, w) \models \neg F$.

States:

State of \mathcal{K} : maximal consistent set of formulae.

```
Intuition: (\mathcal{K}, W) \models F iff F \in W.
```

Interpretation: I(P, W) = 1 iff $P \in W$.

Accessibility relation:

Intuition: $(\mathcal{K}, W) \models \Box F$ iff for all W', $((W, W') \in R \to (\mathcal{K}, W') \models F)$ $\Box F \in W$ iff for all W', $((W, W') \in R \to F \in W')$

 $(W, W') \in R \text{ iff } W' \supseteq \Box^{-1}(W) = \{F \mid \Box F \in W\}$

Theorem. For every maximal consistent set W and every formula F:

 $\Box F \in W$ iff for all max. consistent sets $W'[(W, W') \in R$ implies $F \in W']$

Proof. " \Rightarrow " follows from the definition of *R*.

"
(W', W') $\in R$ implies $F \in W'$, i.e.

 $\{G \mid \Box G \in W\} \subseteq W' \text{ implies } F \in W'$

Since W' is maximal consistent it then follows that

 $\{G \mid \Box G \in W\} \vdash_{\mathcal{L}} F$

hence $\{\Box G \mid \Box G \in W\} \vdash_{\mathcal{L}} \Box F$, so $W \vdash_{\mathcal{L}} \Box F$.

Thus, as W is a maximal consistent set of formulae, $\Box F \in W$.

Theorem. $(\mathcal{K}, W) \models F$ iff $F \in W$.

Proof. Induction on the structure of the formula F.

The case F = P follows from the definition of \mathcal{I} , while the cases $F = \perp$ and \perp are immediate.

The induction step for $F = \neg F_1$ is immediate; the cases $F = F_1 \text{op} F_2$, $\text{op} \in \{\lor, \land\}$ follow from the properties of maximal consistent sets.

For the case $F = \Box F_1$, assume inductively that the result holds for F_1 .

$$(\mathcal{K}, W) \models \Box F_1$$
 iff for all W' $((W, W') \in R \to (\mathcal{K}, W') \models F_1)$
iff for all W' $((W, W') \in R \to F_1 \in W')$
iff $\Box F_1 \in W$ (we used the previous theorem)

Theorem. If the formula F is is valid in all frames then F is provable in the inference system for the modal logic K.

Proof. Assume *F* is not provable in the inference system for *K*. Then $L \cup \neg F$ is consistent, hence it is included in a consistenly maximal set *W*.

Then $\neg F \in W$, so by the previous theorem, $(\mathcal{K}, W) \models \neg F$.

This contradicts the fact that we assumed that F is valid in all Kripke structures.

Other soundness and completeness results

$T = K + \Box A \to A.$

A formula F is provable in the inference system for the modal logic T iff F is is valid in all frames (S, R) with R reflexive.

$S4 = T + \Box A \rightarrow \Box \Box A.$

A formula F is provable in the inference system for the modal logic S4 iff F is is valid in all frames (S, R) with R transitive.

$S5 = T + \neg \Box A \rightarrow \Box \neg \Box A.$

A formula F is provable in the inference system for the modal logic S5 iff F is valid in all frames (S, R) with R is an equivalence relation.

Soundness/completeness: characteriz. classes

Theorem. Let \mathcal{R} be a class of frames characterizable through the modal formulae C_1, \ldots, C_n , and let $K(\mathcal{R})$ be the class of all Kripke structures based on frames in \mathcal{R} .

Let S be the inference system obtained from K by adding C_1, \ldots, C_n as axioms.

A formula F is provable in the inference system for the modal logic S iff F is is valid in all Kripke structures $\mathcal{K} \in K(\mathcal{R})$.

Proof (Idea) It can be shown that if S is obtained from K by adding axioms C_1, \ldots, C_n , then the canonical Kripke structure – constructed as in the case of the modal logic K – is in $K(\mathcal{R})$ (i.e. it is based on frames in \mathcal{R}).

Example: Let C_1 be the axiom schema $\Box A \rightarrow \Box \Box A$. Let L be the set of all theorems of $K + C_1$. Then all maximal L-consistent sets will contain all instances of this schema.

Let $(W, W') \in R$ and $(W', W'') \in R$. Then $\Box F \in W$ implies $\Box \Box F \in W$, hence $\Box F \in W'$ (since $(W, W') \in R$) so $F \in W''$ (as $(W', W'') \in R$). Thus, $(W, W'') \in R$, so R is transitive.

Theorem proving in modal logics

- Inference systems
- Tableau calculi
- Resolution

Tableau calculus

We use labelled formulae

- TG standing for "Formula G is true"
- FG standing for "Formula G is false"

Tableau calculus

Formula classes

lpha-Formulae	$T(A \wedge B)$, $F(A \lor B)$, $F(A o B)$, $F(eg A)$
β -Formulae	$T(A \lor B)$, $F(A \land B)$, $T(A o B)$, $T(eg A)$
u-Formulae	$T \Box A, F \diamond A$
π -Formulae	$T \diamond A, F \Box A$

Tableau calculus

Successor formulae

lpha	α_1	α_2	β	eta_1	β_2
$T(A \wedge B)$	TA	ТВ	$T(A \lor B)$	TA	ТВ
$F(A \lor B)$	FA	FB	$F(A \wedge B)$	FA	FB
F(A ightarrow B)	TA	FB	T(A ightarrow B)	ΤB	FA
$F(\neg A)$	TA	TA	$T(\neg A)$	FA	FA

ν	$ u_0$	π	π_0
$T\Box A$	TA	$T \diamond A$	TA
F◇A	FA	$F\Box A$	FA

Every combination of top-level operator and sign occurs in one of the above cases.

When constructing the tableau, we use signed formulae prefixed by states:

σZA

where $Z \in \{T, F\}$, A is a formula, and σ is a finite sequence of natural numbers.

For the modal logic K, σ_1 is accessible from σ iff

 $\sigma_1 = \sigma n$ for some natural number n.

Tableau expansion rules are shown on the next slide.

Modal propositional expansion rules

 α -Expansion (for formulas that are essentially conjunctions: append subformulas α_1 and α_2 one on top of the other)

$$\frac{\sigma \alpha}{\sigma \alpha_1}$$
$$\sigma \alpha_2$$

 β -Expansion (for formulas that are essentially disjunctions: append β_1 and β_2 horizontally, i.e., branch into β_1 and β_2)

$$\frac{\sigma \beta}{\sigma \beta_1 \mid \sigma \beta_2}$$

Modal propositional expansion rules

 ν -Expansion (for formulae which are essentially of the form $\sigma T \Box A$: append $\sigma' \nu_0$, such that σ' accessible from σ and occurs on the branch already)

$$\frac{\sigma \nu}{\sigma' \nu_0}$$

 π -Expansion (for formulae which are essentially of the form $\sigma T \diamond A$: append $\sigma' \pi_0$, such that σ' is a simple unrestricted extension of σ , i.e. σ' is accessible from σ and no other prefix of the branch starts with σ')

$$\frac{\sigma \pi}{\sigma' \pi_0}$$

A tableau is closed if every branch contains some pair of formulas of the form s TA and s FA.

A proof for modal logic formula consists of a closed tableau starting with the root 1 FA.

These tableau rules can be used to analyze whether $\Box A \rightarrow \Diamond A$ is a theorem of *K* as follows:

1 $F \Box A \rightarrow \Diamond A$ (1) 1 $T \Box A$ (2) from 1 1 $F \Diamond A$ (3) from 1

No other proof rules can be used because the modal formulas are ν rules, which are only applicable for accessible prefixes that already occur on the branch.

These tableau rules can be used to analyze whether $\Box A \rightarrow \Diamond A$ is a theorem of *K* as follows:

1 $F \Box A \rightarrow \Diamond A$ (1) 1 $T \Box A$ (2) from 1 1 $F \Diamond A$ (3) from 1

No other proof rules can be used because the modal formulas are ν rules, which are only applicable for accessible prefixes that already occur on the branch.

Intuition

The labels denote possible worlds. We can construct a Kripke model \mathcal{K} with one possible world only and the empty relation.

Then $\Box A$ is true in \mathcal{K} , but $\Diamond A$ is false, so $\Box A \rightarrow \Diamond A$ is false in \mathcal{K} .

Without the restriction that the prefix should already appear on the path, we could have closed the tableau as follows:

 $1 \quad F \Box A \rightarrow \Diamond A \quad (1)$ $1 \quad T \Box A \quad (2) \text{ from } 1$ $1 \quad F \Diamond A \quad (3) \text{ from } 1$ $11 \quad TA \quad (4) \text{ from } 2$ $11 \quad FA \quad (5) \text{ from } 3$

But this would have been wrong, since $\Box A \rightarrow \Diamond A$ is not a theorem of K.

The rules above are sound and complete for the modal logic K.

For other logics it may be necessary to change

- accessibility relation on prefixes
- the two modal rules.

The rules above are sound and complete for the modal logic K.

For other logics it may be necessary to change

- accessibility relation on prefixes
- the two modal rules.

A tableau formed using the rules presented before is called a K-tableau.

11

11

Prove that $\Box A \land \Box B \rightarrow \Box (A \land B)$

1	$F(\Box A \wedge \Box B) ightarrow \Box (A \wedge B)$	B)	(1)	
1	$T\Box A\wedge \Box B$		(2) , α,	1_1
1	$F\Box(A\wedge B)$		(3) , α,	1 ₂
1	$T\Box A$		(4) , α,	21
1	$T\Box B$		(5) , α,	21
11	$F(A \wedge B)$		(6) , π,	from 3
FA	(7), β, 6 ₁	11	FB	(8), β, 6 ₂
TA	(9), ν , from 4	11	ΤB	(10) $ u$, from 5
\bot	7 and 9		\perp	10 and 8

Definition. A tableau is satisfiable in K if it has a path P, for which there is a Kripke structure K = (S, R, I) for the modal logic K and a mapping m from prefixes of P to S such that

- 1. m(s)Rm(s') iff prefix s' is accessible from prefix s; and
- 2. $(K, m(s)) \models A$ for every formula sTA on path P.
- 3. $(K, m(s)) \models \neg A$ for every formula *sFA* on path *P*.

In the sequel we will just abbreviate the last two cases to: $(K, m(s)) \models A$ for every (signed) formula sA on path P.

If *FA* is satisfiable then we cannot derive \perp on all branches

If we can construct a closed tableau with root FA, then there is no Kripke structure in which A evaluates to false.

If *FA* is satisfiable then we cannot derive \perp on all branches

If we can construct a closed tableau with root FA, then there is no Kripke structure in which A evaluates to false.

Theorem. If there is a closed K-tableau with root 1*FA*, then A is valid in all Kripke structures of K.

If *FA* is satisfiable then we cannot derive \perp on all branches

If we can construct a closed tableau with root FA, then there is no Kripke structure in which A evaluates to false.

Theorem. If there is a closed K-tableau with root 1*FA*, then A is valid in all Kripke structures of K.

In order to prove the theorem we will first prove the following lemma Lemma. Let T_0 is a K-satisfiable tableau, and let T be the extension of T_0 with one of the extension rules. Then T is a K-satisfiable tableau as well. **Lemma.** Let T_0 is a K-satisfiable tableau, and let T be the extension of T_0 with one of the extension rules. Then T is a K-satisfiable tableau as well.

Proof. We only consider the ν and π rules.

 T_0 is satisfiable in K if it has a path P, for which there is a Kripke structure K = (S, R, I) for the modal logic K and a mapping m from prefixes of P to S such that

- 1. $m(\sigma)Rm(\sigma')$ if prefix σ' is accessible from prefix σ ; and
- 2. $(K, m(\sigma)) \models A$ for every formula *sTA* on path *P*.
- 3. $(K, m(\sigma)) \models \neg A$ for every formula *sFA* on path *P*.

Assume first that formula $\sigma\nu$ occurs on path P and the path is extended by the ν rule to $P \cup \{\sigma'\nu_0\}$, where σ' occurs already in P and is accessible from σ . Then $m(\sigma)Rm(\sigma')$ and $(\mathcal{K}, m(\sigma)) \models \nu$.

From this it immediately follows that $(\mathcal{K}, m(\sigma')) \models \nu_0$.

Lemma. Let T_0 is a K-satisfiable tableau, and let T be the extension of T_0 with one of the extension rules. Then T is a K-satisfiable tableau as well.

Proof. (continued)

Assume now that formula $\sigma\pi$ occurs on path P and the path is extended by the π rule to $P \cup \{\sigma'\pi_0\}$, where no other prefix of P starts with σ' and σ' is accessible from σ . Then $m(\sigma)Rm(\sigma')$ and $(\mathcal{K}, m(\sigma)) \models \pi$.

From this it immediately follows that there exists $s \in S$ such that $(\mathcal{K}, s) \models \pi_0$.

We extend the map *m* by defining $m(\sigma') = s$.

(1) By the conditions on the π -rule, we know that σ' is accessible from a prefix ρ on the path P iff $\rho = \sigma$.

(2) Moreover, for every prefix ρ on the path P, ρ is not accessible from σ' .

These properties ensure that for every two prefixes on the path $P \cup \{\sigma' \pi_0\}$ we have: $m(\rho_1)Rm(\rho_2)$ if ρ_2 is accessible from ρ_1 . Thus, T is K-satisfiable. **Lemma.** Let T_0 is a K-satisfiable tableau, and let T be the extension of T_0 with one of the extension rules. Then T is a K-satisfiable tableau as well.

Theorem. If there is a closed K-tableau with root 1*FA*, then A is valid in all Kripke structures of K.

Proof. Let T be the closed K-Tableau with root 1FA. Assume there exists a Kripke-Structure $\mathcal{K} = (S, R, I)$ and $s \in S$ such that $(\mathcal{K}, s) \models \neg A$.

Then the root of T, 1FA, is a K-satisfiable tableau if we define m(1) = s. By the previous Lemma the extension of a K-satisfiable tableau with one of the extension rules is a K-satisfiable tableau as well.

It then follows that T is K-satisfiable, which contradicts the fact that T is closed.

Completeness

Weak form:

Show that if A is valid then there exists a closed tableau with root 1FA.

Completeness

Weak form:

Show that if A is valid then there exists a closed tableau with root 1FA.

Stronger form:

Would like to show that if $N \models A$ then, if we consider the formulae in N as "axioms" and assume that FA then we can construct a closed tableau.

Theorem. If A is valid then there exists a closed tableau with root 1FA.

Proof. (Idea)

We prove the contrapositive. Assume that every tableau for 1FA has an open saturated path P.

Let P_0 the set of all signed formulae with prefixes occurring on P.

Then for every ν -formula $\sigma\nu$, the path contains also the consequence of the ν -rule, $\sigma'\nu_0$, where σ' occurs in P and is accessible from σ .

We construct a Kripke model $\mathcal{K} = (S, R, I)$ for P as follows:

- S is the set of all prefixes occurring on P;
- *R* is the accessibility relation on the set of prefixes;
- If A propositional variable: $I(A, \sigma) = 1$ iff σTA occurs on P.

Theorem. If A is valid then there exists a closed tableau with root 1FA.

Proof. (Continued)

One can prove by induction on the structure of the signed formulae that for every formula σC on P, $(\mathcal{K}, \sigma) \models C$.

Theorem. If A is valid then there exists a closed tableau with root 1FA.

Proof. (Continued)

One can prove by induction on the structure of the signed formulae that for every formula σC on P, $(\mathcal{K}, \sigma) \models C$.

Example 1:

If $\sigma_0 T \Box B$ occurs in P, then for every prefix $\sigma \in S$ which is reachable from σ_0 also σTB occurs in P.

Induction hypothesis: $(\mathcal{K}, \sigma) \models B$ (and this holds for all $\sigma \in S$ with $\sigma_0 R \sigma$. Thus, $(\mathcal{K}, \sigma_0) \models \Box B$.

Theorem. If A is valid then there exists a closed tableau with root 1FA.

Proof. (Continued)

One can prove by induction on the structure of the signed formulae that for every formula σC on P, $(\mathcal{K}, \sigma) \models C$.

Example 2:

If $\sigma_0 F \Box B$ occurs in P, there exists a prefix σ accessible from σ_0 such that σFB occurs in P.

By induction hypothesis, $(\mathcal{K}, \sigma) \models FB$ (i.e. $(\mathcal{K}, \sigma) \models \neg B$, hence $(\mathcal{K}, \sigma_0) \models F \Box B$.

Completeness

Completeness (strong form)

Would like to show that if $N \models A$ then, if we consider the formulae in N as "axioms" and assume that FA then we can construct a closed tableau.

We defined "local entailment" and "global entailment"

 \mapsto We distinguish *L*-completeness and *G*-completeness

Entailment

Global entailment:

$$N \models_G F$$
 iff for every Kripke structure $\mathcal{K} = (S, R, I)$:
If $\mathcal{K} \models G$ for every $G \in N$ then $\mathcal{K} \models F$

Local entailment:

 $N \models_L F$ iff for every Kripke structure $\mathcal{K} = (S, R, I)$ and every $s \in S$: If $(\mathcal{K}, s) \models G$ for every $G \in N$ then $(\mathcal{K}, s) \models F$

L-Completeness

Let N be a set of modal formulae.

Definition A *K*-tableau is an *K*-*L*-Tableau over *N* if for every formula $B \in N$ the following rule can be used:

1TB

Theorem. Let N be a set of modal formulae and A a modal logic formula. Then $N \models_L A$ iff there exists a closed K-L-Tableau with root 1FA. Let N be a set of modal formulae.

Definition A *K*-tableau is an *K*-*G*-Tableau over *N* if for every formula $B \in N$ and for every prefix σ on the current path the following rule can be used:

σTB

Theorem. Let N be a set of modal formulae and A a modal logic formula. Then $N \models_G A$ iff there exists a closed K-G-Tableau with root 1FA.

Tableau calculi

Sound and complete tableau calculi can be devised for a large class of systems of propositional modal logic.

Main challenge: Prove termination (can construct "saturated" or closed model in a finite number of steps)

"Blocking techniques"

Theorem proving in modal logics

- Inference system (soundness and completeness results)
- Tableau calculi (soundness and completeness results)
- Translation to first order logic (+ e.g. Resolution)

next time